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Abstract
Bayesian inference under imprecise prior information is studied: the starting point is a precise
strategy σ and a full B-conditional prior belief functionBelB , conveying ambiguity in probabilistic
prior information. In finite spaces, we give a closed form expression for the lower envelope P of
the class of full conditional probabilities dominating {BelB , σ} and, in particular, for the related
“posterior probabilities”. The assessment {BelB , σ} is a coherent lower conditional probability in
the sense of Williams and the characterized lower envelope P coincides with its natural extension.
Keywords: conditional belief function; Bayesian conditioning rule; inference; ambiguity.

1. Introduction

Bayesian inference is known to naturally fit into de Finetti’s theory of coherent (finitely additive)
conditional probabilities, where a coherent assessment can be always extended, generally not in a
unique way, to any superset of conditional events (de Finetti, 1975; Williams, 1975).

In some application domains (e.g., decision theory, economics, game theory and forensic anal-
ysis, to cite some) the prior knowledge could be only partially specified or, even worse, it could
refer to a different space of hypotheses. In these circumstances, instead of considering a single prior
distribution, one is forced to take into account a set of priors (see, e.g., (Dempster, 1967; DeRoberts
and Hartigan, 1981; Gilboa and Schmeidler, 1989)).

For instance, suppose that a pension system, based on the social security contributions Λ, is
modified by a legal reform so that the new pension scheme takes into account the contribution’s
years Θ. In order to use the previous information, we need to extract a new prior, starting from
the prior distribution P of Λ by taking into account the logical relations between Λ and Θ. There
could be possibly infinite probability distributions of (Λ,Θ) compatible with P , determining a lower
envelope for the distribution of Θ. In particular, if the initial prior information P is a full conditional
probability (Dubins, 1975), then for Θ we obtain a full B-conditional belief function (Coletti et al.,
2016b), i.e., a conditional totally monotone uncertainty measure. Now, considering the profession
X and a statistical model connectingX and Θ, the goal could be to draw inferences on Θ belonging
to a set of values A (e.g., social pension) under particular values of X (e.g., a person is a clerk).

Motivated by the previous discussion, the main aim of this paper is to prove a generalized
version of Bayes’ theorem, working with an ambiguous conditional prior information in the form
of a full B-conditional belief function BelB and a precise statistical model λ, the latter uniquely
determining a strategy σ (Dubins, 1975). A prior in the form of a full B-conditional belief function
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is not so uncommon. For instance, in Example 2, starting from an automatic system S which evolves
according to a Markov chain, we show how to generate a full B-conditional prior belief function on
the algebra spanned by the states of another unobservable automatic system T, taking into account
the logical constraints among the states of S and those of T.

Focusing on finite spaces, we provide a characterization of the lower envelope P of the class
of full conditional probabilities dominating {BelB, σ}. The assessment {BelB, σ} is a Williams-
coherent lower conditional probability and P turns out to be its natural extension (Williams, 1975).

Our results are connected with those proved in (Walley, 1981, 1991; Wasserman, 1990a,b;
Wasserman and Kadane, 1990): we generalize them in a finite context, since no assumption of
positivity for the (lower or upper) probability of the conditioning events is required.

2. Preliminaries

Let A be a Boolean algebra of events E’s, and denote with (·)c, ∨ and ∧ the usual Boolean opera-
tions of negation, disjunction and conjunction, respectively, and with ⊆ the partial order of impli-
cation. The sure event Ω and the impossible event ∅ coincide, respectively, with the top and bottom
elements ofA. IfA is finite, we denote with CA the subset of its atoms which form the finer partition
of Ω contained inA. DenoteA0 = A\{∅}, N is the set of natural numbers, I stands for an arbitrary
index set and 〈{Ei}i∈I〉 indicates the Boolean algebra generated by the set of events {Ei}i∈I .

A conditional event E|H is an ordered pair of events (E,H) with H 6= ∅. In particular, any
event E can be identified with the conditional event E|Ω. An arbitrary set of conditional events
G = {Ei|Hi}i∈I can always be embedded into a minimal set A×A0, where A = 〈{Ei, Hi}i∈I〉.

Recall the definition of coherent conditional probability essentially due to (de Finetti, 1975;
Holzer, 1984; Regazzini, 1985; Williams, 1975).

Definition 1 Let G = {Ei|Hi}i∈I be a set of conditional events. A function P : G → [0, 1] is a
coherent conditional probability if and only if, for every n ∈ N, every Ei1 |Hi1 , . . . , Ein |Hin ∈ G
and every real numbers s1, . . . , sn, denoting B = 〈{Eij , Hij}j=1,...,n〉 with set of atoms CB =
{C1, . . . , Cm}, the random gain defined on CB as G =

∑n
j=1 sj(1Eij − P (Eij |Hij ))1Hij satisfies

min
Cr⊆H0

0

G(Cr) ≤ 0 ≤ max
Cr⊆H0

0

G(Cr),

where H0
0 =

∨n
j=1Hij and, for every E ∈ B, 1E is its indicator defined on CB as 1E(Cr) = 1 if

Cr ⊆ E and 0 otherwise.

In particular, if G = A × A0 where A is a Boolean algebra, then P (·|·) is a coherent conditional
probability if and only if it satisfies the following conditions:

(C1) P (E|H) = P (E ∧H|H), for every E ∈ A and H ∈ A0;

(C2) P (·|H) is a finitely additive probability on A, for every H ∈ A0;

(C3) P (E ∧ F |H) = P (E|H) · P (F |E ∧H), for every H,E ∧H ∈ A0 and E,F ∈ A.

In this case P (·|·) is simply said a full conditional probability on A according to (Dubins, 1975).
If G = {Ei|Hi}i∈I is an arbitrary set, the coherence condition is equivalent to the existence of

a full conditional probability on the A = 〈{Ei, Hi}i∈I〉 extending the given assessment. This is

74



BAYESIAN INFERENCE UNDER AMBIGUITY: CONDITIONAL PRIOR BELIEF FUNCTIONS

a consequence of the conditional version of the fundamental theorem for probabilities (de Finetti,
1975; Regazzini, 1985; Williams, 1975): every coherent conditional probability P on an arbitrary
G can be extended, generally not in a unique way, to every superset of conditional events G′.

If A is a finite Boolean algebra, every full conditional probability P (·|·) on A is in bijection
with a unique linearly ordered class {P0, . . . , Pk} of probability measures on A whose supports
form a partition of Ω (Krauss, 1968). The class {P0, . . . , Pk} is called complete agreeing class and
represents the full conditional probability P (·|·) in the sense that, for every F |K ∈ A × A0, there
is a minimum index α ∈ {0, . . . , k} such that Pα(K) > 0 and P (F |K) = Pα(F∧K)

Pα(K) .
If G is an arbitrary set, we can have more complete agreeing classes, each of them obtained by

solving a suitable sequence of linear systems (Coletti and Scozzafava, 2002).
The set P = {P̃ (·|·)} of all coherent extensions of P to a superset G′ is a compact subset of the

space [0, 1]G
′

endowed with the product topology and the projection set on each element of G′ is a
(possibly degenerate) closed interval. The pointwise envelopes

P = minP and P = maxP,

are known as coherent lower and upper conditional probabilities (Coletti and Scozzafava, 2002),
where coherence here is intended in the sense of (Williams, 1975) (namely, Williams-coherence).
The envelopes P and P satisfy the duality property, i.e., P (E|H) = 1 − P (Ec|H), for every
E|H,Ec|H ∈ G′, so in the following we mainly deal with P .

In general, Williams-coherent lower conditional probabilities can be introduced without starting
from a precise coherent conditional probability (Williams, 1975):

Definition 2 A function P (·|·) on a set of conditional events G = {Ei|Hi}i∈I is a Williams-
coherent lower conditional probability if there is a class of P = {P̃ (·|·)} of coherent conditional
probabilities on G such that P = inf P .

The extendibility of every coherent conditional probability implies the extendibility, generally
not in a unique way, of every Williams-coherent lower conditional probability: the pointwise min-
imal of such extension is referred to as natural extension (Williams, 1975). For checking that an
assessment is Williams-coherent in a finite setting and to find its natural extension see (Capotorti
et al., 2003; Coletti and Scozzafava, 2002).

3. Full B-conditional belief and plausibility functions

A belief function Bel (Dempster, 1967; Shafer, 1976) on a finite Boolean algebra A with set of
atoms CA is a function such that Bel(∅) = 0, Bel(Ω) = 1 and satisfying the n-monotonicity
property for every n ≥ 2, i.e., for every E1, . . . , En ∈ A,

Bel

(
n∨
i=1

Ei

)
≥

∑
∅6=I⊆{1,...,n}

(−1)|I|+1Bel

(∧
i∈I

Ei

)
.

The associated dual function Pl, defined as Pl(E) = 1 − Bel(Ec), for every E ∈ A, is said
plausibility function. Both Bel and Pl are particular (normalized) capacities (Choquet, 1953), i.e.,
they are monotone with respect to the ⊆ relation. A belief function Bel (and so its dual Pl) on a
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finite Boolean algebra is completely characterized by its Möbius inversion m : A → [0, 1], also
known as basic probability assignment (Shafer, 1976), defined, for every E ∈ A, as

m(E) =
∑
B⊆E

(−1)|CE\B|Bel(B),

where CE\B = {Dr ∈ CA : Dr ⊆ E ∧Bc}. In particular,m satisfiesm(∅) = 0 and
∑

E∈Am(E) =
1, and, for every E ∈ A, it holds

Bel(E) =
∑
B⊆E

m(E) and Pl(E) =
∑

B∧E 6=∅

m(E).

Denote with FBel the set of focal elements of Bel, where an event A in A is a focal element of Bel
whenever m(A) > 0.

Given a finite partition L = {H1, . . . ,Hn} of Ω, a capacity ϕ on AL = 〈L〉 and a function
X : L → R, the Choquet integral of X with respect to ϕ is defined as

C
∫
X(Hi)ϕ(dHi) =

n∑
i=1

[
X(Hρ(i))−X(Hρ(i−1))

]
ϕ
(
Hρ(i) ∨ . . . ∨Hρ(n)

)
,

where ρ is a permutation of {1, . . . , n} such that X(Hρ(1)) ≤ . . . ≤ X(Hρ(n)) and X(Hρ(0)) := 0.
We write dHi since we are integrating a function defined on the partition L = {H1, . . . ,Hn} with
respect to a capacity defined on AL = 〈L〉.

We recall the definitions of C-class and full B-conditional belief and plausibility functions given
in (Coletti et al., 2016b).

Definition 3 LetA be a finite Boolean algebra. A linearly ordered class {Bel0, . . . , Belk} of belief
functions on A with sets of focal elements {FBel0 , . . . ,FBelk} is said a covering class, or C-class
for short, if it satisfies the following covering condition∨

E∈
⋃k
α=0 FBelα

E = Ω. (1)

By duality, a linearly ordered class {Pl0, . . . , P lk} of plausibility functions on A is said C-class
if the corresponding class of dual belief functions {Bel0, . . . , Belk} is. By means of a C-class
of belief functions we define the concept of full B-conditional belief function, where B stands for
Bayesian.

Definition 4 Let A be a finite Boolean algebra. A function BelB : A × A0 → [0, 1] is a full
B-conditional belief function on A if there exists a C-class {Bel0, . . . , Belk} of belief functions
on A whose dual plausibility functions are {Pl0, . . . , P lk}, such that, for every E|H ∈ A×A0, if
E ∧H = H then BelB(E|H) = 1, while if E ∧H 6= H

BelB(E|H) =
BelαE,H (E ∧H)

BelαE,H (E ∧H) + PlαE,H (Ec ∧H)
, (2)

where αE,H = min{α ∈ {0, . . . , k} : Belα(E ∧H) + Plα(Ec ∧H) > 0}.
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The previous definition introduces a full B-conditional belief function through a generalized
Bayesian conditioning rule corresponding to the one originally given in (Walley, 1981) for 2-
monotone capacities. The Bayesian conditioning rule has been discussed for belief functions in
(Dempster, 1967; Dubois and Denœux, 2012; Fagin and Halpern, 1991; Jaffray, 1992).

The difference with the previous ones is that the rule given in Definition 4 covers also the case
in which Bel(E ∧H|Ω) +Pl(Ec ∧H|Ω) = Bel0(E ∧H) +Pl0(E

c ∧H) = 0, since it relies not
on a single belief function but on a linearly ordered class of belief functions.

For H ∈ A0, the dual conditional function PlB of a full B-conditional belief function BelB on
A is defined, for every E ∈ A, as

PlB(E|H) = 1−BelB(Ec|H),

and is called full B-conditional plausibility function. By duality we immediately have PlB(E|H) =
0 when E ∧H = ∅, while if E ∧H 6= ∅ it holds

PlB(E|H) = 1−BelB(Ec|H) =
PlαEc,H (E ∧H)

PlαEc,H (E ∧H) +BelαEc,H (Ec ∧H)
. (3)

Notice that a full conditional probability P on A is both a full B-conditional belief function and a
full B-conditional plausibility function.

In this paper conditional belief functions are always intended in the sense of Definition 4: notice
that full conditional probabilities reveal to be both full B-conditional belief and full B-conditional
plausibility functions.

In (Coletti et al., 2016b) it is proved that the conditional measures BelB and PlB determine the
non-empty compact set

PB = {π̃ : π̃ is a full conditional probability on A, BelB ≤ π̃ ≤ PlB}, (4)

for which it holds BelB = minPB and PlB = maxPB . In the same paper we prove that, for every
full B-conditional belief function BelB on A it is always possible to find a different finite Boolean
algebra B and a full conditional probability P on B such that PB can be recovered as the set of
coherent extensions of P to A×A0 and, thus, BelB and PlB as the envelopes of PB .

In (Coletti et al., 2016a) it is also shown that if all the belief functions in a C-class reduce to
necessity measures then the corresponding full B-conditional belief function is a full B-conditional
necessity measure and its dual is a full B-conditional possibility measure. In particular, interpreting
the conditional measures BelB and PlB as envelopes, a necessary and sufficient condition (involv-
ing the finite Boolean algebras B and A and the full conditional probability P ) is given for BelB
and PlB to be full B-conditional necessity and possibility measures.

Since a full B-conditional belief function BelB determines the non-empty compact set PB of
full conditional probabilities dominating it, its use in a Bayesian inferential procedure implies an
ambiguous specification of a full conditional probability.

4. Bayesian inference with full B-conditional prior belief functions

Let L = {H1, . . . ,Hn} and E = {E1, . . . , Em} be two finite partitions of Ω and consider the
Boolean algebras AL = 〈L〉, AE = 〈E〉, A = 〈AL ∪ AE〉. The partitions L and E play the roles of
the sets of mutually exclusive and exhaustive “hypotheses” and “evidences”, respectively.
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In the standard Bayesian setting, a statistical model (see, e.g., (Torgersen, 1991)) is given on
AE × L, where the latter is a function λ : AE × L → [0, 1] such that, for every Hi ∈ L:

(L1) λ(B|Hi) = 0 if B ∧Hi = ∅ and λ(B|Hi) = 1 if B ∧Hi = Hi, for every B ∈ AE ;

(L2) λ(·|Hi) is a probability on AE .

Proposition 1 in (Petturiti and Vantaggi, 2017) implies that any statistical model λ on AE × L
uniquely extends to a strategy onA×L (see, e.g., (Dubins, 1975)) which is a function σ : A×L →
[0, 1] such that, for every Hi ∈ L:

(S1) σ(Hi|Hi) = 1;

(S2) σ(·|Hi) is a probability on A.

By Theorem 5 in (Dubins, 1975), for every full conditional prior probability π on AL, the
assessment {π, σ} (and, in particular, {π, λ}) is a coherent conditional probability, therefore it can
be extended, generally not in a unique way, to a full conditional probability on A. This implies
that, given a full B-conditional prior belief function BelB on A, the assessment {BelB, σ} (and, in
particular, {BelB, λ}) is a Williams-coherent lower conditional probability.

Remark 5 The assessment {BelB, σ} determines a Williams-coherent lower conditional probabil-
ity P on the set of conditional events G = (AL ×A0

L) ∪ (A×L) such that P |AL×A0
L

= BelB and
PA×L = σ so, with a little abuse of terminology, {BelB, σ} is directly referred to be a Williams-
coherent lower conditional probability.

Remark 6 Recall that, in view of the finite setting adopted in this paper, the notion of conditioning
for lower probabilities due to Williams coincides with that due to (Walley, 1991) since in this case
the conglomerability condition is automatically satisfied.

Let BelB be a full B-conditional belief function on AL and σ a strategy on A × L and denote
with PB the set of full conditional probabilities on AL dominating BelB . Consider

P = {P̃ : P̃ is a full conditional probability on A extending {π̃, σ}, π̃ ∈ PB},

which is a non-empty compact subset of [0, 1]A×A
0

endowed with the product topology, whose
envelopes are P = minP and P = maxP . The lower envelope P (·|·) turns out to be the natural
extension of the Williams-coherent lower conditional probability {BelB, σ}.

The following theorem provides a characterization of the lower envelope P (·|·), relying on the
functions defined, for every F,K ∈ A and A ∈ A0

L such that K ⊆ A, as

L(F,K;A) = min
π̃∈PB

{
n∑
i=1

σ(FK|Hi)π̃(Hi|A) :

n∑
i=1

σ(F cK|Hi)π̃(Hi|A) = P (F cK|A)

}
,

U(F,K;A) = max
π̃∈PB

{
n∑
i=1

σ(FK|Hi)π̃(Hi|A) :

n∑
i=1

σ(F cK|Hi)π̃(Hi|A) = P (F cK|A)

}
,

where we write FK and F cK in place of F ∧K and F c ∧K to save space.
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Theorem 7 The lower envelope P (·|·) is such that, for every F |K ∈ A×A0, if F ∧K = K, then
P (F |K) = 1, otherwise:

(i) if K ∈ A0
L, then

P (F |K) = C
∫
σ(F |Hi)BelB(dHi|K);

(ii) if K ∈ A0 \ A0
L, then if there exists A ∈ A0

L such that K ⊆ A and P (K|A) > 0 we have
that

P (F |K) = min

{
P (F ∧K|A)

P (F ∧K|A) + U(F c,K;A)
,

L(F,K;A)

L(F,K;A) + P (F c ∧K|A)

}
,

otherwise P (F |K) = 0.

Proof The statement is trivial if F ∧K = K since in this case P̃ (F |K) = 1 for every P̃ ∈ P , thus
suppose F ∧K 6= K. Condition (i) follows since, if K ∈ A0

L then

P (F |K) = min
P̃∈P

P̃ (F |K) = min
π̃∈PB

n∑
i=1

σ(F |Hi)π̃(Hi|K)

= min
π̃∈CBelB(·|K)

n∑
i=1

σ(F |Hi)π̃(Hi|K) = C
∫
σ(F |Hi)BelB(dHi|K),

where CBelB(·|K) = {π̃(·|K)} is the core of probability measures on AL induced by BelB(·|K)
and the last equality follows by Proposition 3 in (Schmeidler, 1986). To prove condition (ii) let us
consider K ∈ A0 \ A0

L. If there exists A ∈ A0
L such that K ⊆ A and P (K|A) > 0 we have that

P̃ (K|A) > 0 for every P̃ ∈ P , thus P (F |K) = min
P̃∈P

P̃ (F∧K|A)
P̃ (F∧K|A)+P̃ (F c∧K|A) . So, the conclusion

follows since x
x+y is increasing in x and decreasing in y, and, for every P̃ ∈ P , P̃ (·|A) is the convex

combination of probabilities P1(·|A) and P2(·|A), P1, P2 ∈ P , attaining the lower and the upper
envelopes, respectively, on F ∧K (or on F c ∧K) and P̃ (F |K) ≥ min{P1(F |K), P2(F |K)}. The
remaining case, realizing when for all A ∈ A0

L with K ⊆ A it holds P (K|A) = 0, is proven in
analogy to the proof of Lemma 3 in (Petturiti and Vantaggi, 2017).

Restricting to a finite setting, the previous theorem generalizes some results proved in (Coletti
et al., 2014) in which an ambiguous unconditional prior is considered, either in the form of a belief
function or a 2-monotone capacity.

A simplification of condition (ii) of Theorem 7 is obtained when the functions on L, defined as
X(·) = σ(F ∧H|·) and (1− Y (·)) = (1− σ(F c ∧H|·)), are comonotonic (see, e.g., (Denneberg,
1994)), i.e., for every Hh, Hk ∈ L, [X(Hh) − X(Hk)] · [(1 − Y (Hh)) − (1 − Y (Hk))] ≥ 0,
as shown by the following Proposition 8. In particular, this happens for all conditional events in
AL × A0

E related to “posterior probabilities”, obtaining, for a finite setting, a generalization of
results in (Wasserman, 1990a).

Proposition 8 For every F |K ∈ A×A0 such that F ∧K 6= K, K ∈ A0 \A0
L and there existsA ∈

A0
L such that K ⊆ A and P (K|A) > 0, if X(·) = σ(F ∧H|·) and (1−Y (·)) = (1−σ(F c∧H|·))

are comonotonic then

P (F |K) =
P (F ∧K|A)

P (F ∧K|A) + P (F c ∧K|A)
.
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Proof For every A ∈ A0
L, BelB(·|A) is a totally monotone capacity on AL inducing a core

CBelB(·|A) = {π̃(·|A)} of probability measures onAL, moreover, the functionsX(·) and (1−Y (·))
are comonotonic.

By Proposition 6.26 in (Troffaes and de Cooman, 2014) there exists π̃(·|A) ∈ CBelB(·|A) such
that

∑n
i=1X(Hi)π̃(Hi|A) = C

∫
X(Hi)BelB(dHi|A) and

∑n
i=1(1 − Y (Hi))π̃(Hi|A) = C

∫
(1 −

Y (Hi))BelB(dHi|A).
Since

∑n
i=1(1−Y (Hi))π̃(Hi|A) = 1−

∑n
i=1 Y (Hi)π̃(Hi|A) and C

∫
(1−Y (Hi))BelB(dHi|A) =

1 − C
∫
Y (Hi)PlB(dHi|A), it follows C

∫
Y (Hi)PlB(dHi|A) =

∑n
i=1 Y (Hi)π̃(Hi|A) and this im-

plies P (F ∧K|A) = C
∫
X(Hi)BelB(dHi|A) =

∑n
i=1X(Hi)π̃(Hi|A) = L(F,K;A) and P (F c ∧

K|A) = C
∫
Y (Hi)PlB(dHi|A) =

∑n
i=1 Y (Hi)π̃(Hi|A) = U(F c,K;A).

The following example shows that, though BelB(·|K) is a belief function on AL, for every
K ∈ A0

L, and σ(·|Hi) is a probability measure on A, for every Hi ∈ L, the function P (·|K) can
fail 2-monotonicity, for some K ∈ A0.

Example 1 Let L = {H1, H2, H3} and E = {E1, E2, E3, E4} be logically independent partitions
of Ω, and takeAL = 〈L〉,AE = 〈E〉 andA = 〈AL∪AE〉. LetBelB be the full B-conditional belief
function on AL determined by the C-class of belief functions {Bel0, Bel1} displayed below

AL ∅ H1 H2 H3 H1 ∨H2 H1 ∨H3 H2 ∨H3 Ω

Bel0 0 1
2 0 0 1 1

2 0 1
Bel1 0 1

2 0 0 1
2

1
2

1
2 1

where FBel0 = {H1, H1 ∨H2} and FBel1 = {H1, H2 ∨H3}, thus condition (1) of Definition 3 is
satisfied.

Let λ be the statistical model on AE × L such that

λ(Ej |H1) = λ(Ej |H3) =
1

6
, for j = 1, 2, 3, and λ(E4|H1) = λ(E4|H3) =

1

2
,

λ(E1|H2) = λ(E3|H2) =
1

2
, and λ(E2|H2) = λ(E4|H2) = 0.

which uniquely extends to a strategy σ onA×L by Proposition 1 in (Petturiti and Vantaggi, 2017).
Let K = H2 ∨H3, A = E1 ∨E2 and B = E2 ∨E3. Simple computations show that BelB(·|K) is
a belief function vacuous at K, so, we have

P (A ∨B|K) = C
∫
σ(A ∨B|Hi)BelB(dHi|K) = inf

Hi⊆K
σ(A ∨B|K) =

1

2
,

P (A|K) = C
∫
σ(A|Hi)BelB(dHi|K) = inf

Hi⊆K
σ(A|K) =

1

3
,

P (B|K) = C
∫
σ(B|Hi)BelB(dHi|K) = inf

Hi⊆K
σ(B|K) =

1

3
,

P (A ∧B|K) = C
∫
σ(A ∧B|Hi)BelB(dHi|K) = inf

Hi⊆K
σ(A ∧B|K) = 0.

Since P (A ∨B|K) < P (A|K) + P (B|K)− P (A ∧B|K), P (·|K) is not 2-monotone.
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Proposition 8 is a generalization of the ε-contamination model presented in Example 2.3 in
(Huber, 1981), where the author provides a characterization of the lower envelope P on AL × E ,
starting from a statistical model λ and an unconditional prior belief function Bel obtained as the ε-
contamination of a reference prior probability. In such case, in (Huber, 1981) it is stated that P (·|Ej)
is a 2-monotone capacity on AL, for every Ej ∈ E , nevertheless, as shown in our Example 2 the
envelope P (·|K) can fail 2-monotonicity on the whole A, for some K ∈ A0.

The following example shows that a full B-conditional prior belief function can be obtained
starting from a full conditional prior probability defined on a different algebra.

Example 2 We consider an automatic system S that can assume three possible states s1, s2 and
s3. Let S = {S1, S2, S3} be the partition of Ω, where Si = “S is in state si”, for i = 1, 2, 3, and
denote AS = 〈S〉. The evolution of S is determined by the Markov chain whose transition matrix
and graph are reported in Figure 1.

A =

 1 0 0
1
3

1
3

1
3

1
3

1
3

1
3



Figure 1: Transition matrix and graph of the Markov chain related to S

Suppose that the initial state of S is selected at random and that we observe the system evolve
indefinitely in time, so, we can take the limit probabilistic behaviour as our prior information on S.
The starting probability distribution on the states of S is π(0) =

(
1
3 ,

1
3 ,

1
3

)
, while after n > 0 steps

we have π(n) = π(n−1)A =
(

1−
(
2
3

)n+1
, 13
(
2
3

)n
, 13
(
2
3

)n).

It is easily seen that the probability distribution π(n) is positive for every n ≥ 0, so, it uniquely
extends to a full conditional probability (still denoted with π(n)) on AS setting, for every A|B ∈
AS × A0

S , π(n)(A|B) = π(n)(A∧B)

π(n)(B)
. Thus, we have a sequence {π(n) : n = 0, 1, 2, . . .} of full

conditional probabilities on AS converging pointwise to the full conditional probability π(∞) on
AS defined below

AS ∅ S1 S2 S3 S1 ∨ S2 S1 ∨ S3 S2 ∨ S3 Ω

π(∞)(·|S1) 0 1 0 0 1 1 0 1

π(∞)(·|S2) 0 0 1 0 1 0 1 1

π(∞)(·|S3) 0 0 0 1 0 1 1 1

π(∞)(·|S1 ∨ S2) 0 1 0 0 1 1 0 1

π(∞)(·|S1 ∨ S3) 0 1 0 0 1 1 0 1

π(∞)(·|S2 ∨ S3) 0 0 1
2

1
2

1
2

1
2 1 1

π(∞)(·|Ω) 0 1 0 0 1 1 0 1
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The full conditional probability π(∞) is determined by the complete agreeing class {P0, P1} of
probability measures on AS such that P0(·) = π(∞)(·|Ω) and P1(·) = π(∞)(·|S2 ∨ S3).

Consider now a second automatic system T that is not directly observable: the only information
we have is that T can assume three possible states t1, t2 and t3, and that if S is in state si then
T is not in state ti, for i = 1, 2, 3. Let T = {T1, T2, T3} be the partition of Ω, where Ti =
“T is in state ti”, for i = 1, 2, 3, and denote AT = 〈T 〉 with Ti ∧ Si = ∅, for i = 1, 2, 3.

As proven in (Coletti et al., 2016b) setting, for every B ∈ AT ,

(B)∗ =
∨
{Si ∈ S : Si ⊆ B}, Bel0(B) = P0((B)∗) and Bel1(B) = P1((B)∗),

we obtain a C-class of belief functions {Bel0, Bel1} on AT which, in turn, determines the full
B-conditional belief function on AT reported below

AT ∅ T1 T2 T3 T1 ∨ T2 T1 ∨ T3 T2 ∨ T3 Ω

BelB(·|T1) 0 1 0 0 1 1 0 1
BelB(·|T2) 0 0 1 0 1 0 1 1
BelB(·|T3) 0 0 0 1 0 1 1 1

BelB(·|T1 ∨ T2) 0 0 0 0 1 0 0 1
BelB(·|T1 ∨ T3) 0 0 0 0 0 1 0 1
BelB(·|T2 ∨ T3) 0 0 0 0 0 0 1 1
BelB(·|Ω) 0 0 0 0 0 0 1 1

Suppose that the state of the unobservable system T can be verified through a detector D that
returns one of three possible values d1, d2 and d3, with di corresponding to the state ti, for i =
1, 2, 3, with a reliability of 90% and equal chances on failures. Let D = {D1, D2, D3} be the
partition of Ω, where Di = “D returns di”, for i = 1, 2, 3, and denote AD = 〈D〉. Let A =
〈AT ∪ AD〉 and consider the statistical model on AD × T singled out by

λ(Di|Ti) = 90%, λ(Dj |Ti) = λ(Dk|Ti) = 5%, for different i, j, k ∈ {1, 2, 3},

that uniquely extends to a strategy σ on A× T by Proposition 1 in (Petturiti and Vantaggi, 2017).
The full B-conditional belief function BelB encodes all our prior information on T and can

be used together with σ to draw Bayesian inferences. At this aim, suppose that the detector D
shows the value dj , for j = 1, 2, 3, then the lower posterior distribution on the states of T can be
easily determined using Proposition 8. For instance, since P (Dj |Ω) > 0, P (T1 ∧Dj |Ω) = 0 and
P (T c1 ∧Dj |Ω) > 0, for j = 1, 2, 3, we get

P (T1|Dj) =
P (T1 ∧Dj |Ω)

P (T1 ∧Dj |Ω) + P (T c1 ∧Dj |Ω)
= 0,

and, analogously, we can compute P (T c1 |Dj) = 1, so, P (T1|Dj) = P (T1|Dj) = 0, i.e., the
observation of the detector D does not change our degree of belief on T1 since it is BelB(T1|Ω) =
PlB(T1|Ω) = 0.

5. Conclusions

We show that, as long as we consider a precise strategy σ, the introduction of ambiguity in the
prior information through a full B-conditional belief function BelB has straightforward treatment:
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a characterization for the envelopes of the class of full conditional probabilities dominating the
assessment {BelB, σ} is provided. The entire procedure lives inside Williams framework and the
characterized lower envelope reveals to be the natural extension of {BelB, σ}. Our aim for future
research is to introduce ambiguity also in the strategy by considering an imprecise strategy β such
that β(·|Hi) is a belief function, for every Hi ∈ L, possibly removing the finiteness assumption.
This would lead to a theory to compare with that of (Walley, 1991).
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