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Abstract
An evenly convex credal set is a set of probability measures that is evenly convex; that is, a set that is
an intersection of open halfspaces. An evenly convex credal set can for instance encode preference
judgments through strict and non-strict inequalities such as P (A) > 1/2 and P (A) ≤ 2/3. This
paper presents an axiomatization of evenly convex sets from preferences, where we introduce a
new (and very weak) Archimedean condition.
Keywords: credal sets; sets of probability measures; preference axioms; convexity.

1. Introduction

The goal of this note is to show that relatively simple axioms on preference orderings can be used
to characterize evenly convex sets of probability measures; that is, sets that are intersections of open
halfspaces. Such sets allow assessments such as P(A) ≥ 1/2 and 1/4 < P(B) ≤ 3/4; that is, strict
and non-strict inequalities can be expressed on probability values.

A preference ordering is a binary relation � on gambles; a gamble is a function X that yields a
real number X(ω) for each state ω, and X � Y is understood as “X is preferred to Y ”.

If a preference ordering is only a partial order, then, subject to a few additional conditions, it can
be represented by a set of probability measures (Giron and Rios, 1980; Seidenfeld et al., 1990; Wal-
ley, 1991; Williams, 1975). Typically such axiomatizations of sets of probability measures focus on
a single maximal closed convex set of probability measures. It seems that the only existing axiom-
atization that allows for open sets of probability measures sets has been given by Seidenfeld et al.
(1995), using a more general setting where utilities are also derived, and a proof technique based
on transfinite induction. Their representation result may require sets of state-dependent utilities to
represent preferences; for this reason it may be a little difficult to grasp the geometric content of a
preference profile. One wonders whether it is possible to capture assessments such as P(A) > 1/2
with some intuitive construction.

Section 4 presents a concise axiomatization for evenly convex sets of probability measures. We
use a new Archimedean condition, and emphasize the use of separating hyperplanes as much as
possible, hopefully producing results that can be appreciated with moderate effort.

2. Preference orderings, sets of desirable gambles, and credal sets

In this section we present some basic concepts and results used throughout. Because some results
here are in essence well-known, only very short proof sketches are mentioned for them.

Consider a finite set Ω containing n states {ω1, . . . , ωn}. An event is a subset of Ω; a gamble is
a function X : Ω→ <. A gamble can be viewed as a n-dimensional vector. A probability measure
over Ω is entirely specified by a n-dimensional vector with non-negative elements that add up to
one. Given such a vector p that induces a probability measure P, and a gamble X , the expected
value of X , denoted by EP[X], is simply the inner product X · p.
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All sets we consider are subsets of <n; throughout we assume the Euclidean topology. For a set
A, clA is the closure of A and relintA is the relative interior of A. A cone A is a set such that if
X ∈ A then λX ∈ A for λ > 0 (the origin may not be in A). An exposed ray of a convex cone is
an exposed face that is a half-line emanating from the origin (recall that an exposed face is a face
that is equal to the set of points achieving the maximum of some linear function).

Most results in this paper deal with the representation of preferences:1

Definition 1 A preference ordering � is a strict partial order over pairs of gambles.

Absence of preference between X and Y is indicated by X 6∼ Y . If X � 0, X is desirable; if
X 6∼ 0, X is neutral.

We always assume two additional properties:

Monotonicity: If X(ω) > Y (ω) for all ω ∈ Ω, then X � Y ;

Cancellation: For all α ∈ (0, 1], X � Y iff αX + (1− α)Z � αY + (1− α)Z.

The following representation obtains:2

Proposition 2 If a preference ordering � satisfies monotonicity and cancellation, then there is a
convex coneD, not containing the origin but containing the interior of the positive octant, such that
X � Y iff X − Y ∈ D.

Cones that encode preference orderings have received attention in the literature for some time
(Giron and Rios, 1980; Seidenfeld et al., 1990; Williams, 1975; Walley, 1991). In fact, the literature
on sets of desirable gambles (Miranda and Zaffalon, 2010; Quaeghebeur, 2014; Walley, 2000) em-
ploys cones of gambles to model preferences, often assuming admissibility: if X(ω) ≥ 0 for all ω
and X(ω) > 0 for some ω, then X � 0. We do not assume admissibility here; indeed, admissibility
cannot be satisfied in general if preferences are to be encoded by expectation with respect to prob-
ability measures (when probability values may be equal to zero). In any case, we use the term set
of desirable gambles to refer to a convex cone D constructed as in Proposition 2. This proposition
allows one to freely switch between preference orderings and sets of desirable gambles; we find the
former to be more intuitive so we mostly employ them in the remainder of this paper.

One might think that any convex cone of gambles can be represented by a set of probability
measures as follows: X ∈ D iff EP[X] > 0 for all P in some set K of probability measures. This
is not possible. Consider the set of desirable gambles depicted in Figure 1 (left). All gambles in
the interior of D satisfy X(ω1)P(ω1) + X(ω2)P(ω2) > 0 for P(ω1) = P(ω2) = 1/2. No other
pair of probability values (or sets of pairs of probability values) can similarly represent the interior
of D. But even this probability measure cannot represent the fact that half-border is in D; for this
half-border, f(ω1)P(ω1) + f(ω2)P(ω2) = 0. Thus some condition on boundaries is needed.

Conditions on boundaries of sets of desirable gambles inevitably focus on what “makes sense”
concerning limiting behavior. For instance, Aumann (1962) has proposed the following condition:

1. A strict partial order is a binary relation that is irreflexive and transitive, an equivalence is a binary relation that is
reflexive, transitive, and symmetric (a binary relation � is irreflexive when X �X if false for every X; it is transitive
when X �X and Y � Z imply X � Z; it is symmetric when X � Y implies Y �X) (Fishburn, 1970, Section 2.3).

2. Proof sketch: Applying cancellation, X � Y iff X/2−Y/2 � Y/2−Y/2 iff X − Y � 0. Now if X � 0 and
Y � 0, then 0 � −Y (as X � Y iff −Y � −X), and by transitivity we get X + Y � 0. For any λ ∈ (0, 1),
X � 0 iff λX � 0 by cancellation. Finite induction leads to: X � 0 implies λX � 0 for λ > 0, so we have the
cone (monotonicity implies this cone contains every positive gamble; irreflexivity eliminates the origin).
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Figure 1: Left: a cone D; one bordering ray (thick line from the origin) belongs to D, while the
other bordering ray does not belong to D. Right: to understand the effect of Auman’s
continuity condition, take a similar cone D; the gamble X2 is inside D and the gamble
X1 is in the border, so the segment between X1 and X2 is in D, implying that X1 � 0
or X1 6∼ 0 by Aumann’s continuity condition; the same reasoning could be repeated for
−X1, hence the border must be open because X1 � 0 and −X1 � 0 cannot happen.

Aumann’s continuity: If αX + (1− α)Y � Z for all α > 0, then either Y � Z or Y 6∼ Z.

If the interior of the set of desirable gambles is an open halfspace, Auman’s continuity condition
forces the set of desirable gambles to be open (see Figure 1 (right)). In general, if the interior of
the set of desirable gambles is strictly smaller than a halfspace, Aumann’s continuity condition does
not imply that D is entirely open; it only implies that each gamble in the boundary of D is either
desirable or neutral.

If the continuity condition is strengthened so that D is assumed open (Seidenfeld et al., 1990;
Walley, 1991), then it is possible to find a representation of preference orderings through probabil-
ities. Walley imposes openness by basically requiring that X � 0 implies X − ε � 0 for some ε
(Walley, 1991, Section 3.7.8, D7). Another possibility could be to require that (note that limits of
sequences of gambles are always assumed pointwise):

Open continuity If Xi � 0 is false for every i, and X = limiXi, then X � 0 is false.

Here is the representation result under the assumption of openness:3

Proposition 3 If a set of desirable gamblesD is open, then it can be represented by a closed convex
set K of probability measures, in the sense that X ∈ D iff EP[X] > 0 for all P ∈ K.

A set of probability measures is called a credal set (Levi, 1980). There is a significant disad-
vantage in assuming that a set of desirable gambles is open; namely, the representing credal set is

3. Proof sketch: Copy the proof of Theorem 11, except Part 5 (note that in Part 1 one might choose to replace Theorem
7 by some appropriate separating hyperplane theorem (Klee Jr., 1955)). Now to show that K is closed, show that
the complement of the cone C in the proof of Theorem 11 is open: If p 6∈ C, then there is X ∈ D such that
X · p ≤ 0, and also X − ε ∈ D for some ε > 0 (as D is open by assumption). Consider the closed halfspace
H = {q : (X − ε) · q ≤ 0}; this halfspace is disjoint from C. Also, p is inH but not in its boundary (there is a ball
around p insideH for any radius smaller than |(X − ε) · p|/||X − ε||). So the complement of C is open as desired.
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necessarily closed. Hence one cannot say that a coin is biased simply by stating P(Heads) > 1/2.
It seems that the only existing condition in the literature that can accept such assessments has been
proposed by Seidenfeld et al. (1995). Their condition has two parts, but only one is necessary:

SSK-continuity If Xi � Yi for every i, and limi Yi � Z, then limiXi � Z, whenever limits exist.

The other part of the original condition by Seidenfeld, Schervish and Kadane can actually be
derived from the previous conditions:

Proposition 4 Suppose a preference ordering � satisfies cancellation and SSK-continuity. If Xi �
Yi for every i, and W � limiXi, then W � limi Yi.

Proof The assumptions imply Xi−Yi � 0 and then−Yi � −Xi for every i; similarly,− limXi =
lim−Xi � −W , so by SSK-continuity, lim−Yi � −W and then W � limYi.

In fact we might simplify SSK-continuity even more in the presence of cancellation:

Proposition 5 Suppose � is a preference ordering satisfying cancellation. Suppose that if Xi � Yi
and limi Yi � 0 then limiXi � 0. Then � satisfies SSK-continuity.

Proof If {Xi} → X , {Yi} → Y ,Xi � Yi and Y � Z then {Xi−Z} → X−Z, {Yi−Z} → Y −Z,
Xi−Z � Yi−Z and Y −Z � 0; if the property assumed in the statement is true, then X −Z � 0
so X � Z as desired.

If a preference ordering satisfies SSK-continuity, and {Xi} → X , {Yi} → Y , and Xi � Yi,
then either X � Y or X 6∼ Y (for suppose otherwise that Y � X; SSK-continuity says that
if Xi � Yi and Y = limi Yi � X then limiXi � X , hence X � X , a contradiction). Thus we
have that SSK-continuity conveys Aumann’s continuity condition. We will return to SSK-continuity
when we examine whether it implies even convexity (it does not).

3. Evenly convex sets and evenly convex cones

An evenly convex set A is an intersection of open halfspaces (Fenchel, 1952). Hence an open
convex set is evenly convex; also a closed convex set is evenly convex as it is an infinite intersection
of halfspaces. For any set A, its evenly convex hull ecoA is the intersection of all evenly convex
sets containing A; so ecoA is the intersection of all open halfspaces that contain A. Note that
coA ⊆ ecoA, where coA is the convex hull of A.

There are many characterizations of evenly convex sets (Daniilidis and Martinez-Legaz, 2002;
Goberna et al., 2003; Klee, 1968). In particular, we will use the following result in the proof of
Theorem 9 (Daniilidis and Martinez-Legaz, 2002, Corollary 6): a convex set A is evenly convex
iff for every X0 ∈ clA\A, and every {Xi}i≥1 ⊂ A, and every {λi}i≥1 such that λi > 0, we have
X0 − limi λi(Xi −X0) 6∈ A whenever the limit exists.

IfA is evenly convex, then if X ∈ A and Y ∈ clA we have αX + (1−α)Y ∈ A for α ∈ (0, 1)
(Fenchel, 1952, Section 3.5). Consequently:

Lemma 6 Suppose A is evenly convex and 0 6∈ A. If X and −X belong to clA, then neither is in
A.
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Proof IfX ∈ A, then−X ∈ clA impliesX/2+(−X)/2 = 0 ∈ A, a contradiction; henceX 6∈ A.
By similar reasoning, −X 6∈ A.

We then obtain the following separation property, that is used later:

Theorem 7 Suppose A is an evenly convex cone such that 0 6∈ A. If X 6∈ A, then there is p such
that X · p ≤ 0 and Y · p > 0 for all Y ∈ A.

Proof Part 1) Suppose X ∈ clA, but X 6∈ A. Because A is evenly convex, there is p and β such
that X · p = β and Y · p > β for all Y ∈ A (Goberna et al., 2003, Proposition 3.1(ii)). If β > 0,
then for any Y in a neighborhood of 0 we have εY · p < β for some ε > 0; this is a contradiction
because some such Y is inA, and for this Y we must have εY ·p > β. Hence β ≤ 0. We now show
that actually β = 0.

For Y ∈ A, Y · p > β = X · p, hence (Y −X) · p > 0. Because X is in the boundary of A,
there is a gamble Y in a neighborhood of X that belongs toA; define q = Y −X , and note that the
segment from Y to X (excluding X) is in A (Fenchel, 1952, Section 3.5). That is, there is q such
that q · p > 0 and (X + εq) · p > β for ε > 0 in a neighborhood of 0. Now for any λ > 0 we have
λ(X+ εq) ∈ A. That is, λ(X+ εq) ·p > β, so X ·p > β/λ− εq ·p. Again use X ·p = β, to obtain
β > β/λ− εq · p. Consequently, we have both β ≤ 0 and β > −εq · p/(1− 1/λ); take say λ = 2
to obtain the constraint β > −ε(2q · p). These conditions can only be satisfied for ε > 0 if β = 0.

Part 2) Now suppose instead that X 6∈ clA. Consider the cone B = {λX : λ ≥ 0}. Using
an appropriate separation result (Klee Jr., 1955, Theorem 2.5), we know that there is p such that
Y · p > 0 for Y ∈ clA\(clA ∩ −clA), Y ′ · p = 0 for Y ′ ∈ (clA ∩ −clA) ∪ (B ∩ −B), Y ′′ · p ≤ 0
for Y ′′ ∈ B\(B ∩ −B). Clearly B ∩ −B contains just the zero gamble. Now note that clA ∩ −clA
does not intersect A (if Y ∈ clA ∩ −clA, then Y ∈ clA and −Y ∈ clA, so both are not in A by
Lemma 6). Hence there is p such that X · p ≤ 0 and Y · p > 0 for Y ∈ A.

4. Evenly convex sets of desirable gambles and evenly convex credal sets

In this section we consider preference orderings that can be represented by evenly convex sets of
desirable gambles; such preference orderings can also be represented by evenly convex credal sets.
This will allow us to consider assessments such as 1/4 ≤ P(Heads) < 1/2.

4.1 Evenly convex sets of desirable gambles

We introduce the following condition:

Even continuity If Xi � 0 for every i, and Y � 0 is false, then limi(λiY −Xi) � 0 is false for
any sequence of λi > 0 such that the limit exists.

Even though the condition is somewhat long, it is quite reasonable: one cannot take an undesir-
able gamble Y and make it desirable, not even in the limit, by multiplying it by a positive number
and subtracting from it a desirable gamble.4

4. One might consider a weaker condition (as suggested by a reviewer): If Xi � 0 and not Y � 0, then not limi(Y −
Xi) � 0. But this is implied by SSK-continuity: if Xi � 0, then if Y � limiXi then Y � 0 by SSK-continuity,
implying that if Xi � 0, then if not Y � 0 then not Y � limiXi.
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To make later results more concise, we introduce the following definition:

Definition 8 A preference ordering � is coherent when it satisfies monotonicity, cancellation, and
even continuity.

We then obtain:

Theorem 9 If a preference ordering � is coherent, then there is an evenly convex cone D of gam-
bles, not containing the origin but containing the interior of the positive octant, such that X � Y
iff X − Y ∈ D.

Proof Take the set of desirable gambles produced by Proposition 2.
For a fixed Y ∈ clD\D (hence Y 6∈ D) andXi ∈ D for every i, and λi > 0, compute λ′i = 1+λi

and X ′i = λiXi. Clearly λ′i > 0 and X ′i ∈ D. By even continuity, limi(λ
′
iY − X ′i) 6∈ D; hence

limi((1 + λi)Y − λiXi) 6∈ D, and then Y − limi λi(Xi − Y ) 6∈ D. Thus D is evenly convex
(Daniilidis and Martinez-Legaz, 2002, Corollary 6).

Note that coherence implies Aumann’s continuity condition:

Proposition 10 Suppose a preference ordering� is coherent. If αX+(1−α)Y � Z for all α > 0,
then either Y � Z or Y 6∼ Z.

Proof If Xi � 0 for every i, then the fact that ¬(0 � 0) and even continuity imply ¬(−X � 0) for
X = limiXi. Now, if αX + (1 − α)Y � Z, then take αi = 1/2i and Xi = αi(X − Z) + (1 −
αi)(Y − Z); hence Xi � 0, implying that ¬(Z − Y � 0), so either Y � Z or Y 6∼ Z.

4.2 Evenly convex credal sets

Evenly convex sets of desirable gambles can be nicely represented by evenly convex sets of proba-
bility measures, as described by the next theorem. In the next proof and later we use the nonempty
cone

C = {p : X · p > 0,∀X ∈ D}.

Theorem 11 If a preference ordering � is coherent, then there is a unique maximal evenly convex
credal set K such that X � Y iff for all P ∈ K we have EP[X] > EP[Y ].

Proof Part 1) For anyX 6∈ D, there is p such thatX ·p ≤ 0 and Y ·p > 0 for all Y ∈ D by Theorem
7. So C is nonempty, and in fact it is a cone (if p′ and p′′ satisfy the constraints, then so does λp′ for
λ > 0 and p′ + p′′). Hence if X 6∈ D then ∃p ∈ C : X · p ≤ 0; equivalently, if ∀p ∈ C : X · p > 0,
then X ∈ D.

Part 2) By construction, if X ∈ D then X · p > 0 for all p ∈ C; using this and Part 1,
X ∈ D ⇔ ∀p ∈ C : X · p > 0.

Part 3) We now show that C is equivalent to a set of probability measures K. Denote by 1 a vector
of ones, and 1i a vector whose ith element is 1 and all other elements are zero. By monotonicity,
1 · p > 0 for all p ∈ C, so

∑
i pi > 0. Also, for every p ∈ C: (1i + ε) · p > 0 for every ε > 0;

hence pi + ε
∑

j pj > 0 for every ε, implying that pi ≥ 0 (if pi < 0 then for ε < −pi/
∑

j pj we
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have pi + ε
∑

j pj < 0, a contradiction). Hence we can normalize each p in C, thus obtaining a set
of probability measures K that is a representation for D: X ∈ D ⇔ ∀P ∈ K : EP[X] > 0.

Part 4) Take the set K that is equal to the intersection of C and the unitary simplex
∑

i pi = 1:
If p belongs to this intersection, it is normalized so p ∈ K; and if p ∈ K, then p ∈ C and also it is
normalized so it belongs to the unitary simplex. Hence K is the intersection of two convex sets, so
K is convex.

Part 5) The cone C is defined as the intersection of open halfspaces, hence by definition it is
evenly convex. And K is the intersection of those open halfspaces and the unitary simplex (itself
the intersection of open halfspaces), hence K is evenly convex.

Part 6) To show that K is the unique maximal credal set that represents �, suppose there is K′

that represents �, and P′ ∈ K′ but P′ 6∈ K. If P′ 6∈ K, then by the definition of K we must have
some X ∈ D such that EP′ [X] ≤ 0. However, because K′ represents �, for any X ∈ D we must
have EP[X] > 0 for all P ∈ K′; that is, EP′ [X] > 0. Hence we get a contradiction, implying that
no representing credal set can contain probability measures outside of K.

In fact many sets of probability measures may encode the same ordering. For instance, if a
representing K is a closed set, then the set of its extreme points extK is an equivalent representation
for �; that is, X � Y ⇔ ∀P ∈ extK : EP[X] > EP[Y ].

Theorem 12 Suppose � is a coherent preference ordering, and the credal set K has been built as
in the proof of Theorem 11. A credal set K′ represents � iff ecoK′ = K.

Proof We need only to consider preferences with respect to the zero gamble.
Take a credal set K′ such that ecoK′ = K. Clearly if X � 0 then ∀P ∈ K : EP[X] > 0 then

∀P ∈ K′ : EP[f ] > 0 as K′ ⊆ ecoK′. Now suppose ∀P ∈ K′ : EP[X] > 0. Consider that ecoK′

is the set of all p such that Y · p > 0 for all Y such that for all q ∈ K′ we have Y · q > 0. As
X satisfies the last set of inequalities, then X · p > 0 for all p ∈ ecoK′, hence EP[X] > 0 for all
P ∈ K, and then X � 0. Hence K′ represents �.

Now suppose K′ represents �. Then its elements must satisfy the constraints X · p > 0 for all
X ∈ D. Suppose K′ also satisfies a nontrivial constraint Y · p > α for some Y and α; that is, there
is p′ that satisfies all other constraints but such that Y · p′ ≤ α. Because every p is a probability
measure, (Y −α) · p > 0 is an equivalent constraint. Hence (Y −α) · p > 0 for all p ∈ K′; because
K′ represents �, Y − α is a desirable gamble. However there is p′ ∈ K such that (Y − α) · p′ ≤ 0,
implying Y − α 6∈ D, a contradiction. So there is no additional nontrivial strict linear inequality
that distinguishes K′ and K, and consequently they share the same evenly convex hull.

This theorem shows that if two evenly convex sets are different, then they represent distinct
preference orderings. Figure 2 shows several different credal sets that have the same evenly convex
hull, and hence represent the same coherent preference ordering.

4.3 A bit of duality

Additional insight can be obtained by investigating the duality between clD and clC. As C is
nonempty, clC = {p : ∀X ∈ D : X · p ≥ 0}; hence clC is by definition the dual cone5 of D,

5. Given a convex set A, its polar set is A◦ = {p : ∀X ∈ A : X · p ≤ 1} (Brondsted, 83); if A is a convex cone its
polar set is equal to its polar cone, defined as {p : ∀X ∈ A : X · p ≤ 0} (because any inequality with right hand
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Figure 2: Five credal sets with the same evenly convex hull (the first credal set is evenly convex).
Filled dots, thick lines and darker (orange) regions are in the credal sets.

denoted by D? (Boyd and Vandenberghe, 2004, Section 2.6). Then (clC)? is just the closure of D,
as clD = D?? (Brondsted, 83, Theorem 6.2). Also, if a cone F ⊂ D (say a proper face of D), then
D? ⊂ F?, and if we have several cones {Di}i, then (∪iDi)

? = ∩D?
i (Lay, 1982, Theorem 23.3).

It is also possible to establish a connection between the faces of clD and clC. The following
definition is necessary: for any face F of a closed convex cone A, define its dual face F4 =
A? ∩ F⊥ (Stoer and Witzgall, 1970, Section 2.13), where the superscript ⊥ denotes orthogonal
complement (that is, B⊥ = {p : ∀X ∈ B : X · p = 0}). If for two faces F1 and F2 of A we have
that F1 is a face of F2, then F42 is face of F41 (Tam, 1985, Proposition 2.4). In fact, if all faces of
A are exposed, then the mapping between faces of A and its dual is one-to-one and onto, in such a
way that F1 is a face of F2 iff F42 is face of F41 (Tam, 1985, Corollary 2.6). In particular if clD is
generated by a finite number of gambles, then all its faces are exposed and the mapping is indeed
one-to-one and onto the faces of clC (Stoer and Witzgall, 1970, Theorem 2.13.2). Of course, this
applies similarly to faces of clC and its dual.

We can further refine these connections between D and C. For instance, if a face of clD does
intersect D, its dual face does not intersect C:

Theorem 13 If F is a face of clD, and F ∩ D 6= ∅, then F4 ∩ C = ∅.

Proof Suppose F ∩ D 6= ∅. Pick X ∈ F ∩ D. For any p ∈ F⊥ we must have X · p = 0, so p
cannot be in C; hence F⊥ ∩ C = ∅ and consequently F4 ∩ C = D? ∩ F⊥ ∩ C = ∅.

The converse can be shown for finitely generated faces:6

Theorem 14 If F is a finitely generated face of clD, and F ∩ D = ∅, then F4 ∩ C 6= ∅.

Proof We have that F is the conic hull of a finite set of gambles {X1, . . . , Xn}. Suppose that
no element of F⊥ = {p : ∀X ∈ F : X · p = 0} belongs to C. Then for each p ∈ C there is
at least a X ∈ F such that X · p > 0. Write X as

∑
i αiXi (where all αi ≥ 0) to obtain that∑

i αiXi · p > 0; if we have Xi · p ≥ 0 for all Xi, then it must be that Xi · p > 0 for at least
one Xi. (To conclude that Xi · p ≥ 0 for all Xi, reason as follows. As any Y ∈ F is in the
boundary of D, for all such Y we have, for all p ∈ C and all ε > 0, that (Y + ε) · p > 0. So for
all Y ∈ F and all p ∈ C we must have Y · p ≥ 0 to satisfy Y · p > −ε

∑
i pi for all ε > 0.)

Consequently the convex combination Z =
∑n

i=1Xi/n must satisfy Z · p > 0 for all p ∈ C, and
then Z ∈ D. But Z must belong to F , so Z cannot be in D by assumption. Hence there must be an
element ofF⊥ in C; this proves the theorem asF⊥∩C = F⊥∩C∩clC = F⊥∩C∩D? = F4∩C.

side larger than zero is redundant). The dual cone is simply the mirror image of the polar cone: A? = −A◦. Also,
A◦◦ = {X : ∀p ∈ A◦ : X · p ≤ 0} = {X : ∀ − p ∈ −A◦ : X · p ≤ 0} = {X : ∀p ∈ A? : X · p ≥ 0} = A??.

6. Whether or not Theorem 14 holds for general faces is an open question.
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4.4 Back to SSK-continuity

Note that SSK-continuity is satisfied by coherent preference orderings:

Proposition 15 If � is a coherent preference ordering, then SSK-continuity holds.

Proof Take {Xi} → X and {Yi} → Y such that Xi � Yi. Take the representing credal set
K; any probability measure P ∈ K satisfies EP[Xi − Yi] > 0, so limi EP[Xi − Yi] ≥ 0; then
EP[limiXi] ≥ EP[limi Yi] as the state space is finite, hence EP[X] ≥ EP[Y ]. If additionally
Y � Z, then EP[Y ] > EP[Z] for every P ∈ K, so EP[X] > EP[Z] for every P ∈ K, and then
X � Z as desired.

The natural question is whether SSK-continuity implies even continuity. It does not; but to
appreciate the matter, it is interesting to note that SSK-continuity implies even continuity in an
important case. Start by considering a consequence of SSK-continuity that is quite reasonable as a
property of preferences:

Proposition 16 Suppose � is a preference ordering satisfying monotonicity and SSK-continuity. If
αW + (1− α)X � Y � 0 for α ∈ (0, 1], then X � 0.

Proof Take αi = 1/2i, Xi = αiW + (1−αi)X and Yi = Y . As Xi � Yi, {Xi} → X , {Yi} → Y ,
and Y � 0, SSK-continuity implies X � 0 as desired.

This result leads to:

Proposition 17 Suppose� is a preference ordering satisfying monotonicity, cancellation, and SSK-
continuity, with representing set of desirable gambles D. If X ∈ D and Y ∈ clD, then αX + (1−
α)Y ∈ D for α ∈ (0, 1).

Proof Take X ∈ D, Y ∈ clD, α ∈ (0, 1), and Z = αX + (1 − α)Y . For some δ > 0
we have Y + δ ∈ relintD by monotonicity; hence β(Y + δ) + (1 − β)Y ∈ D for β ∈ (0, 1]
(Rockafellar, 1970, Theorem 6.1). Note that Y = γZ − αγX where γ = (1 − α)−1; thus
β(γZ − αγX + δ) + (1 − β)(γZ − αγX) � 0. Hence β(γZ + δ) + (1 − β)(γZ) � αγX
for β ∈ (0, 1]. By assumption X � 0, so αγX � 0; by Proposition 16, we obtain γZ � 0, hence
Z ∈ D as desired.

As noted by (Fenchel, 1952, Section 3.5), a cone A whose closure is the intersection of finitely
many closed halfspaces is evenly convex iff it satisfies: if X ∈ A and Y ∈ clA, then the segment
between X and Y is in A. Hence:

Theorem 18 Suppose � is a preference ordering satisfying monotonicity, cancellation, and SSK-
continuity, with representing set of desirable gambles D. If the closure of D is the intersection of
finitely many closed halfspaces, then D is evenly convex.

That is, SSK-continuity produces even convexity of the set of desirable gambles, and therefore
of the representing credal set, when only finitely many assessments affect preferences. However, in
general SSK-continuity does not enforce even convexity of sets of desirable gambles.
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Figure 3: The set B in Example 1, viewed from point (1, 1, 1).

To understand how this is possible, take a coherent preference ordering �′ and its representing
set of desirable gambles D′. Suppose D′ contains a non-exposed but extreme ray R0 that goes
through gamble X0 (that is, R0 = {λX0 : λ > 0}). Define D′′ = D′\R0; this is still a convex set
(hence a convex cone) containing the positive octant. We can then define a preference ordering �′′
as X �′′ Y iff X − Y ∈ D′′. Note that D′′ is not an evenly convex set, but �′′ built as described
satisfies SSK-continuity as we argue in the remainder of this section. However, before we plunge
into the arguments, consider a concrete example:

Example 1 Suppose Ω = {ω1, ω2, ω3}; a gamble is a triple of numbers (x1, x2, x3), meaning
(X(ω1), X(ω2), X(ω3)). Consider B as the union of the open circle with center (1/4, 1/4, 1/2)
and radius

√
3/2 drawn on the simplex consisting of x1 + x2 + x3 = 1, and the closed polygon

with four vertices (3/4, 3/4,−1/2), (−1/4,−1/4, 3/2), (−2, 3/2, 3/2), (−1, 5/2,−1/2), and take
X0 = (−1/4,−1/4, 3/2), a non-exposed extreme point of B. Figure 3 depicts the set B. Take the
cone D′′ as the set of all rays emanating from the origin and going through points of B except X0.
This cone D′′ produces a preference ordering that satisfies SSK-continuity. �

We now show that the preference ordering �′′ induced by D′′ satisfies SSK-continuity.
As the cone D′ is evenly convex, we can build its representing credal set K′. By construction

X �′′ 0 implies that for all P ∈ K′ we have EP[X] > 0; also by construction X �′′ 0 implies
X 6∈ R0. Also, if for all P ∈ K′ we have EP[X] > 0 and X 6∈ R0, then X �′′ 0. That is, we have
the representation: X �′′ 0⇔ (X 6∈ R0) ∧ (∀P ∈ K′ : EP[X] > 0).

By Proposition 5, we need to show that {Xi} → X , {Yi} → Y , Xi �′′ Yi, Y �′′ 0 imply
X �′′ 0. If Y ∈ R0, then Y �′′ 0 is false and there is nothing to prove; hence assume that Y 6∈ R0.
We distinguish two cases: X 6∈ R0 and X ∈ R0.

Take X 6∈ R0. To prove that X �′′ 0, note that EP[Xi − Yi] > 0 for every P ∈ K′, so
limi EP[Xi − Yi] ≥ 0 and therefore EP[X] ≥ EP[Y ] for P ∈ K′. Thus EP[X] ≥ EP[Y ] > EP[0] =
0 and then EP[X] > 0 for every P ∈ K′, implying X �′′ 0 as desired.

Now take X ∈ R0; note that X is in an extreme ray of clD′. In the next paragraph we show that
if {Xi} → X , {Yi} → Y , Xi �′′ Yi, then Y �′′ 0 must be false. Hence it is irrelevant to consider
X ∈ R0 as the premise of SSK-continuity is never satisfied in this case, and the proof is finished.

To conclude we show that, if A is a convex cone, {Xi} → X , {Yi} → Y , Xi − Yi ∈ A, and
X belongs to an extreme ray of clA but X 6∈ A, then Y 6∈ A. We have that Y ∈ clA and, as
Xi − Yi ∈ A for every i, X − Y ∈ clA (the closure is the set of limiting points). So we have both
Y and X − Y in clA. If Y 6= λX , then X/2 is the convex combination Y/2 + (X − Y )/2 of two
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X(ω1)

X(ω2)
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X(ω1)

X(ω2)

A

−A

X(ω1)

X(ω2)

A

X −A

X

Figure 4: A closed convex coneA (left), the conesA and−A (middle), and the conesA andX−A
for X in an extreme ray of A (right).

points not in the ray containing X , a contradiction with the assumption that X is in an extreme ray
of clA. So Y = λX for some λ, and then Y 6∈ A. (This result is illustrated by Figure 4: Y must
belong to the closure of A and to the closure of X − A, so it belongs to the line from the origin
through X .)

5. Conclusion

We have presented a few axioms on preference orderings that, together, imply a representation
through evenly convex credal sets. This representation lets one handle assessments of strict inequal-
ity for probabilities, and go beyond what can be done with closed convex credal sets. The main idea
is to adopt a novel Archimedean condition (even continuity) that implies even convexity. A similar
representation can be obtained using SSK-continuity in many, but not all, cases.

Future work should look at natural and similar extensions, as well as to conditioning and inde-
pendence. It should also be possible to use our proposed Archimedean condition to obtain general
sets of probabilities, mimicking results by Seidenfeld et al. (2010).
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