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Abstract

Protecting sensitive micro data prior to publishing or passing the data itself on is a crucial aspect:
A trade-off between sufficient disclosure control and analyzability needs to be found. This paper
presents a starting point to evaluate the effect of k-anonymity microaggregated data in (generalized)
linear regression. Taking a rigorous imprecision perspective, microaggregated data are understood
inducing a set X of potentially true data. Based on this representation two conceptually different
approaches deriving estimations from the ideal likelihood are discussed. The first one picks a
single element of X, for instance by naively treating the microaggregated data as true ones or by
introducing a maximax approach taking the elements of X as nuisance parameters to be optimized.
The second one seeks, in the spirit of Partial Identification, the set of all maximum likelihood
estimators compatible with the elements of X, thus creating cautious estimators. As the simulation
study corroborates, the obtained sets of estimators of the latter approach are still precise enough to
be practically relevant.

Keywords: maximum likelihood estimation; generalized linear regression; microaggregation;
anonymization; partial identification.

1. Introduction

In recent years, more data are made available, for instance in the context of websites for marketing
purposes or also by institutions of Official Statistics'. These micro data usually contain sensitive
information of the units involved. As the combination of different disjoint data sources requires
lesser effort now, data obtained in one isolated context may be not revealing, however, the join of
multiple data sources may make the unit identifiable. Therefore, powerful anonymization techniques
for disclosure control, inducing an information reduction, are essential to protect the privacy and
strengthen the collected data quality. Scientific researchers have a diametrically opposite aim: They
desire a deeper understanding of the unit’s action and/or the social or economic processes involved,
hence the availability of minute information about the units under consideration is essential. As data
sources they may rely either on self-collected data or on such from a different source, for instance
Official Statistics or private companies. Henceforth a trade-off between granting sufficient privacy
while still ensuring data utility is required. In cases when the anonymization technique does not
provide sufficient information after its deployment, the availability of the data itself is reduced to
absurdity as the data provision might be scrapped entirely.

A well known concept in this setting is the so-called k-anonymity proposed by Sweeney (2002):
It guarantees that each value of each anonymized variable occurs at least k times. Hence, even if

1. The European Statistics Code of Practice explicitly encourages to make the collected data publicly available (cf.
Eurostat and European Statistical System (2011, principle 15))
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attackers know identifying aspects of one record within the micro data, they are unable to deduce
the actual value of the sensitive variable in question. One specific concept ensuring k-anonymity
is microaggregation, which belongs to the family of perturbative methods in statistical disclosure
control (e.g. Willenborg and de Waal (2001)), replacing individual records by a representative sub-
stitute, e.g. a group average. Initially developed to deal with just continuous variables, microag-
gregation is nowadays applicable to any measurement scale of the variable(s) to anonymize. How-
ever, in this paper the focus is on continuous variables. Microaggregation by a given technique is
herein understood as a mapping m, which by design maps several situations of the values to be mi-
croaggregated x onto the same microaggregation result in the image . However, when analyzing
microaggregated data, one is interested in findings on the original data and therefore in the reverse
mapping which induces a set of compatible underlying data situations

X(2) = {z | m(z) = &} .

In literature, microaggregation techniques have been evaluated mostly in the light of disclosure
control, but few on the potential for analyses: To which extent are structures in the original data
inferable by looking at the anonymized data? This paper deals with linear regression, a standard
statistical model strategy which is commonly employed in econometrics, biometrics and social sci-
ences. As basis for further research it is considered in the broader framework of generalized linear
regression. In the standard case for precise observations the estimators for the structural parame-
ters are obtained when maximizing the likelihood with respect to those. In order to obtain concise
estimators in the case of microaggregated data, one could just ignore the nature of the data and use
them as-is or employ a maximax-like approach by maximizing the likelihood with respect to the
structure parameters and all compatible underlying data situations, suggested herein as first way
to proceed. By taking only such an optimistic instantiation of X the introduced imprecision is not
taken seriously. Therefore, in the spirit of Partial Identification (Manski, 2003) a more cautious
estimation approach is introduced by reporting the set of all maximum likelihood estimators based
on the elements of X. All findings are derived in case of a generic microaggregation and thus are
suitable for any microaggregation technique. However, it is also demonstrated how the estimation
is further improved when considering the specific masking microaggregation technique.

This paper is structured as follows: In section 2 a short overview of microaggregation as
anonymization technique and of generalized linear regression is given. In section 3 approaches to
obtain concise estimators are presented, while in section 4 the partial identification view is taken re-
sulting in sets-valued estimators. A simulation study in section 5 evaluates the theoretically obtained
results. The paper concludes with some remarks and an outlook for further research in section 6.

2. Microaggregation and (Generalized) Linear Regression

2.1 Basics of Microaggregation

The general idea of microaggregation is to replace the individual records by a representative substi-
tute of at least k individuals, in turn microaggregation in this sense then satisfies k-anonymity. Any
microaggregation technique may be represented as a two-step process.

Grouping: The individual records of the micro data are partitioned into clusters in a certain way
such that records within a cluster are similar and each cluster contains at least k& > 3 records.
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Aggregation: Each individual record within a cluster is replaced by the cluster’s characteristic
value, e.g. mean or median.

The choice on how to define similarity of observations and how to deal with multiple variables
allows for a variety of actual techniques. As minimal requirement the previously mentioned con-
cept of k-anonymity (Sweeney, 2002) needs to be fulfilled, guaranteeing that each value of each
anonymized variable occurs at least k£ times. In the simplest case of a single variable, neighboring
observations are grouped together and their values are replaced by their group mean. Thus without
knowledge about the original data, the membership to the employed groups in the first microaggre-
gation step are deducible as same values in the microaggregated data indicate membership to the
same group.

Microaggregation techniques relying on a sorting of variable(s) include Single-axis Sorting,
where the data are globally ordered according to single (external) sorting variable, and Individual
Ranking, in which for every variable to be microaggregated an independent Single-Axis sorting is
applied according to the ranks of itself. From the perspective of disclosure control it is seen critically
that regions for the underlying true records are deducible for both Individual Ranking and Single-
axis Sorting in cases when one of the variables to anonymize acts as the sorting variable.? From the
analyst’s view those regions are exploitable when estimating statistical models as will be seen in the
following sections. Other microaggregation techniques do not rely on the concept of an underlying
sorting variable, but employ directly a multivariate clustering, e.g. Maximum Distance to Average
Vector (MDAV) by Domingo-Ferrer and Mateo-Sanz (2002), also providing natural regions.

As desired, the grouping and aggregation introduce imprecision, which means that several dif-
ferent data sets of the underlying true data will lead to the same microaggregated data set. In case
of inference on structures in the underlying true data one needs to account for this imprecision. In
this paper two conceptually different views are presented: The first, often implicitly found in the
literature without embedding into a formal framework, will prove characterizable as a maximax-like
approach, where the most plausible data situation(s) in the light of the estimation function are used
to obtain the parameter estimate(s). The second is the Partial Identification view, where instead
of an optimistic estimator, a set-valued one is reported, reflecting the imprecision in the input data
more accurately.

2.2 (Generalized) Linear Regression in a Nutshell

The two views are presented for the case of classical linear regression, in order to prepare its ex-
tension in the formulation of the generalized linear regression framework, which uses a maximum
likelihood approach for parameter estimation instead of the ordinary least squares. The basic set-
tings of the likelihood approach are briefly sketched now?: The aim of (generalized) linear regres-
sion is to model the dependency of p independent covariates X = (X1,...,Xy,...,X,) onare-
sponse variable Y, without claiming a causal relation in either direction. For each unit: =1,...,n
the response 7; and the covariates x; are observed, densely written as y = (Y1, ..., %, Yn)"
and x = (x7,... ,miT, ...,z")T. The dependency is modeled by means of a linear predictor
1 = Bo + B1xi1 + ...+ Bpxip = (1, x;)3, which is in the context of generalized regression trans-
formed by a so-called response function* h to model the conditional expectation E(Y | X), where

2. Rosemann et al. (2004) argues that in some practically relevant contexts it is negligible.
3. For further details see Fahrmeir et al. (2013, p. 301ff.)
4. h~! is the so-called link function.
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the form of the conditional distribution is to be specified as a certain one from the exponential
family. Common choices lead to well-known models, e.g. a normal distribution for classical lin-
ear regression or a Bernoulli distribution for logistic regression; in the general formulation several
models are dealt with.

The parameters of interest 3 are estimated by maximizing the (log-)likelihood induced by the
modeling assumptions or equivalently by solving the equation system when setting the score func-
tion (derivate of the log-likelihood with respect to the parameters of interest) to zero. The score
function in classical linear regression for 3, is obtainable to

s(Bq) = ;;xiq (yz - (1, wz)ﬁ) ) (D

where in the case ¢ = 0 the value of x;q is set to one.’

For a start only microaggregation of all of the covariates is covered in this work; a situation
common in social sciences, when the effect of several covariates, requiring anonymization, on a
response variable, for which anonymization is not required, is to be estimated. An extension of this
situation to mixtures of aggregation techniques employed for covariates of different scale is subject
to further research. It is believed that the findings presented herein may be adapted straightforwardly
to the case when only some covariates are microaggregated and the others are left as-is. Considering
a microaggregated response variable appears more difficult as conditional independence of the now
microaggregated y;’s in the likelihood does no longer hold. Moreover, it is believed that the actual
choice of microaggregation technique has a more severe impact on the quality of the estimation.

2.3 Common Structural Implications of Microaggregation

Before discussing microaggregation in the context of (generalized) linear regression, the structure
of microaggregation is recalled. To draw the distinction between the original values and its microag-
gregated counterparts, as briefly sketched in the introduction, the first are denoted by x, whereas
for the microaggregated values a tilde is placed above: . A technique suitable for k-anonymity
is assumed with £ as the fixed group size. For simplicity reasons within this paper it is further
assumed that the number of observation n is a multiple of k. Nonetheless, the proposed approach
may be straightforwardly generalized to the case when k is only a minimal group size. As a result
there are G = n/k distinct groups for each variable under microaggregation. As the microaggrega-
tion process involves grouping and averaging, depending on the actual technique chosen even per
variable, the notation for generic microaggregation described herein is severely affected. In order
to index an observation, a two level indexing in the superscript is utilized: The first place is taken
by the membership in a specific group and in the second place the index within this group is given.
To denote the grouping according to a specific microaggregated covariate, the group label is further
indexed by it. This means, ZJ’ corresponds to the microaggregated value of the ¢ covariate for
the j*" observation in the g*" group, when grouping is induced by the microaggregation of the rth
covariate. Please recall that :E‘Zq ) has the same value for j = 1,. .., k.
In the above notation the original values are representable by adding a further parameter level:

9rJ — 79r.d grsJ
xqm _xqrv +Aqr7 , (2)

5. The estimation equation for generalized linear regression with canonical link function takes a similar form, only
replacing (1, z;) by h(1, z;)
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where A“q’“j is the corresponding deviation of the individual record from its corresponding group
mean. By just looking at the microaggregated values, one is able to deduce the group membership
used in the microaggregation’s aggregation step. As the mean value within each group is already
known, there is a restriction on those deviations per group, which can be formulated by means of
the underlying true values associated with a each group

k

Soaid = k& Vayg, 3)
j=1

or expressed in terms of the deviations within each group

k k-1
SAl =0 = A=A vy, )
j=1 j=1

Depending on the employed microaggregation technique, further information on the regions
in the data space in which the true underlying values are lying are deducible. Those regions are
especially straightforward obtainable in case of Individual Ranking. Also in case of multivariate
clustering one could identify such regions.

In the following two different approaches on obtaining meaningful estimators for the regression
coefficients are presented.

3. A Nuisance Parameter Optimization Approach

This section discusses the optimistic estimation of the structural parameter when only considering
favorable data situation. What is actually deemed as favorable is depending on the view taken.

A naive estimation approach just substitutes the true underlying data a with the microaggre-
gated data x, treating the microaggregated data as independent observations, resulting in the so-
called naive estimator for 3. However, this estimator entirely neglects the nature of the data, it
even explicitly rules out the imprecision. In the literature the properties of this naive estimator
have been studied in the context of OLS estimation in order to improve it if necessary: Schmid and
Schneeweiss (2008) have investigated the effects on the regression coefficient estimates in a general
case when Individual Ranking was used, while in Schmid et al. (2007) Single-axis Sorting was con-
sidered with the response variable as the sorting variable. Further situations, including also external
sorting variables, were discussed in Schmid (2007). Schmid and Schneeweiss (2005) conducted
simulation studies, looking at the effect of different microaggregation techniques on the bias of the
estimators. They prove that in some situations a bias correction is necessary and actually derive it
for either the coefficient estimator or the error variance or even both. They also demonstrate that the
corrected estimators are consistent and sometimes even the naive estimator has this property with
respect to the true underlying data. However, they rely heavily on the fact that the OLS estimator is
obtainable in a closed form, necessarily limiting their investigations to linear models.

3.1 Implications on the Score Function

When looking at the same task from the generalized linear regression perspective, a closed form
is also obtainable for the classical linear regression as the estimation equations coincide, however
the framework provides means for uniformly modeling different types of models for which neither
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an OLS estimation is appropriate nor a closed form expression for the estimates is obtainable. Ad-
ditionally, the fitting of the proposed corrections into the likelihood approach to obtain consistent
estimators are tedious and not straightforwardly applicable; especially when thinking a step ahead
when dealing with generalized linear regression. Yet again to obtain a concise estimate only one
specific data constellation is to be deemed favorable, which is implicitly assessed by the likelihood.

In the following an extension is elaborated on stating this implicit assumption explicitly: One
includes the underlying true values * € X, or equivalently their deviation A from the respective
group mean, as nuisance parameters into the ideal likelihood and estimates them alongside:

3. ¢ :
B B, zy) — e

The restrictions in (3) or (4) introduce a well perceived loss of freedom which in turn results
in the fact that within each group there are k£ — 1 nuisance parameters to estimate. For simplicity
reason the restrictions as on the right in (4) are employed.

One should note that in the case of a classical linear model the resulting likelihood function to
maximize is already a polynomial of grade 4 in the parameters, while taking the same approach in
the logistic regression setting the function is not even polynomial.

As seen in (1) the score function consists of all observations’ contributions. This overall sum-
mation may be re-ordered as one desires, and additionally even separately for the different score
function parts; yet this comes at the cost that the score function is no longer directly expressible in
the straightforward matrix notation as in (1). The general trick when looking at the score function is
to exploit the grouping structure: For any ¢ = 1, ..., p the grouping with respect to the ¢*" covariate
is employed when considering the score function part of f3,.

In the following the contribution s(/34), of such a group g to the score function with respect to
By is given by including (4) into the ideal likelihood and then taking the respective derivatives:

q ¢ Z 9q7] gq,j BO + ququ + ZBT ( qu qu7]>
T#q

k— -1
1 , ;
g Z glb] gq,j - ygq,k:) _ Bq (qud + Zqu,l>
=1 I=1
_ Zﬁr qu + qu,j _ qu,k _ qu,k) ' (5)
riq

As each deviation is group specific for its respective covariate, the global score function s( qu’j )
for the deviation A" takes the following form:

k—1

=1

_ Zﬁr 70 4 A9 _ gk _ A;‘,’q’k) ) (6)
r#q
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As anecessary condition for the optimum the term in (6) needs to be zero. Under the assumption
Bq # 0 it follows that the term in square brackets needs to equal zero. Furthermore, noting that the
terms in square brackets are the same in (5) and (6), the score function s(3;) for 3, simplifies to:

n/k k
,Bq ¢ ZZ ~9q:] gq,j _ ﬁO + ﬁq~9qﬂ + ZB wgqv]
g=ti=t f#q
n/k k
- ~9qJ BTquvJ . (7)
P L

Tsﬁq

With Equation (7) it becomes obvious that, in the general case the estimate of 3, will be dif-
ferent to the one obtained by the naive estimator. However, when the grouping is the same for all
covariates, the second line in (7) equals zero and the function is identical to the one obtained for the
naive estimator. When looking at the respective equations for the intercept 3y they are same in this
approach and for the naive estimation. Nonetheless, as they are dependent on the other coefficients,
the resulting estimates will still differ.

3.2 Notes on Consistency

When considering the limit behavior of the estimators in case of infinitely many observations, in par-
ticular their consistency, two situations are to be covered. In any case the number of observations
prior to microaggregation increases, however the outcome will be dependent on whether the maxi-
mal group size is still fixed, i.e. k is independent of n, or if we increase k along with n, such that
the ratio k/n is fixed. In the first case, as the number of observations increases and the group size
does not change, the value of observations within a group converges to its group mean and therefore
the deviations converge to zero. This then implies that the score estimation equation converges to
the naive estimator equations, which converge to the ones obtain on the original data. Hence the
nuisance parameters vanish in the converging point and the consistency of the one proposed in this
section follows from the consistency of the general maximum likelihood estimator on the original
data. However, such a property is in practice irrelevant, or even not desirable at all as it means that
the privacy preserving effect of microaggregation vanishes in the limit. Hence the second case of a
fixed ratio should be considered: In this case the observations will not converge towards the group
means and equivalently the deviations will not vanish in the limit. This allows to conclude that the
naive estimator is generally not a consistent one, as it neglects the non-vanishing deviations.

3.3 Maximax Optimization

The maximization of the likelihood as presented in the above subsection was formulated as an
unconstrained optimization task with respect to 3 and A. Nonetheless, the task may also be for-
mulated as a constrained optimization problem with respect to 3 and either the true underlying
values x or the deviations A, with the microaggregation as constraint condition. As it appears more
natural, in the following the choice of the restriction is switched to the ones on x, as presented in
(3). The previous formulation in terms of the A already implements the microaggregation equality
constraints into the target function by so-called elimination.
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Furthermore, there might be additional restrictions on the original values which are specific
for certain microaggregation techniques. For instance considering Individual Ranking: Here each
variable is ordered and grouped individually and therefore additional bounds of the underlying true
values for each variable are inferable as each underlying true value within a group must lie between
the respective means of the neighboring groups. Also for MDAV, based on the Euclidean distance,
one can add the heuristic restrictions that the true values are within a ball around each group mean
with a radius of the minimal distance to any other group mean. By taking this optimization view,
other — even external — constraints are implementable to restrict the task further.

In the here presented case the target function is still polynomial, while for generalized linear re-
gression this does not necessarily hold. Therefore algorithms which can deal with such optimization
tasks are required. As there already exist powerful algorithms to solve the maximization task in a
generalized linear regression setting, instead of the direct maximization of the (log-)likelihood, the
popular hill climbing strategy is employed. It consists of two major steps, which are to be repeated
until a specified stopping criterion is reached:

1. Maximization of the likelihood for given B(v=1) estimates, such that all constraints on @ are
satisfied (not only microaggregation ones):

#(") = arg max l(x; B, Y)

2. Maximization of the likelihood for given &(*) estimates:

BY = arg max £(B; 2™ y) .

£(®) and B(*) denote the obtained estimates for  and 3 in the v-th iteration step. By this approach
the complex optimization task is split into two different sub-tasks, which are in themselves easier to
solve. The first is in general a non-convex optimization problem with linear constraints, while the
second step is a simple estimation of a generalized linear regression for which standard software may
be employed. One should note that the number of parameters to estimate is in general greater than
the number of available observations which might result in more than a single solution. Furthermore,
extensive care needs to be taken for choosing the initial values BO): if they are set poorly the
algorithm might converge only to a local maximum instead of the global one or might not converge
at all, especially without the region constraints. Their introduction does make a difference to avoid
some local maxima entirely, as it became visible in the simulation study in section 5.

4. A Partial Identification View

The previous sections rely implicitly on the assumption that the functions presented actually deserve
their name as score function. As the number of nuisance parameters increases with the sample size,
the situation is comparable to an example in Neyman and Scott (1948), therefore violating standard
regularity conditions of maximum likelihood theory. They derive that in their situation the obtained
estimators may not be consistent.

Instead of trying to correct the above functions and derive valid score functions, an ideological
break is taken by looking at the task from a different angle, stressing the points of interest for gen-
eralized linear regression. The structural parameters 3 are of primary interest, while the underlying

164



(GENERALIZED) LINEAR REGRESSION ON MICROAGGREGATED DATA

values of the covariates are of minor interest or do not matter at all. In the spirit of partial identi-
fication only the available information is to be exploited, for instance the region constraints, while
questionable assumptions are dropped, e.g. taking only the most favorable covariate constellation(s)
into account in the model estimation. The partial identification approach in general leads to a set of
estimates compatible with the available data. A natural approach is to calculate the so-called collec-
tion regions®, or an outer approximation of it in form of a hypercube by calculating bounds on the
coefficient estimates component wise. Those obtained may still be informative enough in practice.
The collection region collects all such coefficients B which are obtained as maximum likelihood
estimates, or equivalently as zeros of the score function s(3; ), for at least one feasible x € X:

B = {B] 320 € X : ((Bimo,y) > (Biwo.y) VB € R} = {3 ] Jmg € X+ s(Bsmo) — 0}

With this approach only the actually present information of the covariates is employed in the
estimation of coefficients, it is guaranteed that the estimator of the unknown underlying micro data
prior to microaggregation is contained within the resulting set, as well as the naive estimator. Fur-
thermore, additional information on the covariates like marginal distributions are also includible.

When actually estimating the collection region Boran appropriate approximation, an optimiza-
tion perspective on the tasks proves fruitful once again. In order to obtain the component wise lower
and upper bounds on B, the target function to minimize or maximize takes then a rather simple form:

Bq — min / max .

Additionally to the constraints introduced by the microaggregation, namely the mean and region
constraints, the score function constraint needs to be taken into account:

s/(Bix) =0  Vre{o,...,p},

i.e. each score function part evaluated at the coefficient vector B and a feasible x.

Please note that in contrast to the previous section, the « are only indirectly subject to the opti-
mization. They are allowed to vary freely within their respective bounds, as long as the summation
restrictions induced by the microaggregation and any other constraints on them are satisfied. There
is no further plausibility assessment on their actual values, as it was employed when optimizing
them in the light of the log-likelihood concomitantly or when constructing corrected estimators.

As in general the constraint on the score function has a not negligible complexity, especially as
it is not linear in the parameters, the equality constraint may be better incorporated into the target
function in terms of a penalty. This leads to the following target function:

P
By £ Z A (s-(B;x))? — min / max ,
r=0

where the sign before the sum is chosen appropriately® and \, are the so-called penalty parameters.
If )\, increases each deviation of the evaluated score function from zero is penalized to a greater
extent. Therefore by sufficiently large enough A, the deviation is numerically forced onto zero.

Another benefit of those views is the ability to check for any given vector 3* if it is included in
the feasible region B of regression coefficients, which is an optimization task in = only.

6. cf. Schollmeyer and Augustin (2015, sec. 3.2) for an overview of other types of identification regions.
7. This equivalence holds for generalized linear regression as the log-likelihood is concave; cf. Wedderburn (1976).
8. The addition is chosen when minimizing and subtraction when maximizing the component.

165



FINK & AUGUSTIN

n Average RMSE
Truth IR SaS MDAV

100 0.453 0.667 (0.459) 0.797 (0.797) 0.461 (0.462)
250 0.268 0.352(0.269) 0.469 (0.469) 0.270 (0.270)

Table 1: Average root mean squared error (RMSE) for the maximax-like approach in different mi-
croaggregation settings; values in parentheses are the respective value for the naive esti-
mator

5. Simulation Results

Besides the theoretical investigations, a simulation study is conducted with the aim to visualize the
effects of microaggregation and display the adequacy of the proposed methods.” The simulation
was carried out with the statistical software R (R Core Team, 2016)°.

The classical linear model in the generalized linear regression setting is considered, for sim-
plicity reasons with two independent covariates. Exemplary, the microaggregation techniques of
Single-axis Sorting (SaS), Individual Ranking (IR) and MDAV are employed onto the setting of
two independent covariates; the dependent variable is left un-aggregated. The regression coeffi-
cients are estimated by means of the hill climbing algorithm with all available constraints in the
sense of section 3 and for the component wise bounds by taking the partial identification view as
presented in section 4. The covariates are each drawn from a uniform distribution on [0, 10], while
the response variable is obtained by inducing a dependency structure based on 3 = (1,0.5,1.9)7
and adding white noise with variance 02 = 4. To study the behavior when more observations are
available, the number of observations varied between n = 100 and 250, while the aggregation size
was kept fixed with k£ = 5. Each setting was repeated 1000 times.

Under consideration were the different proposed methods: optimization with only microag-
gregation equality constraints, optimization with microaggregation equality constraints and region
inequality constraints and finally component wise coefficient min/max estimation of the collection
region. However, in a preliminary run, it turned out that the first method, which ignores de-facto
available information, is also numerically unstable as the results are very highly dependent on the
choice of the initial value, which is a well known difficulty when applying a hill climbing strat-
egy.'! However as soon as the additional region constraints entered the task, this was no longer the
case and the obtained solution was a reliable one. Therefore in the here presented simulation the
optimization with just the microaggregation equality constraints is left out.

In Table 1 some results of the simulation are summarized: For the concise estimates their av-
erage root mean squared error (RMSE) is reported. As can be seen for the average RMSE, in the
case of Individual Ranking the maximax-like approach performs poorer in comparison to the naive
estimator. For Single-axis Sorting the estimator coincide, as theoretically shown in section 3, which

9. The code and supplementary files are available on request.
10. The employed optimizer SLSQP (Kraft, 1994) is provided by the R package NLoptr (Johnson, 2014).
11. It was found that most of the times in cases when the initial values for 3(®) were considerably far away from the true
ones, a solution was returned, which was easily improvable.
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practically also holds for the MDAV approach'?. Furthermore, with higher n the average RMSE is
smaller, reflecting the considerations in section 3.2. When comparing the average RMSE obtained
on the aggregated data to the one on the original, one finds that Single-axis Sorting produced the
highest discrepancy, while the others yield quite comparable results. This is mainly due to the fact
that Singe-axis Sorting destroys any multivariate structure within the data. In general it is found
that the maximax-like approach is too optimistic resulting in poorer performance, and that the naive
estimator should be preferred if the user insists on a guaranteed precise solution. The simulation
essentially confirms the analytical results of section 3 and the corresponding ones in Schmid and
Schneeweiss (2005).

For the outer approximation of the identification region the volume of the coefficient box was
calculated. For those the results are also in line with the findings for average RMSE, as in case of
Single-Axis Sorting the boxes are considerably large (n = 100: 38.031; n = 250: 1.530), while
for Individual Ranking and MDAV the estimators are numerically point identified. Nonetheless, for
Single-Axis Sorting the box volume shrinks as n increases. For any methods in any repetition the
naive estimator is indeed included within the box or coincides with the point identified estimators. 3
The tight boxes are mainly due to the exploitation of the guessable region constraints for Individual
Ranking and MDAV.

6. Concluding Remarks

In the light of protecting sensitive data, especially micro data, and availability of suitable methods
for protection, the usability of such protected data should no longer be neglected. In this paper a gen-
eral investigation of the effect of different microaggregation methods on the outcome of regression
coefficient estimation in generalized linear regression was started. For generic microaggregation it
was demonstrated how the ideal likelihood as the core of generalized linear models can be used as
basis in estimation: on the one hand by introducing nuisance parameters concerning the true un-
derlying values and on the other hand by a partial identification view resulting in a set of reachable
values. In the present paper for the partial identification approach an outer approximation of the ac-
tual set was given, yet it may be further refined. Furthermore, the basic ideas were demonstrated on
a classical linear regression, expressed in the framework of generalized linear regression. However,
the developed concepts are general and therefore may be employed to other models, for instance the
logistic regression.
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