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Abstract

We introduce three different approaches for decision making under uncertainty, if (I) there is only
partial (both cardinal and ordinal) information on an agent’s preferences and (II) the uncertainty
about the states of nature is described by a credal set. Particularly, (I) is modeled by a pair of
relations, one specifying the partial rank order of the alternatives and the other modeling partial
information on the strength of preference. Our first approach relies on criteria that construct com-
plete rankings of the acts based on generalized expectation intervals. Subsequently, we introduce
different concepts of global admissibility that construct partial orders by comparing all acts simul-
taneously. Finally, we define criteria induced by suitable binary relations on the set of acts and,
therefore, can be understood as concepts of local admissibility. Whenever suitable, we provide
linear programming based algorithms for checking optimality/admissibility of acts.

Keywords: partial preferences; ordinality; cardinality; decision making under uncertainty; linear
programming; decision criterion; stochastic dominance; utility representation; admissibility.

1. Introduction

One of the constantly recurring topics discussed in the imprecise probabilities community (and on
ISIPTA conferences in particular) is defining meaningful criteria for decision making under complex
uncertainty, finding persuading axiomatic justifications for them and providing efficient algorithms
capable to deal with them. Examples ranging from early ISIPTA contributions by, e.g., Jaffray
(1999) to (most) recent ones by, e.g., Bradley (2015). However, in the vast majority of works in
this field, the complexity underlying the decision situation is assumed to solely arise from beliefs
on the mechanism generating the states of nature that are expressed by an imprecise probabilistic
model. In contrast, the cardinal utility function adequately describing the decision maker’s pref-
erence structure is often unquestioned and assumed to be precisely given in advance.! Our paper
generalizes the classical (generalized) setting to situations, in which this assumption is no longer
justified. Particularly, we consider the case that the decision maker’s preference structure is both
partially ordinal and partially cardinal and, therefore, no longer can be characterized by (a set of
positive linear transformations of) one cardinal utility function.

The paper is structured as follows: In Section 2, we give a brief overview on the background of
our work and show how our approach naturally fits into this picture. In Section 3, we introduce the
crucial concept of a preference system over a set of alternatives that allows for modeling partially
ordinal and partially cardinal preference structures. Section 4 introduces three different approaches

1. Exceptions include Montes (2014, Section 4.2.1), who uses set-valued utility functions.
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for decision making with acts taking values in a preference system by proposing decision criteria
based on generalized expectation intervals (Section 4.2), on global comparisons of acts (Section 4.3)
and on pairwise comparisons of acts (Section 4.4). Whenever suitable, we give linear programming
driven algorithms for checking feasability of acts in finite decision settings. Section 5 concludes.

2. Brief Overview on the Fundamentals underlying our Approach

In classical subjective expected utility theory (SEUT), the decision maker is assumed to be able to
specify (I) a cardinal utility function (unique up to a positive linear transformation) representing his
preferences on a set of alternatives and (II) a unique and precise subjective probability measure on
the space of states of nature specifying his beliefs on the occurrence of the states. Once these ingre-
dients are specified, according to SEUT, the decision maker should choose any act that maximizes
expected utility with respect to his utility and his subjective probability measure. However, in prac-
tice both assumptions (I) and (II) often are systematically too restrictive. In particular, (I) demands
the decision maker to act in accordance with the axioms of von Neumann and Morgenstern, i.e. to
be able to specify a complete preference ranking of all simple lotteries that is both independent and
continuous (see, e.g., Fishburn, 1970, Ch. 8), whereas (II) requires that the decision maker can
completely order the resulting utility-valued acts by preference in accordance with the axioms of de
Finetti, i.e. continuous, additive and monotone (see, e.g., Gilboa, 2009, Ch. 9).

Consequently, there exists plenty of literature relaxing these assumptions. If only (II) is vio-
lated in the sense that there is partial probabilistic information on the occurrence of the states of
nature together with a cardinal preference structure, the common relaxation is to allow for imprecise
probabilistic models in order to represent the probabilistic information. In this case, one can define
optimality of acts in terms of some imprecise decision criterion such as I'-maximin, I'-maximix,
maximality or E-admissibility that, each in its own way, takes into account the whole set of prob-
abilities for constructing a ranking of the acts (see Huntley et al. (2014) for a survey and, e.g.,
Kofler and Menges (1976); Levi (1983); Walley (1991); Gilboa and Schmeidler (1989) for original
sources). Accordingly, there exists a very well-investigated and established theory as well as effi-
cient and powerful algorithms to deal with this kind of violation of the classical assumptions (see,
e.g., Utkin and Augustin, 2005; Kikuti et al., 2011; Hable and Troffaes, 2014).

If (I) is violated in the sense that the decision maker has only complete ordinal preferences and
(II) is violated in the sense that there is no probabilistic information af all, it is nearly unanimously
favored to define optimality of acts in terms of Wald’s classical maximin criterion: Choose what-
ever act receiving highest possible rank under the worst possible state of nature (see Wald, 1949).
However, note that the completeness of the involved ordinal ranking is essential, since, otherwise,
the worst consequences of two distinct acts might be incomparable and, therefore, an optimal act
with respect to the maximin criterion simply does not exist. Even more severe, also the vacuousness
assumption is crucial: Applying the minimax criterion in the presence of (partial) probabilistic infor-
mation means willingly ignoring information. This seems not reasonable at all (cf. also Example 1
for an illustration). Finally, if only (I) is violated in the sense that there is no cardinal information at
all and the available ordinal information is possibly incomplete, one commonly applies the concept
of first order stochastic dominance: Dismiss an act X taking values in the partially ordered set, if
there exists another act Y such that u o Y dominates v o X in expectation for every real-valued
function w respecting the partial order (see, e.g., Lehmann, 1955; Kamae et al., 1977; Mosler and
Scarsini, 1991).
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3. Preference Systems

In this section we define the crucial concept of a preference system. The intuition behind this con-
cept is simple: In many decision problems, the (available information on) the agent’s preferences
is incomplete. More precisely, it often is the case that some pairs of possible decision outcomes
are incomparable, whereas others can be ordered by preference. For some pairs there might even
be an idea of the strength of the preference. There are several situations that could lead to such
incomplete preferences. For example, if a company wants to analyze the choice behavior of their
customers, the information on the customer’s preferences will often be given in form of observed
choices and/or survey data. In this case, incompleteness is a missing data problem and originates
in lacking information. However, also the agent herself might have incomplete preferences. Sup-
pose she knows (e.g. from earlier experience) certain outcomes better than others. Then for pairs
involving better known outcomes, she might be able to specify a preference ranking and even some
intuition for the strength of the preference, whereas for pairs involving unfamiliar outcomes, she
might be able to specify only a ranking or can’t make a comparison at all. The following definition
captures the intuition just described.

Definition 1 Let A be a non-empty set and let R1 C A x A denote a preorder (i.e. reflexive and
transitive) on A. Moreover, let Ro C Ri X Ry denote a preorder on Ri. Then the triplet A =
[A, Ry, Ra] is called a preference system on A.

Except from transitivity, Definition 1 makes no rationality and/or compatibility assumption on the
relations R; and Rg. Hence, a preference system in the sense of the above definition needs by no
means to be reasonable or rational. In Krantz et al. (1971, Chapter 4), an axiomatic approach for
characterizing consistent preference systems is provided for the case that the involved relations are
complete. The corresponding axioms then imply the existence of a real valued function representing
both relations simultaneously that is unique up to a positive linear transformation. Another axiom-
atization that uses quaternary relations instead of pairs of relations is established in Pivato (2013),
where it is shown that under some quite strong conditions (like, e.g., solvability) there exists a mul-
tiutility characterization of the corresponding quaternary relation. A weaker consistency condition
that still applies to settings in which conditions like solvability no longer can be expected is given in
the following definition, for which we need some further notation: If R is a preorder on A, we denote
by I and Pp its indifference and its strict part, respectively. More precisely, for (a,b) € A x A,
we have (a,b) € Ir & ((a,b) € RA (b,a) € R) and (a,b) € Pr :< ((a,b) € RA (b,a) ¢ R).

Definition 2 Ler A = [A, Ry, Ra] be a preference system. Then A is said to be consistent if there
exists a function u : A — [0, 1] such that for all a, b, c,d € A the following two properties hold:

i) If (a,b) € Ry, then u(a) > u(b) with equality iff (a,b) € Ig,.
ii) If ((a,b), (c,d)) € Ra, then u(a) —u(b) > u(c) —u(d) with equality iff ((a,b), (¢,d)) € Ig,.

Every such function w is then said to (weakly?®) represent the preference system A. The set of all
(weak) representations u of A is denoted by U 4. The set of all u € U4 satisfying inf,c 4 u(a) =0
and sup,¢ o u(a) = 1 is denoted by N 4.

2. Here, the term weakly refers to the fact that the representation is meant in the if and not the iff sense.
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The idea behind the set A4 in the above definition is the following: For the special case, that
the preference system A is in accordance with the axioms in Krantz et al. (1971, Chapter 4), the
representation is unique up to a positive linear transformation. Hence, the conditions inf, u(a) = 0
and sup, u(a) = 1 guarantee a unique representation for that special case. For the general case of a
consistent preference system .4 with non complete relations Ry and Ra, restricting analysis to the set
N4 ensures that comparison will not be made with respect to equivalent representation which only
measure utility on a different scale. Note that for finite A, the boundedness condition on the utility
function implies the existence of alternatives in A with greatest and lowest utility value, but not
necessarily of worst and best alternatives in A w.r.t. the relation R;. The restriction on N 4, together
with the concept of granularity of Definition 3, will prove crucial when comparing acts by means
of numerical representation in Section 4.2. Obviously, for a preference system A = [A, Ry, Ro| to
be consistent, certain compatibility criteria between the relations R; and Ry have to be satisfied.
For example it cannot be the case that, for some elements a, b, ¢ € A, it simultaneously holds that
(c,a) € Pg, and ((a,b), (¢, b)) € Ry, since any element u € U 4 would have to satisfy u(c) > u(a)
and u(a) — u(b) > u(c) — u(b). We now provide an algorithm for checking the consistency of a
finite preference system. The proof is straightforward and therefore left out.

Proposition 1 Let A = [A, Ry, Rs| be a preference system, where A = {a1,...,a,} is a finite and
non-empty set. Consider the linear optimization problem
= <(O,...,0,1)/,(u1,...,un,g)/> — max (1)

(ul,...,un7£)€R”+1
with constraints 0 < (uq, ..., un,¢) < 1 and

i) up =wuq forall (ap,aq) € IR, \ diag(A)
ii) uqg+e < wy, forall (ap,aq) € Pr,
iii) up — uqg = up — us forall ((ap,aq), (ar,as)) € Ig, \ diag(Ry)

) up —us + e < up —uy forall ((ap,aq), (ar,as)) € Pr,
Then A is consistent if and only if the optimal outcome of (1) is strictly positive.

The linear programming problem (1) possesses |Ra| + n + 2 constraints. Thus, the number of
constraints increases with the preciseness of the available information on the agent’s preferences. In
applications, typically the relation 22 will be rather sparse, whereas the relation R; will be rather
dense. This is intuitive: While R; is directly observable in the choice behavior of the agent, edges
in Ro need to be gained by hypothetical comparisons in interviews and polls by asking questions
like: “Imagine you have objects a and b. Would you rather be willing to accept the exchange of a by
c or the exchange of b by d?” In order to reduce the number of constraints of the problem, note that
(weak) representability of a preference system A = [A, Ry, Ry] automatically implies transitivity of
the relations R, and Rs. Therefore, in the constraints of the above optimization problem it actually
suffices to quantify only over the transitive reduction of the relations Ir,, Pr,, Ir, and Pg,. Before
turning to decision theory with preference system valued acts, we need one further concept:

Definition 3 Let A = [A, Ry, Ry be a consistent preference system. Moreover, for 6 € (0, 1), let
N denote the set of all u € N 4 satisfying u(a) — u(b) > & for all (a,b) € Pr, and u(c) —u(d) —
u(e) +u(f) > 6 forall ((c,d), (e, f)) € Pr,. Then, N9 is called the (weak) representation set of
granularity (at least) 6.
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The granularity can be given a similar interpretation as the just noticeable difference in the context
of psychophysics (see Luce (1956) for details): It is the minimal difference in utility that the specific
decision maker under consideration is able to notice given that utility is measured on a [0, 1]-scale.
More practically, the restriction to utility functions that reflect the fact that utility differences below
some threshold are not distinguishable empirically will play a crucial role when it comes to defining
generalized expectations in Section 4.2. For now, it is sufficient to note that the algorithm given in
Proposition 1 straightforwardly extends to checking whether the preference system is consistent for
a decision maker with granularity § > 0: If (uj, ..., u}, ") is an optimal solution to problem (1),
then the system is d-consistent if and only if it holds that § < €*.

4. Decision Theory with ps-valued Acts

Differently from axiomatic approaches followed in, e.g., Seidenfeld et al. (1995); Nau (2006);
Galaabaatar and Karni (2013), where (multi-)utility and (imprecise) probability representations are
obtained by preferences over acts, the aim of the present paper is to obtain preferences on acts given
a preference system and some additional probabilistic information. Therefore, we now propose and
discuss some first ideas on decision making under uncertainty with acts taking values in some pref-
erence system (short: ps-valued acts) and partial probabilistic information on the occurrence of the
states available. Before turning to these ideas, let us briefly give some intuition why the standard cri-
teria for decision making under uncertainty generally will fail (or at least produce counter-intuitive
results) in our context: The classical maximin criterion, originally proposed by A. Wald (see Wald
(1949)), is the prototypical criterion for decision under complete lack of information. However, ap-
plying this criterion in the presence of probabilistic information means willingly ignoring available
information and will often lead to counter-intuitive decisions (see Example 1). On the other hand,
the principle of maximizing expected utility requires both cardinal utility and precise probabilistic
information and, therefore, obviously is not applicable in our situation. Moreover, the common
imprecise decision criteria, while explicitly allowing to take into account the incompleteness of the
probabilistic information, still require cardinal utility scale. Contrarily, stochastic dominance allows
for dealing with non-cardinal utility scales, however, requires precise probabilistic information (for
approaches generalizing stochastic dominance to credal sets, see Montes (2014, Section 4.1.1)).

4.1 Basic Setting

We start by defining the central concepts of the theory for the most general case. Let S denote some
non-empty set equipped with some suitable o-algebra o(.S). The elements of S are interpreted as all
possible states of nature about whose occurrence the decision maker is uncertain. Moreover, let M
denote the credal set on the measurable space (S, 0(.S)), interpreted as the set of all probabilities
that are compatible with the available (partial) probabilistic information and thus describing the
uncertainty about the occurrence of the states. For a given consistent preference system A, a state
space S and a credal set M, a ps-valued act is a mapping X : S — A assigning states of nature to
values in the preference system. Define the set F(4 r1,5) C AS .= {f|f : S — A} by setting

F(AM,S) ::{X c A% uoXis o (S)-Br-measurable for all u € UA} 2)

where Br denotes the Borel sigma field on R. By construction, the space F(4 rq,5) consists of
exactly those acts X : S — A whose expectation exists with respect to all pairs (u,7) € U x M
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of compatible probability measure and utility representation (since bounded and measurable random
variables have finite expectation). Given this notation, we can now define our main object of study:

Definition 4 In the situation above, call every subset G C F(4 \m,5) a decision system (with infor-
mation base (A, M)). Moreover, call a decision system G finite, if both |G| < oo and | S| < oo.

The elements of a decision system G are interpreted as those elements of the space F( 4 r,5) that
are available in the specific choice situation under consideration. Given a decision system G, we are
interested in the following question: How can we utilize the information base (A, M) best possibly
in order to define meaningful and reasonable choice criteria on the set G? In the following sections,
we propose three different classes of approach that address exactly this question.

4.2 Criteria based on Generalized Expectation Intervals

In this section, we consider decision criteria that are based on the analysis of generalized expectation
intervals. Depending on the attitude towards ambiguity of the decision maker of interest, such
intervals give rise to different criteria for decision making. Specifically, for a ps-valued act and a
decision maker with granularity § > 0, the corresponding interval will range from the lowest to the
highest possible expected value that choosing this act can lead to under some pair (u, ) € N ff‘ x M.
This leads to the definition of the basic quantity of this section.

Definition 5 Let X € F( 4 aq,5) and 6 € (0,1). With Ds := N9 x M, we call the quantity

Ep,(X) :=[Ep, (X),EDS(X)} ::[( inf (o X),( sup E.(uo X)} 3)
u,m u,m)EDs

the generalized interval expectation of X with respect to A, M and granularity 9.

In the spirit of the theory of imprecise probabilities, the set Ep, (X') can be given an epistemic or an
onthological interpretation: If the imprecision/ambiguity in the sets arises from lack of information
in the sense of e.g. partially observed choice behavior and/or partially known precise probabilities,
the set Ep, (X) is the set of all expectations arising in at least one situation that is compatible
with the data. In contrast, if both sets Nj and M have an onthological interpretation, i.e. are
interpreted as holistic entities of their own, the same holds true for the set of expectations Ep, (X).
Of course, all decision theory that is based on comparisons of the set Ep, (X;) of different acts
X; should reflect the underlying interpretation. The following definition gives three criteria rather
relying on an onthological interpretation of the set Ds. Note that all of them are straightforward
generalizations of the (complete order inducing) decision criteria commonly used in the theory of
imprecise probabilities and reviewed, e.g., in Huntley et al. (2014).

Definition 6 Let G C F(4 \,5) be a decision system and 6, o € (0,1). Anact X € G is called
i) Ds-maximin :iff VY € G: Ep (X) > Ep,(Y)
ii) Ds-maximax :iff VY € G: Ep,(X) > Ep,(Y)
iii) D§-maximix :iff VY € G: oEp (X)+ (1 — a)Epy(X) > aEp, (V) + (1 — a)Ep(Y)

We denote by G 5 Gs and G§' the sets of Ds-maximin, Ds-maximax and D§-maximix acts in G.
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Independent of its interpretation, we need ways for computing the set Ep, (X) in concrete situations.
The following proposition gives a linear programming based algorithm for doing so in finite decision
systems. However, note that applying the proposition requires the extreme points of the underlying
credal set M and, therefore, is ideal for situations where the number of extreme points is moderate
and where closed formulas for computing the extreme points are available. For credal sets induced
by 2-monotone lower/ 2-alternating upper probabilities such formulas exist (cf., Shapley, 1971,
Theorem 3, p.19). While generally the number of extreme points could be very high (maximally |S|!
for lower probabilites), convenient cases exist where furthermore efficient enumeration procedures
are available (such special cases include ordinal probabilities (cf., Kofler, 1989, p. 26), comparative
probabilites (cf., Miranda and Destercke, 2015), necessity measures (cf., Schollmeyer, 2015) or p-
boxes (cf., Montes and Destercke, 2017).

Proposition 2 Let A = [A, Ry, Ra| be a consistent preference system, where A = {a1,...,an}
such that (a1,b), (b,an) € Ry forall b € A and let £* denote the optimal outcome of problem (1).
Moreover, let S = {s1, ..., 5mn} be finite, M be some polyhedral credal set on (S, 2°) with extreme

points EM) := {7 ... 7MY and let X € G. Fore* > § > 0, consider the collection of linear
programs LP‘{, s LP% given by:

W v=1(f. : 5
;uz DX ({a}) — (u1’.f1711L17r11)€Rn / (uh“r.r}i%ew (LP?)

with constraints 0 < (u1,...,u,) < 1, u1 =1, u, = 0 and i) to iv) as given in Proposition I (with
€ := 0 fixed). Let v(t,0) and (t, ) denote the optimal outcomes of problem LP) in minimum and
maximum form. Then, we have Ep,(X) = [min; v(¢, ), max; (¢, 0)].

Proof. Let X € G and e* > § > 0. Then, ./\/:‘fl is non-empty and we can define the function
f:Ds = R, (u,m) = Ex(uo X). Forany u € N fixed, the function 7 — f(u, 7) is linear and,
therefore, both convex and concave. By applying standard results on families of convex and concave
functions, we know that the functions = — inf,, f(u, ) and 7 — sup,, f(u, 7) have to be concave
and convex, respectively. But concave functions on polyhedral set attain their minimum and convex
functions on polyhedral set attain their maximum on the set of extreme points. Hence, in order to
find global maximum and minimum of the function f, it suffices to check on the set Nj x E(M).

Now, let (u?,...,u") denote an optimal solution to problem LP} in maximum form for fixed

» N

t € {1,...,T}. One easily verifies that the constraints imply u* € N¢, where u* : A —
[0,1],u*(a;) == u} and D(¢,8) = E ) (u* o X) = sup{E,(uo X) : u € N§}. Analogous
reasoning for the problem in minimum form yields v(t,0) = inf N, E, ) (uoX). Thus, applying
our considerations from before yields Ep, (X) = [min; v(¢, §), max; v(t, 0)]. O

Another way to compute the bounds in (3) in the case of 2-monotone lower prabailities on a finite
space A is to use the Choquet represenation of the upper (lower) expectation (cf., e.g., Denneberg
(1994, Proposition 10.3, p. 126)): For a fixed utility « and a 2-alternating upper probability v with
associated credal set M, the corresponding expected upper utility can be written as E{u} wm, (X) =
Sy (ugy —ug—1)) - v({s € S | u(X(s)) > u}). If Ry is complete then the expectation is a
linear form in the utility v and the maxmization max,, N E{uyxamp (X) translates to a simple linear
program. If the relation R; is not complete then the ordering of the utility values u; can change as u
ranges in Njf\ and one has to compute the expectation separately for every possible ordering of the
utility values and then take the maximum. If there are totally comparable values u; meaning that
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for every u; either u; < u; or u; > u;, independently from the concrete u € Nj then one can split
the sum in a part containing all utility values below u; and a part containing all utility values above
u; and then analyze every subsum independently which would help in reducing the combinatorial
complexity. The criteria from Definition 6 allow for comparing acts given the granularity § of the
specific decision maker of interest. However, note that knowing the granularity might be a strong
assumption if Ry and Ry are partial orderings, since experimental settings in which this additional
parameter could precisely be elicitated are not as straightforward as in the complete case. Further
possibilities to deal with these issues are treated in the next two sections, where we propose two
approaches completely overcoming the choice of a granularity parameter.

4.3 Criteria based on Global Comparisons

The decision criteria defined in Section 4.2 all construct complete rankings on the set G by compar-
ing numerical representations of parts of the decision system and by somehow ignoring the inherent
utility and probability structure. Therefore, when defining optimality of acts in terms of one of the
criteria from Definition 6, it makes no difference if the ranking is constructed by pairwise or global
comparisons. In the next sections, we turn to two approaches that explicitely take into account a
global and local viewpoint for defining optimality of acts, respectively.® We start with the global
perspective in the sense that we try to find existing utilities (or probabilities, respectively) that can
establish a form of global admissability of a given act X over all other acts Y that is valid for every
possible underlying probability (or utility, respectively). This is reflected in the fact that in the three
admissibility concepts of Definition 7 a V quantifier can follow an 3 quantifier but not vice versa.

Definition 7 Let G C F( 4 m,s) denote a decision system. We call an act X € G
i) A|IM—admissible :iff FJueUsp It e MVY €G: Er(uoX)>E (uoY)
ii) A—admissible :iff Juc U VT e MYY € G: Er(uoX)>E (uoY)
iii)  M—admissible :iff Im € MVueclUsVY € G: Ex(uoX) > E,

) =

(woy)
v) AM—dominant :iff Yu e UsVT e MVY €G: Ex(uoX)>E (uoY)

Denote by G AIM> GA G and fou M the sets of such acts, respectively.

All four act properties just defined rely on the idea that, if there was perfect information on both the
state probabilities (i.e. M = {7} is a singleton) and the utility values (i.e. the utility representation
u 1S unique up to a positive linear transformation), then an act X should be labeled optimal iff X
has greater or equal expected utility than every other act Y € G with respect to (u, 7). However,
they differ in the way they handle the ambiguity underlying the involved sets M and U/ 4: While
A| M-admissibility only demands the existence of at least one compatible combination (u, 7) with
respect to which X maximizes expected utility, .A|M-dominance requires this for all compatible
combinations. M- and .A-admissibility relax the V-assumption on probability and utility level,
respectively. Clearly, it holds that G 4, G4, Q%M C gA|M and gj‘M C G4 and Q%M C Gam, but
in general neither G4 C G nor Gog C G 4. The following example demonstrates that ignoring
the available information base and applying the maximin criterion instead leads to counter-intuitive
decisions even in very simple situations.

3. Note that in the context of IP decision theory, fundamental differences between global criteria and criteria based on
pairwise comparisons have already been discussed (Schervish et al., 2003).
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Example 1 Let A = {a1,as,as, a4}, the (complete) relation Ry induced by as PR, a3 Pr,a4Pr, a1
and Pr, = {((a2,a4), (a3, a1))} consists of one single edge. Consider the decision system G =
{X1, X2}, where the acts X1, X2 : {s1,s2} — A are defined by (X1(s1),X1(s2)) = (a1,a2)
and (X2(s1), Xa(s2)) = (a3, aq). Moreover, suppose our probabilistic information is given by the
credal set M = {m : w({s1}) < 0.5}. In this case, act X; is A| M-dominant, since it maximizes
expected utility w.r.t. every pair (u,7) € Uq X M. In contrast, X5 is not even A|M-admissible,
although it is the unique optimal act w.r.t. the maximin criterion!

To complete the section, we give a proposition containing a linear programming based approach for
checking whether an act X is .4-admissible in finite decision settings.

Proposition 3 Consider again the situation of Proposition 2. Moreover, let G := {X1,..., X} C
F(a,M,s) denote a finite decision system and let X, € G. Consider again the linear optimization
problem (1) with additional constraints

n

Zui (X {ai))) Z (X7 {ai})) forall 1=1,...  k (Cp)
i=1

foreveryt = 1,...,T. Then X, is A-admissible if and only if the optimal outcome of this opti-
mization problem is strictly greater than 0.

Proof. A similar argument as in the proof of Proposition 1 guarantees the existence of an optimal
solution (uj,...,u},c*) such that uw : A — R, u(a;) := u} for all i € n (weakly) represents
the preference system .A. Now, let 7 € M be arbitrary. Choose o € Ap_; such that 7(-) =
Z?zl oy - 7 (-). Then, condition (C;) additionally guarantees that for all { = 1, ..., k it holds

P(uo X.) zu ! ({a)) :iu:-(fjatw(xz1<{az~}>>)
:zat(zu (X ({a))) >§Tjat(§ju X ({ai}))

t=1
:Zuz‘.(zat.w(t)(Xfl({ai}))) — E.(uoX))
=1 t=1

Hence, X, maximizes expected utility with respect to (u, 7). Since m € M was chosen arbitrarily,
this implies that X, is .A-admissible. g
Note that a similar algorithm as given in in Proposition 3 could be used for checking M-
admissibility of acts. However, this would require the set £(U{4) of extreme points of the repre-
sentation set to be known, which is way less straightforward than assuming (M) to be known.

4.4 Criteria based on Pairwise Comparisons

While the criteria defined in Section 4.3 rather relied on global comparisons of acts in the sense
that an act, in order to be labeled admissible, has to dominate all other acts in expectation for (at
least one) fixed pair (7, u), we now turn to criteria induced by pairwise expectation comparisons of
acts (i.e. binary relations on the set of acts). Similarly as already seen in the global case, there are
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several different ways to define such relations each of which reflecting a different attitude towards
the underlying ambiguity. In particular, we define six binary relations R33, R%,v, R%V, R\lﬂ, R@H and
Ry on .7'—(./47/\/[75) by setting for all X,Y € ]:(A,M,S):

(X,)Y)ERyz & JuclUygare M:Er(uoX)>Er(uoY) 4)
(X,Y)eRY, & FuclUpVrne M :Er(uoX)>E (uoY) 6))
(X,Y)ER:, & ImecMVYuclUy:Er(uoX)>Er(uoY) (6)
(X,Y)ERYy & VuclUgIne M :Er(uoX)>Er(uoY) @)
(X,Y)ERS & VreM3ucUy :Er(uoX)>Er(uoY) ®)
(X,)Y)€ERyw & VieMVueclsg:Er(uoX)>E (uoY) )

Obviously, it holds that Ryy is subset of all other relation, whereas R33 is a superset of them. For
the remaining relations, in general, no sub- or superset relation has to be satisfied. Furthermore,
transitivity is only guaranteed for Ryy in general. Similarly as already discussed in the global case,
each of the desirability relations just defined relies on the idea that, given perfect information on
utilities and probabilities, maximizing expected utility should be the criterion of choice. Again,
the relations differ only in the way they handle the ambiguity on the involved sets /4 and M.
Naturally, each of the relations defined above induces a different criterion of (local) admissibility.
These criteria are summarized in the following definition.

Definition 8 Let R € {Ra3, RY,, R3,, Rls, R25, Ry} =: Ry. We call an act X € G locally ad-
missible with respect to R, if it is an element of the set maxg(G) :={Y € G: AZ € Gs.t. (Z,Y) €
Pgr}, that is if it is a maximal element in G with respect to the relation RN (G x G).

So, which of the relations defined above are most important in our context? To address this question,
we discuss some special cases: If the credal set M is a singleton M = {7} and if U4 = {a-up+b |
a > 0,b € R} is unique up to a positive linear transformation then all relations R € R, coincide
with the classical expected utility criterion. If M is a singleton and U4 is the class of all non-
decreasing functions then the relations R\lﬂ and Ryy essentially coincide with the classical concept
of first order stochastic dominance (cf., e.g., Mosler and Scarsini (1991); Lehmann (1955); Kamae
et al. (1977)) while second order stochastic dominance is obtained if /4 is the set of all continuous
concave non-decreasing utility functions that are related to the concept of decreasing returns to
scale. An intermediate case would arise if one has information about decreasing returns to scale
only for parts of the preference system. To compute the relations R33 and Ryy in the general case
one can use the same technique as in Proposition 2 by noting that E;(u o X) > E (uoY) is
equivalent to E;(uo X —u oY) > 0. The other relations R € R, do not appear to be manageable
in such a straightforward manner. However, if M is the core of a belief function then all 7 € M
can be understood as obtained from a mass transfer of probability mass to singleton sets of .S. Since
classical first order stochastic dominance can be checked via the solution of a mass transportation
problem (cf., Mosler and Scarsini (1991, p. 269)), the computation of R%V can be done by solving a
composite mass transportation problem. The most rigorous relation Ryy is also discussed in Montes
(2014, Ch. 4.1). Note that the locally Ryy-admissible acts coincide with the .A| M —dominant acts.
Note also that, in general, the other global concepts of admissibility from Definition 4.3 are not
expressable as induced by one of the local criteria from Definition 4.4 (for the special case of a
cardinal u this is discussed in Schervish et al. (2003)).
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5. Summary and Outlook

We proposed three approaches for decision making under severe uncertainty if acts are ps-valued:
The first is based on granularity-dependent expectation intervals, while the other two rely on local
and global comparisons of specific expectations of acts. For selected criteria, we gave linear pro-
grams. Several challenges should be addressed in future research. Clearly, further algorithms for
the remaining criteria need to be explored in order to make the theory computationally feasible and,
therefore, applicable in practice. Further, it is certainly worth investigating in more detail how the
criteria from the different approaches relate to each other. Finally, designing experimental settings
for elicitating the parameter ¢ could help to receive a more canonical interpretation of granularity.
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