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Abstract

In official statistics, the problem of sampling error is rushed to extremes when not only results on
sub-population level are required, which is the focus of Small Area Estimation (SAE), but also
missing data arise. When the nonresponse is wrongly assumed to occur at random, the situation
becomes even more dramatic, since this potentially leads to a substantial bias. Even though there
are some treatments jointly considering both problems, they are all reliant upon the guarantee of
strong assumptions on the missingness. For that reason, we aim at developing cautious versions
of well known estimators from SAE by exploiting the results from a recently suggested likelihood
approach, capable of including tenable partial knowledge about the nonresponse behaviour in an
adequate way. We generalize the synthetic estimator and propose a cautious version of the so-called
LGREG-synthetic estimator in the context of design-based estimators. Then, we elaborate why the
approach above does not directly extend to model-based estimators and proceed with some first
studies investigating different missingness scenarios. All results are illustrated through the German
General Social Survey 2014, also including area-specific auxiliary information from the German
Federal Statistical Office’s data report.

Keywords: small area estimation; LGREG-synthetic estimator; missing data; partial identifica-
tion; sensitivity analysis; likelihood; logistic regression; logistic mixed model; German General
Social Survey.

1. Introduction

Survey methodology distinguishes between sampling and non-sampling error (cf., e.g., Biemer,
2010). Sampling error occurs when only a subset, but not the whole population can be included in
a survey, yet the aim is to generalize the results beyond the units that have been sampled. Sampling
error is especially severe if the population is composed of several sub-populations and the samples
drawn from these sub-populations are not large enough to permit a satisfying precision on sub-
population level. A set of methods has been introduced to tackle such situations and is referred to
as Small Area Estimation (SAE). The main approach of SAE is to use additional data sources, such
as administrative records and census data, as auxiliary data in an attempt to increase the effective
sample size (cf., e.g., Miinnich et al., 2013; Rao and Molina, 2015).

A common non-sampling error encountered in inference is item-nonresponse. Applying the
EM-algorithm and Multiple Imputations are the recent practices (cf., e.g., Little and Rubin, 2014).
Both techniques force point-identifiability, i.e. uniqueness of parameters, by requiring the assump-
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tion that the missingness is occurring randomly (MAR), i.e. independently of the true underlying
value of the variable of interest given covariates. Since the MAR assumption is generally not testable
and wrongly imposing it may cause a substantial bias, results have to be treated with caution.

According to the methodology of partial identification in the spirit of Manski (2003), one does
not have to insist on strong assumptions to obtain a result at all. Allowing for partially identified
parameters enables to incorporate tenable knowledge only. In this way, one receives imprecise — but
credible — results, which are refined if additional knowledge about the missingness is available. In
this context, there are already several approaches refraining from strong assumptions on the miss-
ingness process (cf., e.g., Couso and Dubois, 2014; Denceux, 2014). These cautious procedures
also represent a popular field of research of the ISIPTA symposia (cf.,e.g., Cattaneo and Wiencierz,
2012; Schollmeyer and Augustin, 2015; Utkin and Coolen, 2011). Since we may not conjure in-
formation about the missingness process or make other strong modelling assumptions (cf., e.g.,
Couso and Sanchez, 2016; Hiillermeier, 2014), uncertainty due to nonresponse has to be interpreted
as lack of knowledge. Thus, approaches, explicitly communicating the associated uncertainty, are
indispensable. In the context of official statistics this point was recently stressed by Manski (2015).

Since nonresponse may seriously reduce the already small sample size in SAE jointly consid-
ering both issues is especially challenging. As far as we know, already existing approaches dealing
with nonresponse in SAE are based on strong assumptions on the missingness process, as MAR or
the missing not at random (NMAR) assumption plus strict distributional assumptions. Thus, consid-
ering a cautious approach for dealing with nonresponse in SAE represents the core of this paper. To
pursue this goal, in Section 2 we start by introducing the notation for the setting considered here fol-
lowed by an introduction to our application using the German General Social Survey. Afterwards,
we give a basic overview about prominent design-based estimators applicable in our situation in
Section 3. Two design-based estimators, the classical synthetic estimator and the LGREG-synthetic
estimator, are generalized in Section 4. While cautious versions are given for the case of including
no missingness assumptions at all, the case of including weak assumptions is considered for both
estimators by relying on the cautious likelihood approach developed in Plass et al. (2015). In Sec-
tion 5 the results are illustrated by means of the application example. In Section 6 we discuss why
our approach cannot be directly extended to prominent model-based estimators and then perform
a first sensitivity analysis. Section 7 concludes by summarizing the major points and giving some
remarks on further research.

2. Setting

Technically, our setting is as follows: Let the population U under study have a total size of N units,
and be divided into M non-overlapping domains (areas) U;, each containing units j, 7 = 1,..., N;
with N; as the size of U;, ¢ = 1,..., M. Let Y be a binary variable of interest that is assumed
to have a relation with a set of k precisely observed categorical covariates X1, ..., X} through a
certain model. Cross classifying the categorical covariates forms a k-dimension table with a total
number of cells v, where the g-th cell — representing the g-th subgroup of the population — contains
known joint absolute frequency X i[g], g=1,...,v,i=1,..., M. To infer about ;, the probability
of a certain category of Y in area 7, a sample s of size n is selected, such that a sample s; of size
n; 1s selected from area ¢ with Zf\il n; = n. Within s;, sample units j, j = 1,...,n; (J € $;)
are selected with inclusion probability 1/w;;, where w;; are the usual sample weights. Sample
values of the covariates, denoted by x1;;, ..., Ti;, are assumed to be completely observed, while
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of sample values of Y, denoted by y;;, some are missing. Accordingly, s; is partitioned into s; ,ps

and s; ;s that refer to sample units with observed and unobserved values of Y, respectively. If we

additionally split by g, the samples are denoted by sgg ], sl[.g[])b . and sg.gin s

Application example: To illustrate the setting (and later on the results), we rely on the German
General Social Survey (GGSS) (GESIS Leibniz Institute for the Social Sciences, 2016). We are
interested in the area-specific ratio of people at risk of poverty, where German federal states are the
areas completely partitioning the overall domain “Germany” (i.e. M = 17)'. We construct a binary
response variable with values “poor” and “rich” by comparing the collected equivalent income mea-
sured on the OECD modified scale with the poverty risk threshold given by 60% of the median net
equivalent income, i.e. 986.65€ for year 2014 (DESTATIS, Statistisches Bundesamt, 2016b). The
poverty variable shows 454 missing values. As covariates, we use the highest school leaving cer-
tificate, which — for ease of presentation — is dichotomized, distinguishing between categories “no
Abitur”? and “Abitur” only, as well as sex.> We base the analysis on the sample with |s| = 3466,
|Sobs| = 3012, |smis| = 454. The German Federal Statistical Office’ data report (DESTATIS, Statis-

tisches Bundesamt, 2016a) provides area-specific totals Xi[g], 1=1,...,M,g=1,...,v, split by
the values of the covariates, i.e. the absolute frequencies of the four subgroups “male-no Abitur”,
“male-Abitur”, “female - no Abitur ”” and “female - Abitur” in area 3.

3. Theoretical Background of Design-Based Estimators

SAE techniques result in producing estimators 7; for area of interest 7,7 = 1, ..., M, that are either
design-based or model-based.* In this paper, we mainly refer to design-based estimators, while we
consider model-based ones in Section 6 only. Design-based estimators are either direct estimators
that only use data from the targeted area, or indirect estimators that rely on data from other areas as
well. This is justified under the assumption of similarity between the areas made to borrow strength
from other areas.

The Horvitz-Thompson (HT) estimator (Horvitz and Thompson, 1952) 71; g1 = N% Z?’:l Wi Yij
for an area ¢, well known in sampling theory, provides a method to estimate the mean of subpopula-
tion (area) 7, thereby accounting for the different sampling probabilities of respondents by sampling
weights. The so-called synthetic estimator from SAE is a design-based indirect estimator, which
is built upon the HT estimator, incorporating not only information from the area of interest, but
averaging over all M areas. Thus, the area specific probability 7; is estimated as

M M
R . 1 1 R .
TiSYN = TSYN = 77 E E Wilis = E N;-#migr,Vi=1,..., M. (D
i—1 jes; =1

Since there is no distinction between areas and sample information is included about the response
variable only, it merely serves as a basis for further estimators.

1. Although Germany is divided into 16 federal states, the GGSS differentiates between 17 ones, additionally distin-
guishing between “former East-Berlin” and “former West-Berlin”.

2. The “Abitur” is the general qualification for university entrance in Germany.

3. Since there should not be any regional differences with regard to covariate sex, the reason for the inclusion of this
covariate rather lies in the interest of illustrating the subgroup specific analysis in a proper way than in an increase of
explanatory power in the subject matter context.

4. While properties of design-based estimators (e.g. bias and variance) are evaluated under sampling distribution over
all samples with population parameters held fixed, model-based estimators usually condition on the selected sample,
and inference regarding them is carried out with respect to the underlying model (cf., e.g., Rao and Molina, 2015).
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An estimator that employs sample data as well as area specific auxiliary information on the joint
totals X1, ..., Xg; is the GREG-synthetic estimator (cf. Sidrdnal et al., 1992), where we here use
its logistic version, the LGREG-synthetic estimator (cf. Lehtonen and Veijanen, 1998). Applying
the LGREG-synthetic estimator is split into two steps:

First, the regression coefficients 5y, 31,. .., O are estimated by means of a standard logistic
regression model linking 7;;, i.e. the probability for individual j, j = 1,...,n;ins;, e =1,..., M,
to have the value y;; = 1, to the linear predictor containing the individual auxiliary information,
here always assuming that all interactions are incorporated.’> Referring to the application example,
we consider two covariates, hence the model includes 3y, 81, B2 and an interaction (3.2, express-
ing the joint effect of both covariates. According to the aim of borrowing strength, one obtains
global regression coefficients. From the estimated global regression coefficients, by applying the
response function of a standard logistic regression model, we receive global predictions that only
depend on the values of the covariate, but are independent of the area. To stress this, we write
#ldl, g = 1,..., v, instead of m;j in our case of categorical covariates. The calculation of these
predictions becomes simpler here: Due to the strict monotonicity of the response function, the cat-
egorical nature of the covariates and the inclusion of all interactions, a unique relation between the
regression coefficients and the predictions can be shown (as, e.g., addressed in Plass et al., 2017).
Consequently, we can directly calculate the subgroup specific predictions by

M Y
~[g] _ ij
mI=22 &)
i=1 je Sgg]
with nl! denoting the cell-count in subgroup g, g = 1,...,v.

Second, area-specific information is used: In our setting, the original LGREG-estimator (cf.,
e.g., Lehtonen and Veijanen, 1998, p.52) for a certain area of interest 7 can be expressed as

HT-part correction term
v 7\
- - g
i LGREG = < >~ wijyij + 4l (x19 >~ wij) )/Nz : 3)
g=1 je&s;q4 JESi,g

It can be understood as the HT estimator corrected by a term accounting for under- and overrepre-
sentation of certain constellations of covariates in the sample, present in case of X EIEN > jesi.y Wig

(2
and X Z-[g] <> jesi g Wij» resprectively. The subgroup specific representation in (3) will turn out to
be beneficial in context of developing a cautious version (cf. Section 4.2 and 4.3).

4. Cautious Versions of Design-based Estimators under Nonresponse

Since the already established ways of dealing with nonresponse in SAE require strong assumptions,
we aim at improving the presented prominent estimators by striving for a proper reflection of the
available information on the missingness process. For this purpose, we use the framework of the
cautious approach developed for the more general case of coarse® categorical data in Plass et al.

5. This is quite natural in this context, since only then the full information about the subgroup specific information, also
provided by the auxiliary information in terms of totals, is used.

6. The data problem only distinguishes between fully observed and completely unobserved values, while coarse data
additionally include partial observations, e.g. in the sense of grouped data (cf. Heitjan and Rubin, 1991).
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(2015) and further extended in Plass et al. (2017) to practically frame the inclusion of auxiliary
information. We start by recalling the basic elements of this approach in the following section.

4.1 A Cautious Approach for Dealing with Nonresponse

An observation model Q is used as a medium to frame the procedure of incorporating auxiliary
information on the incompleteness. Restricting to the missing data problem and a binary response
variable and considering the problem for subgroup g, ¢ = 1,...,v, the model Q!9 is determined

by the set of missingness parameters q[g] i.e. the probability associated with refusing the answer

| ’
(“na”), given a certain subgroup g and the true value y € {0, 1} of the response variable.” In the
spirit of partial identification, one can start by incorporating “no” assumptions® on q[g]‘ then re-
stricting these missingness parameters successively by certain conceivable conditions. The cautious
approach includes this observation model into a classical categorical likelihood problem. For this

ld]

purpose, a connection between the parameters 719 and py s established via the observation model,

91 refers to the observed value y € {0, 1, na}, thus treating the missing values as a category

of its own. The invariance of the likelihood allows to rewrite the log-likelihood in terms of p[g]
which can be uniquely maximized in terms of the parameters of interest by relying on the theorem
of total probability, receiving

(9, 20 0l zn[f’]<1n(7r[g]) +In(1 — g% )) +n[9]<1 (1 — 79y +1n(1 —qﬂlo))

+ n[ 4 (ln( [g]qr[zlu +(1- W[g])%[lgim)) ) “)

where py

lg] . 9] [g]

where ni”, ny" and ng, refer to the respective observed cell counts within subgroup g, which
later on have to be replaced by appropriate sample weights. By maximizing the log-likelihood in

(4), we determine the generally set-valued” estimators, whose one-dimensional projections can be

represented by the lower and upper bounds of intervals, namely 7, [g]’ qglz]z\o’ ‘jgi]qo, @Lill and

=[9] =[9] =gl . =lg]

Gyog1- Thereby, #19) is attained under ¢ dnalo 319 nall-

59]
2nall®
By considering qif” =R q7[u1|0’ with missing ratio R € R C R (also cf. Nordheim (1984)),!°
and R as the set of missing ratios, assumptions about the missingness can be incorporated. Specific
values of R are associated with a particular missingness scenario, thus point-identifying 79!, For

instance, R = 1 represents the missingness scenario under gMAR'!, requiring q[g}|1 = q%m.
Partial (weak) assumptions, like incorporating R € R into (4), thus refine the result obtained from

the log-likelihood optimization without the inclusion of any missingness assumptions. Since it can

be shown that #l9%, 57[134 and q[g]|1 as well as 77[9] , (jfi’lz]a and qglgi‘l ,

and ¢ while 7 is associated with g, al0 and ¢

i.e. the bounds under
the partial assumptions expressed by R = [R, R}, are achieved under missingness ratios 12 and R,
respectively, one does not have to optimize the log-likelihood for all values in [R, R], but optimizing

under R and R is sufficient. While R = [0, 1] corresponds to q[g]‘ < qf[i}ll(}’ a cautious version of

7. Referring to the framework of analyzing contingency tables, it is natural to drop the reference to individual j.
8. In fact, we confine ourselves to very general assumptions detailed in Plass et al. (2017).

9. The mapping relating 719 to ﬁ%f Lis generally not injective.
10. Here we consider a different R than in Plass et al. (2015).

11. Conditioning on subgroup g generalizes the typical MAR assumption.
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gMAR is given by R = [max(0, 1 — 7), 14 7],7 > 0, where the degree of cautiousness is given
by the definition of the neighborhood 7 (cf. Plass et al., 2017).

4.2 Cautious SAE: Including no Missingness Assumptions

In case of considering R = Ra“ , 1.e. incorporating no assumption on the missingness, the result
of the cautious likelihood approach (Plass et al., 2015, p. 251) can be shown to correspond to the
one obtained from cautious data completion, plugging in all potential precise sample outcomes
compatible with the observations (cf. Augustin et al., 2014, §7.8). Thus, here the lower and upper
bound of the synthetic estimator in (1) can be calculated in this case by considering the extreme
cases of regarding all missing values as y;; =0, Vj € s;mis, @ = 1,..., M, or all as y;; = 1,
Vj e Si,mis» i=1,...,M:

fzSYN_ Z Z WijYij » 7TzSYN Z( Z Wi Yij + Z w”). 5)

=1 .]G'S’L obs = ]651 obs ]651 mis

In order to study the bounds 7; ;;rpq and i LGREG it turns out to be beneficial to break
the summation over all areas into a term for area i* 12 of interest and a summation over all other

areas i # ¢*. With the regularity condition that sampling weights within area i are equal such that

wi; = w;, Vj = 1,...,n,;, and defining nl9) and nz[-g I to be respectively the number of units in s and

s; existing in subgroup g, g = 1,...,v,¢=1,..., M, we can rewrite 7; rgGrEG in (3) as

jesd

v M B
gzl ((2 Z{glgg])(xggl n[g}wz*> Y Z{gj} (X[g} — wie () +n[91))>/zvi* ®
B ii* €83 ;
Yij Z/z Yij Yixj Yixj Yixj

n[é} = p o and o6l = ") Gl

jesg,grlnis jestd jesld jesld]

with

- Ll
jESi 1obs i*,0bs i*,mis

when missing data are included. The problem consists of finding the values of y;; for the nonre-
spondents that minimize (maximize) Equation (6). Since Equation (6) is a sum of subgroup specific
quantities, optimization for each subgroup g, g = 1,..., v, separately is sufficient. Provided that
X i[f ] > nE@ w;=, we can directly infer that the term referring to the areas ¢ # ¢* is minimized (maxi-
mized) if all the y;;’s, j € s; mis are equal to zero (one). Otherwise, the other extreme allocation of
zeros and ones is chosen to obtain the minimum (maximum). Analogous considerations can be ac-
complished in the term associated with area ¢*, now based on the condition X, Z-[f I'> wye (ngg] +nldl).

4.3 Cautious SAE: First Attempts to Include (Partial) Missingness Assumptions

When partial assumptions in the sense of R € [R, R] are tenable, it is useful to express the cautious
synthetic estimator and the LGREG-synthetic estimator in terms of 77, qna| pandq qna‘1 obtained by
optimizing a log-likelihood as given in (4) under the constraints expressed by R. By again splitting

12. Whenever a differentiation between quantities summing up over all regions and quantities referring to a specific
region is needed, we explicitly write ¢* for the region under consideration.
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J € 8;1Int0 J € S; ops and j € S; mis, the lower bound for the synthetic estimator is received as!3

M
1
SR “R ~R
TSYN = ( Z WijYij +gm|i1 CTG sz‘j) ) (7
=1 JES; obs JEsi
~R . . .
where qmIZl AR jes; Wij 1s the — here smallest — estimated weighted number of nonrespon-
dents with y;; = 1, j € 5 mis, under the missingness assumption in focus. Thereby, the in-

cluded estimators are received by refraining from a subgroup specific consideration thus regarding

(R, qfam, quaH) instead of ¢(ml9lR, qgﬂm , qm|1 ) (cf. (4)). Analogously, 7 7TSY ~ is achieved by

using Eﬁam and 7% within (7).

To derive the cautious LGREG-synthetic estimator described by ﬁ§ rarec and %ZE LGREG
we base our presentation on the lower bound, while the upper bound is obtained analogously vice
versa. Basically, there are two ways to generalize the LGREG-synthetic estimator to a cautious
version: One could either consider one overall likelihood or make consistent use of the fact that
the LGREG-synthetic estimator is a combination of two estimators, a global one motivated by the
idea of “borrowing strength” and another one referring to area ¢*. Here, we address the second

possibility, while the first one should be studied in further research. For this purpose, we start by

R [Q]R l9],R gR g R  _[glR
sl na\O ’ qna\l ) and E(Tri* ’ qna|i*0’ qna\i*l)’

under R and R to derive the respective projections of the generally set-valued estimators. In a next
step, we then approach the calculation of ﬁﬁ rarec by including those estimators that minimize

maximizing two log-likelihoods, namely 6(77[

HT-part correction term
v
gl;R R(ylg g
Z Z Wi Yix —|—q£mlz oy Alsl Z wie; + #ORXE _pldyy VN, 8)
921 ]68[1] ,obs J S£Z]

which is a version of the classical LGREG—synthetic estimator in Equation (3), where the HT-

~[g],R A[g],R

and ¢, ali 1> guaranteeing for the partial assumptions under

]

part is represented in terms of 7

consideration. Due to the distinct estimation of 79 and m;x, We now try to take the associated
dependence into account: The interrelation between both estlmators may be clearly inferred by
considering the representations

frz@ = ( Z yz-j)/ngz} and 79 = <Z Z Yij + Z yw)/n 9)

jEs[ﬂ] wéz* ]ES[g] jEs
(here for ease of representation given without splitting into s; Obs and s; y,is), both including respon-

R R -
E*}, we achieve £ [ rpq if 7T[g] , qE}ﬂi*l’ #l9IR are

9]

dents from area i*.!* Whenever X gl >n

taken in (8). This choice is possible in this case, since individuals j € s;.’ are assumed to have the

13. For more details see the preliminary version of a technical report available at http://jplass.userweb.mwn.
de/forschung.html.

14. While i 1n (6)a sphttmg into terms for area z and areas i # 4" was achieved, this cannot be accomplished here. Note
that Z 1 1 > jesld) nlg] and Z i!i n[yl , appearing in Equation (0), are different from (9) and cannot be regarded

as estlmated probablhtles due to the different reference in numerator and denominator.
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same values within both estimated probabilities in (9). Considering the situation of X Z»[f V< nl9) this

% 0
is not the case. While #9® is supposed to be maximal, frl[*f}’R and cjllgi"ﬁl should be minimal to

minimize (8). To proceed, we give a reasonable way out of this situation. Thereby, we distinguish
between the case (i), where the correction term in (8) is of greater importance compared to the
HT-part and case (%), considering the opposite situation.

Case (i): The lower bound of the LGREG-synthetic estimator should be obtained by selecting

R In this way, for all individuals j € ng]

%[g] the lowest possible scenario compatible with the

partial knowledge is assumed, such that the inclusion of %[g],R and ELQL}”ZZ directly follows. This

is supported by Equation (6), indicating that bounds of ﬁl[g]’R are included instead of estimators

referring to a scenario between. !’

A [, R [g],R . . R
Case (ii): 719, EEZ} and Q[r?ih‘*l are incorporated for EZE,LGREG’ while 719}
by assuming the upper missingness scenario for individuals from ¢ # i*. A practical compromise is

the inclusion of a pooled estimator

is improvable

ihea = (Fidir - ihye + 2 nl2)) o] (10)

Lg*
to receive ﬁZi LGREG» Where frg;} can also be obtained from the cautious log-likelihood calculated
based on all data except from area ¢*. Analogously, a pooled version can be determined for the

calculation of ?Zi LGREG-

Because of the under-/overweighting of certain subgroups in the sample, automatically some
(Xl-[f} - ng]wi*) will be positive and others negative, such that the distinction of different cases can
not be avoided. The development of a criterion evaluating the “importance” of the HT-term and the
correction term used in our argument should be part of further research. Thereby, also the results
and conditions from Section 4.2 should be taken into consideration. Up to then, we choose the
minimum of the results from case (i) and (i) to obtain a suggestion for ﬁza LGREG

5. Results from the Application Example

The area-specific poverty rate is the focus of our illustration explained in Section 2. Yet, we ex-
plicitly avoid making conclusions on the poverty in a substance matter sense, considering this ap-
plication as a first illustration of technical aspects of the elaborated cautious estimators only. Here,
additionally to the case without assuming anything about the missingness process, we studied the
weak assumption that rich respondents tend to refuse the income question more often compared to
poor ones, i.e. R € [0, 1] (assum. 1), as well as a cautious version of MAR, here incorporating
R €[0.3, 1.7] (assum. 2). Although subgroup specific assumptions were feasible in the context of
the LGREG-synthetic estimator, we here impose the same missingness assumption on all subgroups.

By applying Equations (7) and (8) to the (weighted) marginal sample data,'® we can calculate
the cautious synthetic estimator and the LGREG-synthetic estimator for the different situations of

15. From Equation (6) we could conclude that either all or no virtual values yi;, j € Six,mis, have to be equal to 1 to
obtain #;+ ; srpe and Ti-, LarEe in the case of no assumptions. If partial assumptions are included, this applies in
the sense that this does not have to be satisfied for all, but for the minimum/maximum number of virtual values that
. . . . .. . . .0 A9, R =lgR
is consistent with the partial missing assumption ending up with ;%" “or ;= .

16. In the GGSS, respondents from East-Germany are oversampled, such that weights are required in the analysis (0.564

(East Germany), 1.205 (West Germany), cf. Koch et al. (1994)).
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no assum. assum. 1 assum. 2

[fgyn, Asyn] [0.167, 0.300]  [0.167, 0.193]  [0.175, 0.208]

Table 1: Bounds for the synthetic estimator under various missingness assumptions

no assum. assum. 1 assum. 2
Federal state  #; ;orpg i LGREG T LGREG Ti,LGREG T LGREG Ti,LGREG
BW 0.129 0.366 0.129 0.210 0.141 0.224
BY 0.088 0.233 0.088 0.133 0.091 0.141
HB 0.077 0.405 0.115 0.193 0.125 0.206
HH 0.009 0.196 0.014 0.075 0.019 0.083

Table 2: Bounds for the LGREG-synthetic estimator under various missingness assumptions

partial knowledge (cf. Table 1 and Table 2, respectively). The practically weak assumptions al-
ready induce a remarkable refinement of the intervals obtained under no assumptions.!”. Due to the
separate likelihood optimization that in some cases led us to the pooled version, including different
bounds for i* and ¢ # i*, the lower bound from “no assum.” and “assum. 1” do not necessarily
have to coincide here. This gives rise to an overall likelihood approach that admittedly refrains from
“borrowing strength” within the missingness process, but implicitely accounts for interrelations.

6. First Studies Towards a Cautious Model-based Estimator under Nonresponse

Until now, we focused on models dealing with the small sample size by incorporating observa-
tions from other areas on the one hand and area-specific auxiliary information on the other hand.
To account for between-area variation beyond that explained by auxiliary variables, model-based
estimators relying on mixed models establish a basis. Model-based estimators incorporate data
from different areas through a model that depends on the level of aggregation of the auxiliary
variables. The well known Fay-Herriot (FH) area-level model, introduced by Fay III and Herriot
(1979) for linear regression, has been further developed for categorical regression by MacGibbon
and Tomberlin (1989). By relying on the logistic mixed model, they include area specific random

effects u; N (0,02) into the linear predictor of a standard logistic regression model. Based on
this model, we can make predictions contributing to the final model-based estimators.

Since we aim at applying the cautious likelihood approach, we consider the likelihood in the
mixed model context first. Generally, the marginal likelihood of the i-th area is received by aver-
aging over the probability distribution of the random effects u; (cf., e.g., Booth and Hobert, 1999).
Since thereby almost always analytically intractable integrals are involved, numerical methods are
required for the maximization. Consequently, the cautious likelihood approach is stretched to the
limits of its direct applicability if model-based estimators are of interest.

Nevertheless, we proceed with some studies to get a first impression about the predictions ob-
tained from a mixed model if refrained from strong assumptions on the missingness process. Since

17. We use the official abbreviations of the federal states, here BW and BY for Baden-Wuerttemberg and Bavaria, and
HB and HH for the federal city states (hanse town (H)) Bremen and Hamburg.
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the random effects u; and the regression coefficients are estimated simultaneously with the aid of
approximation methods, we can no longer establish a direct connection between the subgroup spe-
cific probabilities and the regression coefficients, as we did in Section 4. Hence, we here start with
a first sensitivity analysis, estimating 3, . . . , B and u; under different types of missingness mech-
anisms. Since for a part of our research question, i.e. getting a first impression about the bounds
of the estimated random effects, an area-specific missingness behaviour is of high interest, we sim-
plify the databases classifying the federal states into four regions (“northeast”,..., “southwest”),
thus substantially reducing the scenarios that have to be considered within a corresponding miss-
ing type. Moreover restricting to the covariate “Abitur” (yes/no), we investigate the impact of two
different missing types over a grid of values: The first missing type requires independence of the
covariates, whereas the second type depends on the covariate and the area.

While the estimated random effects tend to show no systematic reaction to different missing-
ness scenarios, the regression estimates'® attain the bounds in the extreme missingness situations.
Consequently, by focusing on the scenarios that either regard all or no missing values as y;; = 1,
we apparently can at least give an estimator based on the best-worst-case estimation of the regres-

sion coefficients, here denoted by 7P e [ﬁﬂ , %B]. For this purpose, we use Bo, ey ﬁk, 1; obtained
for the extreme cases to determine the individual prediction bounds. Again, in our categorical case
it turns out to be sufficient to calculate the bounds of #19%, now not only split by the values of
the covariate, but also the region. Using 719 and the area-specific totals Xi[g}, the bounds of a
model-based estimator, relying on the best-worst estimation of 3, can be calculated.

7. Conclusion

By exploiting the cautious likelihood approach (cf. Plass et al., 2015), we considered an opportunity
to adapt the LGREG-synthetic estimator for nonresponse, without the need of strict and often prac-
tically untenable assumptions about the missingness process. The included observation model is a
powerful medium to make use of frequently available, partial assumptions about the missingness,
where results from the application example corroborated that very weak assumptions may already
suffice to substantially refine the results obtained without the inclusion of any missingness assump-
tions. Further research should be devoted to a more extensive consideration of the here proposed
method characterized by separate likelihood optimizations. Although some first investigations of
cautious model-based estimators were accomplished, due to the technically different situation, a
more detailed study should be part of future research. In addition, comparing the magnitude of
both principally differing sources of uncertainty induced by the problems in focus (i.e. sampling
uncertainty as well as lack of knowledge associated to SAE and nonresponse, respectively) is no-
tably worthwhile. For this purpose, uncertainty regions (cf. Vansteelandt et al., 2006), covering both
types of uncertainties, should be investigated.
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