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Abstract

This brief paper is an exploratory investigation of how we can apply sensitivity analysis over im-
portance sampling weights in order to obtain sampling estimates of lower previsions described by
a parametric family of distributions. We demonstrate our results on the imprecise Dirichlet model,
where we can compare with the analytically exact solution. We discuss the computational limi-
tations of the approach, and propose a simple iterative importance sampling method in order to
overcome these limitations. We find that the proposed method works pretty well, at least in the
example studied, and we discuss some further possible extensions.
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1. Introduction

Various sensible approaches to sampling for lower previsions can be found in the literature. Some
of these are:

e two-level Monte Carlo sampling, where first one samples distributions over the (extreme

points of the) credal set, and then samples from these distributions,

e sampling random sets, and then evaluating the resulting belief function (Moral and Wilson,

1996), and

e perform importance sampling from a reference distribution, and then solve an optimisation

problem over the importance sampling weights (O’Neill, 2009; Fetz and Oberguggenberger,

2015; Zhang and Shields, 2016).
The first is inefficient, and only provides a non-conservative solution. The second is more efficient,
but requires a large number of optimisation problems to be solved (one for each sample), and re-
quires a suitable belief function approximation to be identified if one wants to apply this to arbitrary
lower previsions. The third can be quite effective. For example, de Angelis et al. (2015) have
successfully used sensitivity analysis over importance sampling weights with respect to the mean
parameter of a normal distribution. Fetz and Oberguggenberger (2015) used importance sampling
over both the mean and the variance parameters of a normal distribution using a 2-dimensional grid.
A case study comparing a wide range of techniques, specifically aimed at reliability analysis, can
be found in Oberguggenberger et al. (2009). Here, we are interested in seeing whether importance
sampling can be performed over larger parameter spaces and distributions with non-trivial normali-
sation constants, using standard high-dimensional optimisation procedures.

Importance sampling in imprecise probability has been studied already in the *90s; see for ex-
ample Moral and Wilson (1996); Cano et al. (1996); Hernandez and Moral (1997) for some early
works. In this paper, we follow O’Neill (2009), and look specifically at how we can use sensitiv-
ity analysis over the importance sampling weights directly in order to obtain sampling estimates,
without needing to draw large numbers of samples, and without needing to solve large numbers
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of optimisation problems. Unlike O’Neill (2009), however, we do not just look at Bayesian sen-
sitivity analysis, and admit arbitrary sets of distributions in our theoretical treatment. Also unlike
for instance O’Neill (2009); de Angelis et al. (2015); Fetz and Oberguggenberger (2015); Zhang
and Shields (2016), in this paper, we use self-normalised importance sampling instead of standard
importance sampling, as we find that this drastically speeds up calculations.

The main contribution of this paper is a simple yet novel (as far as we know) iterative impor-
tance sampling method that requires far less computational power compared to standard importance
sampling methods for sensitivity analysis, in the sense that far smaller samples can be used, and
that far smaller optimisation problems need to be solved. The key novelty is the idea of iteratively
changing the importance sampling distribution itself, in order to ensure that the final answer has an
effective sample size that is as close as possible to the actual sample size.

No novel theory is proved in the paper, however we do demonstrate the method on a fully
worked example. This leads us to conjecture that convergence of the technique can be established
under certain circumstances.

Section 2 reviews the basic theory behind importance sampling. Section 3 looks at how sensi-
tivity analysis can be applied on importance sampling. An example of this approach is discussed in
section 4, and various issues are identified. Section 5 describes a simple way of addressing some of
these issues. The example is revisited in section 6. Section 7 concludes the paper with a discussion
and some further ideas for future research.

2. Importance Sampling

In this section, we review the basic ideas behind importance sampling. For the theory behind the
results that are presented here, we refer to Owen (2013, Chapter 9).

Assume we have an i.i.d. sample x1, ..., z, drawn from a strictly positive probability den-
sity function q. Throughout the entire paper, we will consider many different probability density
functions, but the sample z, ..., x, will always be one drawn from g. Assume we have a real-

valued function f(z), and we would like to calculate the expectation of f with respect to some
other probability density function p.

In case p = ¢, by the central limit theorem, an approximate 95% confidence interval for the
expectation of f with respect to ¢ is then given by i &+ 1.966 /1/n where

1L ) 1 < X
== f) 6= > (flai) = )? )
i=1 i=1
Can we use the same sample 1, ..., x,, drawn from ¢ to get an estimate for the expectation of

f with respect to p # ¢? The following equality gives a clue as to how we might do that:

p(z
[ t@w@s = [ r@atrts = [ wo)f(wala)ds @
where w, = p/q. So, the expectation of f with respect to p is the same as the expectation of wy, f
with respect to ¢, and therefore an approximate 95% confidence interval for the expectation of f
with respect to p is then given by /i, + 1.966,//n where

- 1 ¢ A2 1 ¢ A N2

fip = — > wp(wi) f (i) b= > (wp(w) (i) — ) 3)
i=1

n—14%
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This estimate is called the importance sampling estimate.
Often, the normalisation constant of the densities is unknown, or is slow to compute, and we

only know wI’J = ¢p/q for some unknown value of c. In this case, we can use the self-normalised

importance sampling estimate:

o s wp(i) f () X

1 i wpl@)2(f (i) — fip)?
Hp =

2
n / = 4
> i Wp(Ti) on-1 (5 2 w;,(xi))2 v

n

Although 612) gives an indication of the quality of the estimate, one must be wary that &g is by itself
only an approximation of the true error. An additional diagnostic to consider is the effective sample
size, which can be calculated as follows:

(0, wh (@)’
dic1 wjla(xi)2

Note that there are many different ways to define effective sample size and even more ways to define
diagnostics for importance sampling. What matters for this paper is that a low n,, is bad, and that
ny =~ n is good. For an in-depth discussion about diagnostics for importance sampling, we refer to
Owen (2013, Section 9.3).

&)

np =

3. Sensitivity Analysis

Importance sampling has many different uses, including variance reduction, numerical integration,
and Bayesian inference. In this paper, we aim to study importance sampling in order to do inference
over sets of distributions.

A key observation is that we can use importance sampling in order to estimate the lower previ-
sion of a gamble f. O’Neill (2009) studied this technique already in a Bayesian setting. Here, we
present the theory generally for an arbitrary set of probability density functions.

Say we have some set M of probability density functions. The lower prevision of f is then
defined as

E(f) = min/f(x)p(x)dx (6)

pEM

where we assume that the minimum is achieved, for simplicity of presentation. But we know that
fip £ 1.966,/+/n provides a confidence interval for the integral on the right hand side. So, if

*i=a in 1 7
p rg Imin fp (7

then fip« £ 1.966,+ /+/n provides a 95% confidence interval for £ provided that p* is equal to, or
close enough to, the density that minimises the expectation in eq. (6). The key observation here is
that we only need a single sample 1, ..., z,, and that the optimisation procedure operates on the
weights only.

One issue with this method is that 6;,« can be very large. So, the method will only work if &,
remains reasonably bounded. From the literature on importance sampling for variance reduction,
we know that good choices for ¢ are those that are proportional to |f|p (Owen, 2013, Chapter 9,
p. 6). So, in case M covers a wide range of distributions p, it may be hard to identify a single
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sampling distribution q. Zhang and Shields (2016, Section 3) discuss ways of chosing optimal
sampling distributions for credal sets.

A second problem is that, in general, there is no single sampling distribtution ¢ that can guaran-
tee a good effective sample size for all p in M. Consequently, with this approach, even if we try to
chose ¢ optimally, the effective sample size at p* can still become extremely low.

A third problem is that p* as determined by eq. (7) may not be close at all to the density that
minimises the expectation in eq. (6), especially when the effective sample size is low. In that case,
fip= £ 1.966, /+/n may not provide a very accurate confidence interval on E. O’Neill (2009,
Section 7) derived some explicit statistical bounds on the absolute and relative errors, but these
bounds only cover standard (not self-normalising) importance sampling.

4. Example

As a first example, we demonstrate the use of importance sampling for sensitivity analysis on the
imprecise Dirichlet model, similar to the one studied in O’Neill (2009).

Denote the k-dimensional unit simplex by A. Consider an unknown parameter z € A, say,
modelling the probabilities of some multinomial process. Consider the following class of probabil-

ity density functions on z:
k
I'(s) ti—1
Pl 1) = i

Zj
Hj:l F(Stj) j=1

with hyperparameters s > 0 and ¢ € A—these are Dirichlet distributions. We are interested in
finding the lower expectation of some function f(x), overallt € 7 C A and with s = 2 fixed.

Note that in our notation, we will parameterise everything in terms of ¢ rather than in terms of
P- SO Wt = Wp(.g)s fit = fp(.|t)> Tt = Nip(.|1)> and s0 on. .

For ¢(x), we take the Dirchlet distribution with uniform ¢; = 1/k and with the same value for
§ = 2. An alternative option is to take § = ak with 0 < o < 1, say & = 1/2. This will incur a
bias for sampling towards the extremes, i.e. make the tails heavier. Experimentally, we observed
that increasing the variance of the reference distribution can increase the effective sample size.

In order to apply importance sampling, we need to calculate the weight function. The unnor-
malised weights are:

®)

k -
wi(z) = p(x | t)/q(@) < [[ 27" = wi(x) ©)
j=1

In this case, we have a very simple closed analytical expression for w}(z). Note that we could also
use wy(x) directly, however evaluating the normalisation constants requires several evaluations of
the Gamma function, and slows down the optimisation procedure considerably. The optimisation
problem for the lower expectation can be written as

€T i wy(wi)

As a numerical example, we take k = 5, T = {t € A: t; > 0.1}, and f(z) = 1 + 222 +
53 + 4x4 — 3. In this case, we know that the exact expectation of f, for fixed ¢, is given by

10)

E(f) = t1 + 2ty + bt3 + 4t4 — 3ts. (1)
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So, the lower prevision of f over all ¢ € T is clearly achieved for t* = (0.1,0.1,0.1,0.1,0.6), and
is given by
E(f)=014+2x014+5x014+4x0.1-3x0.6=-0.6 (12)

The next table summarizes our simulation results for § = k/2 = 2.5:

n 5 50 | 500 | 5000
fu= | 150 | 0.13 | -0.85 | -0.29
6 | 011 | 3.18 |10.83 | 10.74

61/ | 0.048 | 045 | 048 | 0.15
ne | 1.104 | 15.016 | 6.061 | 141.67

# 01 | 01 | 017 | o1
t 057 | 01 | o1 | o.1
£ 01 | 01 | 01 | o1
£ 01 | 01 | o1 | 01

ts 0.13 0.6 0.53 0.6

The code was implemented in R. The const rOpt im function was used to do the actual optimisa-
tion, through the downhill simplex method. The cases n = 5 and n = 50 give a result instantly, for
n = 500, the simulation took about 10 seconds, and for n = 5000, the simulation took about 200
seconds. The bottleneck is clearly the optimisation procedure. We emphasize that we have not tried
to write the fastest possible code, and there might still be good opportunities for optimisation.

Unsurprisingly, the n = 5 case is quite bad: t* is completely off, and the stimate is completely
off the chart. Also the error is underestimated substantially, due to the very small effective sample
size. The n = 50 case fares better. Interestingly, t* is fully correctly identified. However, the
effective sample size is not too high, and the actual estimate is still quite far off, due to the variance
once more being underestimated.

Intriguingly, the n = 500 case has a lower effective sample size than the n = 50 case, and a
worse t*. Nevertheless, the estimate is reasonably correct, and at least the actual value lies inside
the 95% confidence interval in this case. The n = 5000 case gives the correct estimate for ¢t*, and
again the actual value lies just at the edge of the 95% confidence interval.

5. Iterated Importance Sampling

We have seen that a single importance sampling distribution ¢ may not provide a good effective
sample size across the entire set of distributions M, even if n is quite large. For instance, in the
numerical example, with n = 500 we still only had ns+ ~ 6, and with n = 5000 we had only
ng ~ 141.

What we conclude from this is that plain sensitivity analysis over our importance sampling
does not work very well, even in simple cases. Next we discuss some extensions of the proposed
procedure in order to make it work.

Even though the estimates are quite bad, our numerical experimentation shows that the correct
t*, or nearly correct t*, can be identified already with lower n. So, rather than increasing n in
order to guarantee a high n+, one idea is to iterate the procedure so that ¢(x) eventually converges
to p(z|t*) where t* is the actual optimal choice. If g(x) is equal to p(x|t*), then all weights are
identical, and n = ng~. Also, in this case, it turns out that the optimisation in eq. (10) runs very
quickly, because we are already near the optimal solution.
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Here is how we might implement this in practice:

1. Set ¢ to some reasonable initial value.

2. Generate sample from ¢(x) :== p(x | t).

3. Find optimal ¢, through eq. (10).

4. Check if ng« is close to n. If yes, stop.

5. Sett = t,, and return to item 2.
One suggestion is to take the same value for n through each step, however a case could be made
for chosing a lower value for n, and then simply to repeat the final step of the procedure for a large
value of n in order to obtain a final accurate estimate. Another option might be to increase the value
of n as the algorithm converges closer to the correct ¢*.

6. Example Revisited

Let us apply the proposed iterative procedure on our Dirichlet example. For simplicity, we chose a
fixed value of n = 141; this corresponds roughly to our earlier n;+ when n = 5000, so provides a
good basis for comparison of computational efficiency. The next table summarises the results:

iteration 1 2 3
ire 0.062 | -0.39 -0.63
O+ 4.28 2.00 1.76

G /y/n | 0.36 0.17 0.15
T 21.60 | 105.93 | 141.00

£ 0.16 | 0.1 0.1
£ 01 | 01 0.1
£ 0.1 | 0.1 0.1
£ 01 | 0.1 0.1

t2 054 | 0.6 0.6

The entire simulation took only 6 seconds, compared to 200 seconds from before for the same
effective sample size.

We see that the simulation converges in just 3 steps. In the first step, we get fairly close to the
correct t*, even though the effective sample size n;~ ~ 22 is pretty low. The second step uses this
t* to draw samples, and as this distribution is much closer to the actual optimal distribution, the
effective sample size increases substantially. In this step, we also identify the correct value for ¢*.
The last step uses the correct distribution for sampling, and gets a full effective sample size.

We also ran the simulations using standard (not self-normalised) importance sampling. In that
case, the entire simulation took 86 seconds, which is almost a factor 15 slower than the self-
normalised version. Undoubtedly this is due to the computational expense of calculating the normal-
isation constant during the optimisation. Unless the normalisation constant is trivial, self-normalised
importance sampling will outperform standard importance sampling for sensitivity analysis over
the weights. In addition, the self-normalised estimator has also better consistency properties, even
though it has a higher theoretical variance (Owen, 2013, Section 9.2).

7. Discussion and Conclusion

We have described how sensitivity analysis over importance sampling can be used to estimate lower
previsions. The key observation that makes this possible is that importance sampling allows us to
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estimate means not just from the distribution that we are sampling from, but from an entire neigh-
bourhood of distributions around the sampling distribution. Through straightforward optimisation
over the importance sampling weights, we can therefore estimate lower previsions without having
to, say, draw samples from all extreme points of the credal set. The technique is simple, seems
largely unknown in the community, and is readily applicable for medium sized problems.

We saw that a naive application of sensitivity analysis around the weights may not work very
well, due to poor effective sample sizes especially when the optimal distribution is far away from
the sampling distribution. We suggested simple yet novel solution for this problem: an iterative
procedure which naturally moves the sampling distribution towards the optimal distribution. We
demonstrated how this led to a much quicker estimate with far less computational power required.

Whilst the procedure that we have described will work well for medium sized problems, we
foresee that for really large scale problems, the effective sample size may still be too limited to
ensure that the optimal distribution can be identified at all. In such cases, perhaps the credal set
could scale throughout the algorithm, in order to ensure a reasonable effective sample size, and
therefore to help convergence of the algorithm.

Another idea is to use importance sampling to explore only a very small region of M, but then
to use the resulting derivative information to move ¢ in the right direction. A problem with this
however is that the derivatives obtained are quite noisy, and in practice we have not found a good
way of using these noisy derivatives to ensure convergence.

Obviously, this note only gave an initial exploration of what is possible with sensitivity analysis
over the importance sampling weights. It would be interesting to try out these methods on large
scale problems. Moreover, it would be great to develop theoretical guarantees and diagnostics for
convergence. Finally, it would be interesting to see if the importance sampling as described could
be integrated into Markov chain Monte Carlo methods for full robust Bayesian inference over large
sets of priors.
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