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Abstract
To scale up operator-valued kernel-based regression devoted to multi-task and structured
output learning, we extend the celebrated Random Fourier Feature methodology to get an
approximation of operator-valued kernels. We propose a general principle for Operator-
valued Random Fourier Feature construction relying on a generalization of Bochner’s theo-
rem for shift-invariant operator-valued Mercer kernels. We prove the uniform convergence
of the kernel approximation for bounded and unbounded operator random Fourier features
using appropriate Bernstein matrix concentration inequality. Numerical experiments show
the quality of the approximation and the efficiency of the corresponding linear models on
multiclass and regression problems.
Keywords: Operator-valued kernel, Random Fourier Features, Concentration inequalities.

1. Introduction

Multi-task regression (Micchelli and Pontil, 2005), structured classification (Dinuzzo et al.,
2011), vector field learning (Baldassarre et al., 2012) and vector autoregression (Sindhwani
et al., 2013; Lim et al., 2015) are all learning problems that boil down to learning a vector
while taking into account an appropriate output structure. In this paper we are interested in
a general and flexible approach to efficiently implement and learn vector-valued functions,
while allowing couplings between the outputs. To achieve this goal, we turn to shallow
architectures, namely the product of a (nonlinear) feature matrix Φ̃(x) and a parameter
vector θ such that f̃(x) = Φ̃(x)∗θ, and combine two appealing methodologies: Operator-
Valued Kernel Regression and Random Fourier Features.

Operator-Valued Kernels (Micchelli and Pontil, 2005; Carmeli et al., 2010; Álvarez et al.,
2012) extend the classic scalar-valued kernels to vector-valued functions. As in the scalar
case, operator-valued kernels (OVKs) are used to build Reproducing Kernel Hilbert Spaces
(RKHS) in which representer theorems apply as for ridge regression or other appropriate
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loss functional. In these cases, learning a model in the RKHS boils down to learning a
function of the form f(x) =

∑n
i=1K(x, xi)αi where x1, . . . , xn are the training input data

and each αi, i = 1, . . . , n is a vector of the output space Y and each K(x, xi), an operator on
vectors of Y. However, OVKs suffer from the same drawback as classic kernel machines: they
scale poorly to very large datasets because they are very demanding in terms of memory and
computation. Therefore, focusing on the case Y = Rp, we propose to approximate OVKs by
extending a methodology called Random Fourier Features (RFFs) (Rahimi and Recht, 2007;
Le et al., 2013; Yang et al., 2015; Sriperumbudur and Szabo, 2015; Bach, 2015; Sutherland
and Schneider, 2015) so far developed to speed up scalar-valued kernel machines. The RFF
approach linearizes a shift-invariant kernel model by generating explicitly an approximated
feature map ϕ̃. RFFs has been shown to be efficient on large datasets and has been further
improved by efficient matrix computations (Le et al., 2013, “FastFood”), and is considered
as one of the best large scale implementations of kernel methods, along with Nÿstrom
approaches proposed in Yang et al. (2012).

In this paper, we propose general Random Fourier Features for functions in vector-valued
RKHS. After recalling the background of this study, we present the following contributions:
(1) we define a general form of Operator Random Fourier Feature (ORFF) map for shift-
invariant operator-valued kernels, (2) we construct explicit operator feature maps for a
simple bounded kernel, the decomposable kernel, and more complex unbounded kernels
curl-free and divergence-free1 kernels, (3) we show the corresponding kernel approximation
uniformly converges with high probability towards the target kernel and (4) we discuss ap-
propriate learning algorithms to benefit from ORFF and illustrate the theoretical approach
by a few numerical results.

2. Background

2.1. Random Fourier Features

We consider scalar-valued functions. Denote k : Rd × Rd → R a positive definite kernel on
Rd. A kernel k is said to be shift-invariant for the addition if for any a ∈ Rd, ∀(x, x′) ∈
Rd × Rd, k(x − a, z − a) = k(x, z). Then, we define k0 : Rd → R the function such that
k(x, z) = k0(x−z). k0 is called the signature of kernel k. Bochner theorem is the theoretical
result that leads to the Random Fourier Features.

Theorem 1 (Bochner’s theorem) Every positive definite complex function is the Fourier
transform of a non-negative measure. It implies that any positive definite, continuous and
shift-invariant kernel k is the Fourier transform of a non-negative measure µ:

k(x, z) = k0(x− z) =

∫
Rd

e−i⟨ω,x−z⟩dµ(ω). (1)

Without loss of generality, we assume that µ is a probability measure, i.e.
∫
Rd dµ(ω) = 1.

Then we can write eq. (1) as an expectation over µ: k0(x− z) = Eµ
[
e−i⟨ω,x−z⟩

]
. If k is real

valued we thus only write the real part: k(x, z) = Eµ[cos⟨ω, x−z⟩] =Eµ[cos⟨ω, z⟩ cos⟨ω, x⟩ +

1. Also referred to as div-free kernel.
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sin⟨ω, z⟩ sin⟨ω, x⟩]. Let
⊕D

j=1 xj denote the Dm-length column vector obtained by stacking
vectors xj ∈ Rm. The feature map ϕ̃ : Rd → R2D defined as

ϕ̃(x) =
1√
D

D⊕
j=1

(
cos ⟨x, ωj⟩
sin ⟨x, ωj⟩

)
, ωj ∼ µ (2)

is called a Random Fourier Feature (map). Each ωj , j = 1, . . . , D is independently sampled
from the inverse Fourier transform µ of k0. This Random Fourier Feature map provides
the following Monte-Carlo estimator of the kernel: k̃(x, z) = ϕ̃(x)∗ϕ̃(z). The dimension
D governs the precision of this approximation, whose uniform convergence towards the
target kernel (as defined in eq. (1)) can be found in Rahimi and Recht (2007) and in
more recent papers with some refinements proposed in Sutherland and Schneider (2015)
and Sriperumbudur and Szabo (2015). Finally, it is important to notice that Random
Fourier Feature approach only requires two steps before learning: (1) define the inverse
Fourier transform of the given shift-invariant kernel, (2) compute the randomized feature
map using the spectral distribution µ. Rahimi and Recht (2007) show that for the Gaussian
kernel k(x− z) = exp(−γ∥x− z∥2), the spectral distribution µ(ω) is Gaussian.

2.2. Operator-Valued Kernels (OVK)

We now turn to vector-valued functions and consider vector-valued Reproducing Kernel
Hilbert spaces (vv-RKHS) theory. The definitions are given for input space X ⊂ Cd and
output space Y ⊂ Cp. We will define operator-valued kernel as reproducing kernels. Given
X and Y, a map K : X × X → L(Y) is called a Y-reproducing kernel if∑N

i,j=1
⟨K(xi, xj)yj , yi⟩ ≥ 0,

for all x1, . . . , xN in X , all y1, . . . , yN in Y and N ≥ 1. Given x ∈ X , Kx : Y → F(X ;Y)
denotes the linear operator whose action on a vector y is the function Kxy ∈ F(X ;Y)
defined ∀z ∈ X by (Kxy)(z) = K(z, x)y. Additionally, given a Y-reproducing kernel K,
there is a unique Hilbert space HK ⊂ F(X ;Y) satisfying Kx ∈ L(Y;HK), ∀x ∈ X and
f(x) = K∗

xf, ∀x ∈ X ,∀f ∈ HK , where K∗
x : HK → Y is the adjoint of Kx. The space HK is

called the (vector-valued) Reproducing Kernel Hilbert Space associated with K. The corres-
ponding product and norm are denoted by ⟨., .⟩K and ∥.∥K , respectively. As a consequence
(Carmeli et al., 2010) we have

K(x, z) = K∗
xKz ∀x, z ∈ X and HK = span {Kxy | ∀x ∈ X , ∀y ∈ Y}

Another way to describe functions of HK consists in using a suitable feature map.

Proposition 2 (Feature map) Let H be a Hilbert space and Φ : X → L(Y;H), with
Φx := Φ(x). Then the operator W : H → F(X ;Y) defined by (Wg)(x) = Φ∗

xg, ∀g ∈
H, ∀x ∈ X is a partial isometry from H onto the reproducing kernel Hilbert space HK with
reproducing kernel

K(x, z) = Φ∗
xΦz, ∀x, z ∈ X .
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We call Φ a feature map. In this paper, we are interested on finding feature maps of this
form for shift-invariant Rp-Mercer kernels using the following definitions. A reproducing
kernel K on Rd is a Rp-Mercer provided that HK is a subspace of C(Rd;Rp). It is said to
be a shift-invariant kernel2 for the addition if K(x + a, z + a) = K(x, z),∀(x, z, a) ∈ X 3.
It is characterized by a function K0 : X → L(Y) of completely positive type such that
K(x, z) = K0(δ), with δ = x− z.

3. Operator-valued Random Fourier Features

3.1. Spectral representation of shift-invariant vector-valued Mercer kernels

The goal of this work is to build approximated matrix-valued feature map for shift-invariant
Rp-Mercer kernels, denoted with K, such that any function f ∈ HK can be approximated
by a function f̃ defined by: f̃(x) = Φ̃(x)∗θ, where Φ̃(x) is a matrix of size (m × p) and
θ is an m-dimensional vector. For this purpose, we use results of Carmeli et al. (2010)
and Zhang et al. (2012) to define the Fourier transform of shift-invariant Operator-Valued
Mercer. In this work, we focus on the finite real case X = Rd and Y = Rp. However the
whole framework stands for Hilbert spaces of infinite dimension. The following proposition
of Zhang et al. (2012) extends Bochner’s theorem to any shift-invariant Rp-Mercer kernel.

Proposition 3 (Operator-valued Bochner’s theorem) A continuous function K from
Rd × Rd to L(Rp) is a shift-invariant reproducing kernel if and only if ∀x, z ∈ Rd, it
is the Fourier transform of a positive operator-valued measure M : B(Rd) → L+(Rp)
with K(x, z) =

∫
Rd e

−i⟨x−z,ω⟩dM(ω), where M belongs to the set of all the L+(Rp)-valued
measures of bounded variation on the σ-algebra of Borel subsets of Rd.

However it is much more convenient to use a more explicit result that involves real-valued
(positive) measures. The following proposition instantiates the proposition 13 in Carmeli
et al. (2010) to matrix-valued operators.

Proposition 4 (Spectral decomposition of shift-invariant OVK) Let µ be a positive
measure on Rd and A : Rd → L(Rp) such that A(·)ℓm ∈ L1(Rd, dµ) for all ℓ,m′ ∈ {1, . . . , p}
and A(ω) ≥ 0 for µ-almost all ω. Then, for all δ ∈ Rd, for all ℓ,m ∈ {1, . . . , p},

K0(δ)ℓm =

∫
Rd

e−i⟨δ,ω⟩A(ω)ℓmdµ(ω) (3)

is the kernel signature of a shift-invariant Rp-Mercer kernel K such that K(x, z) = K0(x−z).
In other terms, each real-valued function K0(·)ℓm is the Fourier transform of A(·)ℓmpµ(·)
where pµ(ω) = dµ

dω is the Radon-Nikodym derivative (density) of the measure µ. Any shift-
invariant kernel is of the above form for some pair (A(ω), µ(ω)).

When p = 1 one can always assume A is reduced to the scalar 1, µ is still a bounded positive
measure and we retrieve the Bochner theorem applied to the scalar case (theorem 1). Now
we introduce the following proposition that is a direct consequence of proposition 4.

2. Also referred to as translation-invariant kernel.
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Proposition 5 (Fourier feature map) Given the conditions of proposition 4, we define
B(ω) such that A(ω) = B(ω)B(ω)∗. Then the function Φx : Rp → L2(Rd, µ;Rp) defined for
all x ∈ Rp by

∀y ∈ Rp, (Φxy) (ω) = ei⟨x,ω⟩B(ω)∗y (4)

is a feature map of the shift-invariant kernel K: i.e. for all x, z in Rd, Φ∗
xΦz = K(x, z).

Proof. For all y, y′ ∈ Rp,

(Φxy)(·)∗(Φzy′)(·) =
∫
Rd

ei⟨x,ω⟩y∗B(ω)e−i⟨z,ω⟩B(ω)∗y′dµ(ω) =

∫
Rd

ei⟨x−z,ω⟩⟨y,A(ω)y′⟩dµ(ω),

Taking y = eℓ and y′ = em, where eℓ’s are basis vectors of Rp yields from proposition 4
(Φxeℓ)(·)∗(Φzem)(·) = (Φ∗

xΦz)ℓm =
∫
Rd e

−i⟨δ,ω⟩A(ω)ℓmdµ(ω) = K0(δ)ℓm.
To define an approximation of a given operator-valued kernel, we need an inversion theorem
that provides an explicit construction of the pair A(ω), µ(ω) from the kernel signature. We
use Carmeli et al. (2010, Prop. 14.) instantiated to Rp-Mercer kernel to find such a pair.

Proposition 6 (Carmeli et al. (2010)) Let K be a shift-invariant Rp-Mercer kernel.
Suppose that ∀ℓ,m ∈ {1, . . . , p}, K0(·)ℓm ∈ L1(Rd, dx) where dx denotes the Lebesgue
measure. Define C such that for all ω ∈ Rd, and for all ℓ,m ∈ {1, . . . , p},

C(ω)ℓm =

∫
Rd

ei⟨δ,ω⟩K0(δ)ℓmdδ. Then (5)

i) C(ω) is a non-negative matrix for all ω ∈ Rd,

ii) ∀ℓ,m ∈ {1, . . . , p}, C(·) ∈ L1(Rd, dω),

iii) ∀δ ∈ Rd, ∀ℓ,m ∈ {1, . . . , p}, K0(δ)ℓm =
∫
Rd e

−i⟨δ,ω⟩C(ω)ℓmdω.

From eq. (3) and eq. (5), we can write the following equality concerning the matrix-valued
kernel signature K0, coefficient-wise: ∀δ ∈ Rd, ∀ℓ,m ∈ {1, . . . , p},

∫
Rd e

−i⟨δ,ω⟩C(ω)ℓmdω =∫
Rd e

−i⟨δ,ω⟩A(ω)ℓmdµ(ω). We then conclude that the following equality holds almost every-
where for ω ∈ Rd: C(ω)ℓm = A(ω)ℓmpµ(ω) where pµ(ω) = dµ

dω . Without loss of generality we
assume that

∫
Rd dµ(ω) = 1 and thus, µ is a probability distribution. Note that this is always

possible through an appropriate normalization of the kernel. We note pµ is the density of
µ. Eventually proposition 4 results in an expectation: K0(x− z) = Eµ[e−i⟨x−z,ω⟩A(ω)].

3.2. Construction of Operator Random Fourier Feature

Given a Rp-Mercer shift-invariant kernel K on Rd, we build an Operator-Valued Random
Fourier Feature (ORFF) map in three steps presented in algorithm 1. It relies on a Monte-
Carlo approximation of the spectral representation of K presented in eqs. (3) and (4).
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Algorithm 1: Construction of ORFF
Input : K(x, z) = K0(δ) a Rp-shift-invariant Mercer kernel such that

K0(δ)ℓm ∈ L1(Rd, dx).
Output: A random feature Φ̃(x) such that Φ̃(x)∗Φ̃(z) ≈ K(x, z)

1 Compute C : Rd → L(Rp) from eq. (5) by using the inverse Fourier transform of K0, the
signature of K;

2 Find B(ω), pµ(ω) such that B(ω)B(ω)∗pµ(ω) = C(ω);
3 Draw D random vectors ωj , j = 1, . . . , D from the probability law µ;
4 return Φ̃(x) = 1√

D

⊕D
j=1 e

−i⟨x,ωj⟩B(ωj)
∗;

3.3. Monte-Carlo approximation
Let

⊕D
j=1Xj denote the block matrix of size rD × s obtained by stacking D matrices

X1, . . . , XD of size r×s. Assuming steps 1 and 2 have been performed, for all j = 1, . . . , n, we
find a decomposition A(ωj) = B(ωj)B(ωj)

∗ either by exhibiting a general analytical closed-
form or using a numerical decomposition. Denote p× p′ the dimension of the matrix B(ω).
Based on proposition 5, we propose a randomized matrix-valued feature map: ∀x ∈ Rd,

Φ̃(x) =
1√
D

D⊕
j=1

Φx(ωj) =
1√
D

D⊕
j=1

e−i⟨x,ωj⟩B(ωj)
∗, (6)

Where ∀j ∈ {1, . . . , D}, ωj are independent identically distributed (i.i.d.) random vectors
following the probability law µ. The corresponding approximation for the kernel is then for
all x, z ∈ Rd,

K̃(x, z) = Φ̃(x)∗Φ̃(z) =
∑D

j=1

Φx(ωj)
∗Φz(ωj)

D
=

∑D

j=1

e−i⟨x−z,ωj⟩

D
A(ωj). (7)

From the weak law of large numbers, one can verify that the Monte-Carlo estimator
Φ̃(x)∗Φ̃(z) converges in probability in the weak operator topology to the target kernel
K(x, z) when D tends to infinity. Namely,

K̃(x, z) = Φ̃(x)∗Φ̃(z)
p.−−−−→

D→∞
Eµ

[
e−i⟨x−z,ω⟩A(ω)

]
= K(x, z)

We also use the notation K̃j(δ) = Φx(ωj)
∗Φz(ωj) such that

∑D
j=1 K̃

j(δ)/D = K̃(x, z) and
K̃0(δ) = K̃(x, z). As for the scalar-valued kernel, a real-valued matrix-valued function has
a real matrix-valued Fourier transform if A(ω) is even with respect to ω. Taking this point
into account, we define the feature map of a real matrix-valued kernel as

Φ̃(x) =
1√
D

D⊕
j=1

(
cos ⟨x, ωj⟩B(ωj)

∗

sin ⟨x, ωj⟩B(ωj)
∗

)
, ωj ∼ µ.

The kernel approximation becomes

K̃(x, z) =
D∑
j=1

cos ⟨x, ωj⟩ cos ⟨z, ωj⟩+ sin ⟨x, ωj⟩ sin ⟨z, ωj⟩
D

A(ωj) =
D∑
j=1

cos ⟨x− z, ωj⟩
D

A(ωj).
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Algorithm 1 summarizes the construction of ORFF. In the following, we give an explicit
construction of ORFFs for three well-known Rp-Mercer and shift-invariant kernels: the
decomposable kernel introduced in Micchelli and Pontil (2005) for multi-task regression
and the curl-free and the divergence-free kernels studied in Macedo and Castro (2008) and
Baldassarre et al. (2012) for vector field learning. All these kernels are defined using a
scalar-valued shift-invariant Mercer kernel k : Rd × Rd → R whose signature is denoted k0.
A usual choice is to choose k as a Gaussian kernel with k0(δ) = exp

(
−∥δ∥2

2σ2

)
, which gives

µ = N (0, σ−2I) as its inverse Fourier transform.

Definition 7 (Decomposable kernel) Let A be a (p × p) positive semi-definite matrix.
If ∀x, z ∈ Rd,Kdec(x, z) = k0(x − z)A, then K is a Rp-Mercer shift-invariant reproducing
kernel.

The matrix A encodes the relationships between the outputs coordinates. If a graph coding
for the proximity between tasks is known, then it is shown in Evgeniou et al. (2005) that A
can be chosen equal to the pseudo-inverse L† of the graph Laplacian, and then the ℓ2 norm
in HK is a graph-regularizing penalty for the outputs (tasks). When no prior knowledge is
available, A can be set to the empirical covariance of the output training data or learned
with one of the algorithms proposed in the literature (Dinuzzo et al., 2011; Sindhwani et al.,
2013; Lim et al., 2015). In the following the Fourier transform is referred to as F [·] and the
inverse Fourier transform as F−1 [·].

Example 1 (ORFF for decomposable kernel)

Cdec(ω)ℓm =

∫
X
ei⟨δ,ω⟩k0(δ)Aℓmdδ = AℓmF−1 [k0] (ω)

Hence, Adec(ω) = A and pdecµ (ω) = F−1 [k0] (ω).

ORFF for curl-free and div-free kernels: Curl-free and divergence-free kernels pro-
vide an interesting application of operator-valued kernels to vector field learning, for which
input and output spaces have the same dimensions (d = p). Applications cover shape defor-
mation analysis (Micheli and Glaunes, 2013) and magnetic fields approximations (Wahlström
et al., 2013). These kernels also discussed in Fuselier (2006) allow encoding input-dependent
similarities between vector-fields.

Definition 8 (Curl-free and Div-free kernel) We have d = p. The divergence-free ker-
nel is defined as Kdiv(x, z) = Kdiv

0 (δ) = (∇∇∗ − ∆I)k0(δ) and the curl-free kernel as
Kcurl(x, z) = Kcurl

0 (δ) = −∇∇∗k0(δ), where ∇∇∗ is the Hessian operator and ∆ is the
Laplacian operator.

Although taken separately these kernels are not universal, a convex combination of the curl-
free and divergence-free kernels allows to learn any vector field that satisfies the Helmholtz
decomposition theorem (Macedo and Castro, 2008; Baldassarre et al., 2012). For curl-free
kernel we use the differentiation properties of the Fourier transform.

Example 2 (ORFF for curl-free kernel) ∀ℓ,m ∈ {1, . . . , p},

Ccurl(ω)ℓm = −F−1

[
∂

∂δℓ

∂

∂δm
k0

]
(ω) = ωℓωmF−1 [k0] (ω)
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Hence, Acurl(ω) = ωω∗ and pcurlµ (ω) = F−1 [k0] (ω). We can obtain directly: Bcurl(ω) = ω.

For the divergence-free kernel we first compute the Fourier transform of the Laplacian of
a scalar kernel using differentiation and linearity properties of the Fourier transform. We
denote δ{ℓ=m} as the Kronecker delta which is 1 if ℓ = m and zero otherwise.

Example 3 (ORFF for divergence-free kernel)

Cdiv(ω)ℓm = F−1

[
∂

∂δℓ

∂

∂δm
k0 − δ{ℓ=m}∆k0

]
= F−1

[
∂

∂δℓ

∂

∂δm
k0

]
− δ{ℓ=m}F−1 [∆k0]

= (δ{ℓ=m} − ωℓωm)∥ω∥22F
−1 [k0] ,

since F−1 [∆k0(δ)] =
∑p

k=1F
−1

[
∂
∂δk

k0

]
= −∥ω∥22F−1 [k0]. Hence Adiv(ω) = I∥ω∥22 − ωω∗

and pdivµ (ω) = F−1 [k0] (ω). Here, Bdiv(ω) = I∥ω∥ − ωω∗/∥ω∥.

4. Theoretical guaranties for the ORFF approximation error
4.1. Uniform error bound

We are now interested on measuring how close ORFF approximation K̃ is to K given D.
If A is a real matrix, we denote ∥A∥2 its spectral norm, defined as the square root of the
largest eigenvalue of A. If F is an operator-valued function we use the shortcut notation
∥F∥∞ = supx∥F (x)∥2. For x and z in C ⊂ Rd, we study how,∥∥∥K̃ −K

∥∥∥
∞

= sup
x,z∈C

∥∥∥K̃(x, z)−K(x, z)
∥∥∥
2

(8)

behaves according to D, that is the the maximal approximation error of the largest eigen-
value across the domain of K. Figure 1 A empirically shows convergence of three different
OVK approximations for 1000 data uniformly drawn from the compact [−1, 1]4 using an
increasing number of sample points D. The log-log plot shows that all three kernels have
the same convergence rate, up to a multiplicative factor.

To bound the approximation error, we turn to concentration inequalities devoted to
random matrices (Boucheron et al., 2013). For decomposable kernel, the error bound can
be directly obtained as a consequence of the uniform convergence of RFFs in the scalar
case proved in Rahimi and Recht (2007); Sutherland and Schneider (2015); Sriperumbudur
and Szabo (2015); since in this case ∥K̃(x, z) − K(x, z)∥2 = ∥A∥2|k̃(x, z) − k(x, z)|. This
theorem and its proof are presented in corollary 2 of the supplementary material. More
interestingly, we propose a new bound for Operator Random Fourier Feature approxima-
tion in the general case. It relies on two main ideas: (i) Matrix-Bernstein concentration
inequality for random matrices need to be used instead of concentration inequality for scalar
random variables, (ii) a general theorem valid for random matrices with bounded norms
(case for decomposable kernel ORFF approximation) as well as unbounded norms (curl and
divergence-free kernels) that behave as subexponential random variables. Before introduc-
ing the new theorem, we give the definition of the Orlicz norm which gives a proxy-bound
on the norm of subexponential random variables.
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Figure 1: Empirical approximation error and bounds on the norm of the variance of K̃

Definition 9 (Orlicz norm (Van Der Vaart and Wellner, 1996)) . Let ψ : R+ →
R+ be a non-decreasing convex function with ψ(0) = 0. For a random variable X on a
measured space (Ω, T (Ω), µ), ∥X∥ψ := inf {C > 0 | E[ψ (|X|/C)] ≤ 1}.

Here, the function ψ is chosen as ψ(u) = ψα(u) where ψα(u) := eu
α − 1. When α =

1, a random variable with finite Orlicz norm is called a subexponential variable because
its tails decrease at an exponential rate. Let X be a random matrix of size p × p. We
call variance of X and use the notation V[X] = E [X − E[X]]2. With this convention,
V[X]ℓm =

∑p
r=1Cov[Xℓr, Xrm].

Theorem 10 Assume K is a shift-invariant Rp-Mercer kernel on C, a compact subset of
Rd of diameter |C|. Let K̃ be the ORFF approximation of K depending on D (as defined
in eq. (7)), K0 be the kernel signature of K and pµ(·)A(·) be the inverse Fourier transform
of the kernel’s signature (in the sense of proposition 6). Let us define the constants b, σ2p,
m ∈ R+ as

b = D
∥∥∥Vµ [K̃]∥∥∥

∞
and σ2p = Eµ

[
∥ω∥22∥A(ω)∥

2
2

]
and m = 4

(
∥∥A(ω)∥2∥ψ1

+ ∥K∥∞
)

where ω ∼ µ, then for all ϵ in R+,

P
{∥∥∥K̃ −K

∥∥∥
∞

≥ ϵ
}
≤ Cd,p

(
σp|C|
ϵ

) 2
1+2/d

exp
(
− ϵ2D

8(d+2)(b+ ϵū
6 )

)
if ϵū ≤ 2(e− 1)b

exp
(
− ϵD

(d+2)(e−1)ū

)
otherwise,

where ū = 2m log
(
2

3
2

(
m
b

)2) and Cd,p = p

((
d
2

) −d
d+2 +

(
d
2

) 2
d+2

)
2

6d+2
d+2 .

We give here a sketch of the proof here and a complete comprehensive proof of 10 is given
in section B of the supplementary material.
Sketch of proof. In the following, let F (δ) = F (x−z) = K̃(x, z)−K(x, z). As in Rahimi
and Recht (2007) let DC = {x− z|x, z ∈ C} with diameter at most 2l where l is the diameter

118



ORFF for OVK

of C. Since C is supposed compact, so is DC . It is then possible to find an ϵ-net covering DC
with at most T = (4|C|/r)d balls of radius r. Let us call δi, i = 1, . . . , T the center of the
i-th ball, called anchors of the ϵ-net. Denote LF the Lipschitz constant of F . We introduce
the following lemma proved in the supplements:

Lemma 11 If (H1): LF ≤ ϵ
2r and (H2) ∥F (δi)∥2 ≤ ϵ

2 , for all 0 < i < T , then ∀δ ∈ DC,
∥F (δ)∥2 ≤ ϵ.

To apply the lemma, we must check assumptions (H1) and (H2).

Sketch of proof of (H1). We bound the Lipschitz constant by noticing that F is differ-
entiable, so LF =

∥∥∂F
∂δ (δ

∗)
∥∥
2

where δ∗ = arg maxδ∈DC

∥∥∂F
∂δ (δ)

∥∥
2
. Using Jensen’s inequality

and applying Markov’s inequality yields

P
{
LF ≥ ϵ

2r

}
= P

{
L2
F ≥

( ϵ

2r

)2
}

≤ Eµ
[
∥ω∥22∥A(ω)∥

2
2

](2r

ϵ

)2

. (9)

We set σ2p = Eµ
[
∥ω∥22∥A(ω)∥

2
2

]
and suppose its existence.

Sketch of proof of (H2). To obtain a bound on the anchors we apply Koltchinskii et al.
(2013, theorem 4). We suppose that the two constants b = supδ∈DC D

∥∥∥Vµ [K̃0(δ)
]∥∥∥

2
and

ū = log
(
2
(
m
b

)2
+ 1

)
, where m = 4

(
∥∥A(ω)∥2∥ψ1

+ supδ∈DC∥K0(δ)∥2
)

and ω ∼ µ, exists.
Then,

∀i = 1, . . . , T, P {∥F (δi)∥2 ≥ ϵ} ≤ 2p

exp
(
− Dϵ2

4b+2ϵū/3

)
if ϵū ≤ 2(e− 1)b

exp
(
− Dϵ

(e−1)ū

)
otherwise.

(10)

Combining (H1) and (H2). Now applying the lemma and taking the union bound
over the centers of the ϵ-net yields P

{
supδ∈DC∥F (δ)∥2 ≤ ϵ

}
≥ 1 − κ1r

−d − κ2r
2, with

κ2 = 4σ2pϵ
−2 and κ1 = 2p(4|C|)d

exp
(
− ϵ2D

16(b+ ϵ
6
ū)

)
if ϵū ≤ 2(e− 1)b

exp
(
− ϵD

2(e−1)ū

)
otherwise

. We choose r

such that dκ1r−d−1 − 2κ2r = 0, i.e. r =
(
dκ1
2κ2

) 1
d+2 . The bound becomes

P

{
sup
δ∈DC

∥F (δ)∥ ≥ ϵ

}
≤ pC ′

d2
6d+2
d+2

(
σp|C|
ϵ

) 2
1+2/d

exp
(
− ϵ2

8(d+2)(b+ ϵ
6
ū)

)
if ϵū ≤ 2(e− 1)b

exp
(
− ϵ

(d+2)(e−1)ū

)
otherwise.

where C ′
d =

((
d
2

) −d
d+2 +

(
d
2

) 2
d+2

)
. Conclude by taking Cd,p = pC ′

d2
6d+2
d+2 .
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4.2. Variance of the ORFF approximation
We now provide a bound on the norm of the variance of K̃, required to apply theorem 10.

Proposition 12 (Bounding the variance of K̃) Let K be a shift-invariant Rp-Mercer
kernel on C, a compact subset of Rd, K̃ be the ORFF approximation of K (as defined in
eq. (7)) and DC = {x− z | x, z ∈ C}. Then

∀δ ∈ DC ,
∥∥∥Vµ [K̃0(δ)

]∥∥∥
2
≤

∥∥(K0(2δ) +K0(0))Eµ[A(ω)]− 2K0(δ)
2
∥∥
2
+ 2∥Vµ[A(ω)]∥2

2D
.

Proof. It relies on the i.i.d. property of the random vectors ωj and trigonometric identities
(see the proof in section C of the supplementary material).

4.3. Application on decomposable, curl and div-free OVKs
Now we compute upper bounds on the norm of the variance and Orlicz norm of the three
ORFFs we took as examples.

Decomposable kernel: notice that in the case of the Gaussian decomposable kernel, i.e.
A(ω) = A, K0(δ) = Ak0(δ), k0(δ) ≥ 0 and k0(δ) = 1, then we have

D
∥∥∥Vµ [K̃0(δ)

]∥∥∥
2
≤ (1 + k0(2δ))∥A∥2/2 + k0(δ)

2.

Curl-free and div-free kernels: recall that in this case p = d. For the (Gaussian)
curl-free kernel, A(ω) = ωω∗ where ω ∈ Rd ∼ N (0, σ−2Id) thus Eµ[A(ω)] = Id/σ

2 and
Vµ[A(ω)] = (d+ 1)Id/σ

4. Hence,

D
∥∥∥Vµ [K̃0(δ)

]∥∥∥
2
≤ 1

2

∥∥∥∥ 1

σ2
K0(2δ)− 2K0(δ)

2

∥∥∥∥
2

+
(d+ 1)

σ4
.

This bound is illustrated by fig. 1 B, for a given datapoint. Eventually for the Gaussian
divergence-free kernel, A(ω) = I∥ω∥22−ωω∗, thus Eµ[A(ω)] = Id(d− 1)/σ2 and Vµ[A(ω)] =
d(4d− 3)Id/σ

4. Hence,

D
∥∥∥Vµ [K̃0(δ)

]∥∥∥
2
≤ 1

2

∥∥∥∥(d− 1)

σ2
K0(2δ)− 2K0(δ)

2

∥∥∥∥
2

+
d(4d− 3)

σ4
.

Eventually, we ensure that the random variable ∥A(ω)∥ has a finite Orlicz norm with ψ = ψ1

in these three cases.

Computing the Orlicz norm: For a random variable with strictly monotonic moment
generating function (MGF), one can characterize its inverse ψ1 Orlicz norm by taking the
functional inverse of the MGF evaluated at 2 (see lemma 7 of the supplementary material).
In other words ∥X∥−1

ψ1
= MGF(x)−1

X (2). For the Gaussian curl-free and divergence-free
kernel,

∥∥Adiv(ω)∥∥
2
=

∥∥Acurl(ω)∥∥
2
= ∥ω∥22, where ω ∼ N (0, Id/σ

2), hence ∥A(ω)∥2 ∼
Γ(p/2, 2/σ2). The MGF of this gamma distribution is MGF(x)(t) = (1 − 2t/σ2)−(p/2).
Eventually ∥∥∥∥∥∥Adiv(ω)∥∥∥

2

∥∥∥−1

ψ1

=
∥∥∥∥∥∥Acurl(ω)∥∥∥

2

∥∥∥−1

ψ1

=
σ2

2

(
1− 4

− 1
p

)
.
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5. Learning with ORFF
While theoretically relevant, the approximation error bounds are too loose to be used to find
a safe value for D. In the following, we choose appropriate learning algorithms to use ORFF
in vector-valued regression in order to study the empirical behavior of these methods. Code
implementing ORFF is available at https://github.com/operalib/operalib/tree/ORFF
in the branch ORFF of Operalib, a framework for OVK learning.

5.1. Penalized regression with ORFF
Once we have an approximated feature map, we can use it to provide a feature matrix of
size p′D × p with matrix B(ω) of size p × p′ such that A(ω) = B(ω)B(ω)∗. A function
f ∈ HK is then approximated by a linear model f̃(x) = Φ̃(x)∗θ, where θ ∈ Rp′D. Let
S = {(xi, yi) ∈ Rd×Rp, i = 1, . . . , N} be a collection of i.i.d training samples. Given a local
loss function L : S → R+ and a ℓ2 penalty, we minimize

L(θ) = 1

N

N∑
i=1

L
(
Φ̃(xi)

∗θ, yi

)
+ λ∥θ∥22, (11)

instead of minimizing L(f) = 1
N

∑N
i=1 L(f(xi), yi) + λ∥f∥2HK

. To find a minimizer of the
optimization problem eq. (11) many optimization algorithms are available. For instance,
in a large-scale context, a stochastic gradient descent algorithm would be suitable: we can
adapt the algorithm to the kind of kernel/problematic. We investigate two optimization
algorithms: a Stein equation solver appropriate for decomposable kernels and a (stochastic)
gradient descent for non-decomposable kernels (e.g. the curl-free and div-free kernels).

Closed form for the decomposable kernel: for the real decomposable kernel K0(δ) =
k(δ)A when L(y, y′) = ∥y − y′∥22 (Kernel Ridge regression in HK), the learning problem
described in eq. (11) can be re-written in terms of matrices to find the unique minimizer
Θ∗, where vec(Θ) = θ such that θ is a p′D vector and Θ a p′ × D matrix. We use the
notation X =

⊕N
i=1 xi. If ϕ̃ is a scalar feature map (ϕ̃(X) =

⊕N
i=1 ϕ̃(xi) is a matrix of size

D ×N) for the scalar kernel k0. Let ∥.∥F be the Frobenius norm. Then

Φ̃(X)∗θ = (ϕ̃(X)∗ ⊗B)θ = BΘϕ̃(X) and θ∗ = arg min
Θ∈Rp′×D

∥∥∥BΘϕ̃(X)− Y
∥∥∥2
F
+ λ∥Θ∥2F . (12)

This is a convex optimization problem and a sufficient condition is ϕ̃(X)ϕ̃(X)∗Θ∗B
∗B −

ϕ̃(X)Y ∗B + λΘ∗ = 0, which is a Stein equation.

Gradient computation for the general case. When it is not possible or desirable to
use Stein’s equations solver one can apply a (stochastic) gradient descent algorithm. The
gradient computation for and ℓ2-loss applied to ORFF model is briefly recalled in section D.1
of the supplementary material.

5.2. Numerical illustration
We present numerical experiments to illustrate and complete the theoretical contribution
with bounded and unbounded ORFFs.
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Figure 2: Empirical comparison of ORFF and OVK regression on MNIST dataset and em-
pirical behavior of ORFF regression versus D and N .
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Figure 3: Empirical comparison between curl-free ORFF, curl-free OVK, independent
ORFF, independent OVK on a synthetic vector field regression task.

Datasets: the first dataset considered is the handwrittent character recognition set, MNIST3.
A training (resp. test) set of 12000 (resp. 10000) images were selected. The inputs are im-
ages represented as a vector xi ∈ [0, 255]784 and the targets are integers between 0 and 9.
We scale the inputs such that they take values in [−1, 1]784. We binarize the targets with
a one-hot encoder. To predict classes, we use simplex coding method presented in Mroueh
et al. (2012). The intuition behind simplex coding is to project the binarized labels of di-

3. Available at http://yann.lecun.com/exdb/mnist
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mension p onto the most separated vectors on the hypersphere of dimension p−1. For ORFF
we encode this projection in the matrix B of the decomposable kernel K0(δ) = BB∗k0(δ)
where k0 is a Gaussian kernel. The matrix B is computed via the recursion

Bp+1 =

(
1 uT

0p−1

√
1− p−2Bp

)
, B2 =

(
1 −1

)
,

where u =
(
−p−2 . . . −p−2

)T ∈ Rp−1 and 0p−1 =
(
0 . . . 0

)T ∈ Rp−1. For OVK we
project the binarized targets on the simplex as a pre-processing step, before learning with
the kernel K0(δ) = Ipk0(δ), where k0 is a also Gaussian kernel. The second dataset is a
simulated 5D-vector field with structure. We generate a scalar field as a random function
f : [−1, 1]5 → R, where f(x) = ϕ̃(x)T θ where θ is a random normal matrix, ϕ̃ is a scalar
Gaussian RFF with bandwidth σ = 0.4. The input data x are generated from a uniform
probability distribution. We take the gradient of f to generate the 5D-curl-free vector-field.
We also report additional results on a third dataset with 105 data from R20 → R4 used in
Audiffren and Kadri (2013), in section D.2 of the supplements.

Performance of ORFF regression: we trained both ORFF and OVK models on MNIST
dataset with a decomposable Gaussian kernel with signature K0(δ) = exp(−∥δ∥/σ2)A. To
find a solution of the optimization problem described in eq. (12), we use off-the-shelf solver4

able to handle Stein’s equation. For both methods we choose σ = 20 and use a 2-fold cross
validation on the training set to select the optimal λ. First, fig. 2 compares the running time
between OVK and ORFF models using D = 1000 Fourier features against the number of
datapoints N . The log-log plot shows ORFF scaling better than the OVK w.r.t the number
of points. Second, fig. 2 shows the test prediction error versus the number of ORFFs D,
when using N = 1000 training points. As expected, the ORFF model converges toward the
OVK model when the number of features increases.

We perform a similar experiment on the second dataset (5D-vector field with structure).
We use a Gaussian curl-free kernel with bandwidth equal to the median of the pairwise
distances and tune the hyperparameter λ on a grid. We optimize eq. (11) using Scipy’s
L-BFGS-B solver5. Figure 3 (bottom row) reports the R2 score on the test set versus
the number of curl-ORFF D with a comparison with curl-OVK. In this experiment, we
see that curl-OFF can even be better than curl-OVK, suggesting that ORFF might play
an additional regularizing role. It also shows the computation time of curl-ORFF and
curl-OVK. We see that OVK regression does not scale with large datasets, while ORFF
regression does. When N > 104, OVK regression exceeds memory capacity.

Structured prediction vs Independent (RFF) prediction: on the second dataset,
fig. 3 (top row) compares R2 score and time of ORFF regression using the trivial identity
decomposable kernel, e.g. independent RFFs, to curl-free ORFF regression. Curl-free ORFF
outperforms independent RFFs, as expected, since the dataset involves structured outputs.

4. Available at http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html
5. Available at http://docs.scipy.org/doc/scipy/reference/optimize.html
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6. Conclusion
We introduced ORFF, a general and versatile framework for shift-invariant OVK approx-
imation. We proved the uniform convergence of the approximation error for bounded and
unbounded ORFFs. The complexity in time of these approximations together with the
linear learning algorithm make this implementation scalable with the data size and thus
appealing compared to OVK regression as shown in numerical experiments. Further work
concerns generalization bounds and consistency for ORFF-regression. Finally this work
opens the door to building deeper architectures by stacking vector-valued functions while
keeping a kernel view for large datasets.
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