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Abstract

Distance metric learning is a well studied problem in the field of machine learning, where
it is typically used to improve the accuracy of instance based learning techniques. In this
paper we propose a distance metric learning algorithm that is specialised for multi-label
classification tasks, rather than the multiclass setting considered by most work in this
area. The method trains an embedder that can transform instances into a feature space
where squared Euclidean distance provides an estimate of the Jaccard distance between
the corresponding label vectors. In addition to a linear Mahalanobis style metric, we
also present a nonlinear extension that provides a substantial boost in performance. We
show that this technique significantly improves upon current approaches for instance based
multi-label classification, and also enables interesting data visualisations.

Keywords: Distance Metric Learning, Multi-Label Classification, Instance Based Learn-
ing.

1. Introduction

Multiclass classification is one of the most ubiquitous tasks found in the field of machine
learning, so it should come as no surprise that the majority of methods for learning distance
metrics are designed to be applied to multiclass data. Many of these techniques involve opti-
mising a loss function that considers pairwise equality constraints between similar instances.
In this context, two instances are considered similar if they both belong to the same class.
However, we are interested in the case of multi-label classification, where each instance can
be assigned multiple labels. In the multi-label setting the rule previously given for creating
equality constraints is somewhat vague. Should two instances be considered similar only if
they have exactly the same set of labels? Or should similarity be indicated by non-empty
overlap between the label sets of the two instances? Should a threshold be selected for the
number of shared labels required for two instances to be considered similar? In this work
we investigate a method for learning distance metrics that avoids labelling pairs as equal
or not equal, and instead assigns a real valued similarity score.

Of course, a distance metric alone is not capable of acting as a classifier—it must be
paired with a classification algorithm that can exploit knowledge of the fine-grained simi-
larity between instances. The k Nearest Neighbours (k-NN) classification rule is one such
algorithm. A particularly interesting benefit of using k-NN over other algorithms is how ef-
ficiently it can be applied to problems where there are a large number of classes. If a binary
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classification method is to be used on a dataset with a large number of classes, a meta-
classification scheme must be employed to train an ensemble of binary classifiers capable
of performing multiclass classification. Even methods that are able to perform multiclass
classification natively often have a run-time that is dependent on the number of classes in
the dataset—multinomial logistic regression is a good example of this. Thus, the ability to
improve the accuracy of k-NN classifiers is one of the primary ways to advance how well
classification problems with many classes can be solved.

In this work we propose a loss function for training metrics with the same functional
form as the well known Mahalanobis distance. Rather than using equality constraints, as
is typical for Mahalanobis style metrics Davis et al. (2007); Weinberger et al. (2005), we
use the Jaccard distance between the label vectors to provide a more fine-grained estimate
of similarity. Furthermore, we show that by adapting a new framework presented by Gouk
et al. (2015), we are able to learn nonlinear metrics from multi-label data. In addition to
improving the performance of k-NN classification, it is demonstrated that these nonlinear
metrics are able to produce useful visualisations of multi-label data.

We first summarise related work in Section 2. Following that, we describe a method
for learning linear multi-label distance metrics in Section 3, followed by a generalisation
to nonlinear metrics in Section 4. In Section 5 we demonstrate that the linear metrics
work well on high dimensional data and classification accuracy is substantially improved in
general when using the nonlinear method. Finally, we summarise the contributions of our
work and conclude in Section 6.

2. Related Work

Many distance metric learning algorithms are based on the Mahalanobis distance formula
given in Equation 1, where xi and xj are feature vectors and M is the matrix of model
parameters found during the training process.1

D(xi,xj) =
√

(xi − xj)TM(xi − xj) (1)

Prior work addressing metric learning for improving the performance of k-NN classifiers
has almost exclusively focused on the popular multiclass classification setting. Some popu-
lar methods include Large Margin Nearest Neighbours (Weinberger et al., 2005), which is
learned by optimising a loss function that considers triples of instances: a seed instance,
an instance similar to the seed, and an instance dissimilar to the seed. The objective
aims to make the distance between the similar instances smaller than the distance between
the dissimilar instances. Another technique that fits into the same paradigm is Informa-
tion Theoretic Metric Learning (Davis et al., 2007). The objective for this approach aims
to minimise—subject to instance equality constraints—the Kullback-Leibler divergence be-
tween a prior Gaussian distribution and the Gaussian distribution with an inverse covariance
matrix parameterised by M. Our work is similar to these approaches in the sense that we
propose a metric with the same functional form, except rather than using binary equality
constraints, we use real valued ground truth measures of similarity derived from the label

1. In the original formulation of Mahalanobis distance, M is the inverse covariance matrix of the training
data.
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sets of the training instances when optimising the parameter matrix. Most similar to the
linear metric learning algorithm that we porpose is Large Margin k-NN (Liu and Tsang,
2015). To our knowledge, the work of Liu and Tsang (2015) is the only other paper to
directly address the problem of metric learning for multi-label data, however several other
works exists when there are additional constraints (Jin et al., 2009; Guillaumin et al., 2010).

The conventional k-NN classification scheme is inherently a multiclass method, and
not immediately capable of performing multi-label classification. A popular adaptation
of k-NN to the multi-label problem is the Multi-label k-Nearest Neighbours (MLkNN)
algorithm (Zhang and Zhou, 2007). This method finds the k nearest neighbours of a test
instance and uses a maximum likelihood technique to predict the labels.

An alternative to adapting the classification algorithm, as in the case of MLkNN, is to
reformulate the problem being solved. So called Problem Transformation methods do just
that. The most basic is the Binary Relevance (BR) scheme, which simply trains a binary
classifier for each label in the dataset, hence ignoring any information that can be gleaned
from considering label correlations. Another popular method that fits into this framework
is the Ensemble of Classifier Chains (ECC) method proposed by Read et al. (2011). Each
node in the classifier chain predicts the presence of a single label using a binary classifier,
however each prediction is then appended to the feature vector before continuing along the
chain to the next binary classifier. The order that the labels are predicted is generated
randomly during the classifier chain training process. Creating ensembles of these chains
via bagging results in a classifier that is able to take advantage of correlations between
labels when making predictions.

Nonlinear metric learning is also considered in this work. We take inspiration from Gouk
et al. (2015) to transform our linear metric learning method into a nonlinear metric learner
that performs significantly better. When employing the framework of Gouk et al. (2015),
our nonlinear technique most resembles the nonlinear label compression method of Wicker
et al. (2016), in the sense that our approach involves learning a nonlinear mapping from label
space to a real valued vector space. As such, our nonlinear method can also be considered
a label compression scheme, even though it is an extension of a more conventional distance
metric. The benefit of our approach is that Euclidean distance can be applied to the
compressed labels to provide a good indication of instance similarity.

3. Learning Linear Metrics

We start by defining a loss function that can be applied to metrics of the form given in
Equation 1. To do this, we must first decide what this loss function should accomplish.
Unlike multiclass classification, there is no single appropriate definition for accuracy when
performing multi-label classification. Instead, evaluation measures such as the Jaccard
index between two label sets, Yi and Yj , given in Equation 2, between the ground truth
label set and the predicted label set are used. It is important to note that because there
is no single definitive measure for multi-label classification performance, several should be
reported—as is customary in the literature (Read et al., 2011; Zhang and Zhou, 2007; Cheng
and Hüllermeier, 2009).
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J(Yi, Yj) =
|Yi ∩ Yj |
|Yi ∪ Yj |

(2)

Interestingly, one can transform the Jaccard index into a distance metric, called the
Jaccard distance, fairly trivially:

DJ(Yi, Yj) = 1− J(Yi, Yj) (3)

Rather than using binary constraints to determine how similar two instances are when
training a learned distance metric, we propose the use of the Jaccard distance between the
label sets of training instances. This provides a fine-grained measure of similarity between
the examples in the training data. This information is used to train a linear distance metric
that can estimate the Jaccard distance between two unknown label sets by considering only
the features associated with the label sets.

More formally, suppose we have a training set, X , with elements of the form (xi, Yi),
where xi ∈ Rd is the d-dimensional column vector of features for instance i and Yi is the
label set. We define a set, Z = X × X , which contains all possible pairings of instances
in X . The parameters for a Mahalanobis style distance metric are learned by solving the
following optimisation problem:

M∗ = arg min
M

1

|Z|
∑

((xi,Yi),(xj ,Yj))∈Z

L(xi,xj , Yi, Yj) (4)

L(xi,xj , Yi, Yj) =

{
(DJ(Yi, Yj)−D(xi,xj)

2)2, if DJ(Yi, Yj) < 1

−min(1, D(xi,xj)
2), otherwise

(5)

where D(·, ·) is a Mahalanobis style metric parameterised by the positive-semidefinite
matrix M, and DJ(·, ·) is the Jaccard distance. This function has the effect of training
a clamped Mahalanobis style metric that is capable of estimating the Jaccard distance
between the unknown label sets of two data points. The min function prevents metric
from being uneccesarily penalised when large values are predicted for completely dissimilar
instances, as opposed to simply trying to predict a Jaccard distance of one.

In order to avoid solving a constrained optimisation problem, we reparametrise the
Mahalanobis distance metric as M = GTG. In this formulation G is a matrix with the same
number of rows as M, but the number of columns is specified by a new hyper-parameter,
t. That is, M is d × d and G is t × d. This guarantees that M is positive-semidefinite,
and thus D(·, ·) behaves as a proper distance metric. We can now equivalently express the
canonical formula for Mahalanobis metrics as:

D(xi,xj) =
√

(G · (xi − xj))T (G · (xi − xj)) (6)

One can think of this alternative formulation as embedding the instances into a t dimen-
sional vector space and then applying Euclidean distance to this new representation. These
embeddings can then be stored in a data structure, such as a k-d tree, capable of performing
efficient nearest neighbour searches. This removes the need for matrix multiplications when
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comparing instances during k-NN classification. After performing this reparametrisation,
we now solve for the optimal value of G, rather than the optimal value of M.

Because Z is of size |X |2, moderate growth in the training set size will lead to a great
increase of |Z|, causing exact optimisation methods to become very slow. The conditional
expression and min(·, ·) function also present problems, as this means our objective is non-
smooth and also results in a very large plateau on the error surface—something exact
optimisation methods tend to struggle with. It is for these reasons that we resort to the
use of the Adam optimisation algorithm (Kingma and Ba, 2014), a variant of stochastic
gradient descent (SGD). An additional advantage of using Adam is that it was designed
for training deep neural networks, where local minima are abundant. Our objective is not
convex with respect to G, so our choice of optimiser has a great impact on the final accuracy
of the learned metrics.

Adam requires gradient information to optimise functions, however because our objec-
tive is nonsmooth we must settle for having a means of computing subgradients. This is
accomplished by rewriting our reparametrised objective function in a form more amenable
to differentiation, as in Equation 7, and subsequently differentiating all parts of the per
instance loss function (Equation 8) with respect to the elements of G.

G∗ = arg min
G

1

|Z|
∑

((xi,Yi),(xj ,Yj))∈Z

L(xi,xj , Yi, Yj) (7)

L(xi,xj , Yi, Yj) =


(DJ(Yi, Yj)−D(xi,xj)

2)2, if DJ(Yi, Yj) < 1

−D(xi,xj)
2, if DJ(Yi, Yj) = 1 and D(xi,xj)

2 < 1

−1, otherwise

(8)

Taking the partial derivative of Equation 8 with respect to G results in:

∇GL = G(xi − xj)(xi − xj)
T

× 2×


2(D(xi,xj)

2 −DJ(Yi, Yj)), if DJ(Yi, Yj) < 1

−1, if DJ(Yi, Yj) = 1 and D(xi,xj)
2 < 1

0, otherwise

(9)

This equation is used by Adam to compute the required gradients. Algorithm 1 describes
the procedure used to optimise the linear metrics, including parameter initialisation, opti-
misation, and training pair generation. We use the parameters suggested by Kingma and
Ba (2014) for Adam: α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8. The convergence
tolerance, e, is the number of iterations through the dataset that will be tolerated with-
out observing an improvement in the loss function. We set this value to 5 in all of our
experiments.

4. Extension to Nonlinear Models

As mentioned in Section 3, the formulation of Mahalanobis distance given in Equation 6
can be thought of as a transformation of two instances into a t dimensional vector space,
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Algorithm 1: Optimisation procedure for finding G.

Input: Training data X , training data dimensionality d, embedding dimensionality t,
convergence tolerance e

Output: Parameter matrix G
stop ← 0;
bestloss ←∞;
loss ← 0;
foreach i, j ∈ {1, ..., T} × {1, ..., D} do Gij ← RandomSample(N (0, 1

D+T ));

while stop < e do
foreach (xi, Yi) ∈ X do

(xj , Yj)← UniformRandomElement(X);
loss ← loss +L(xi,xj , Yi, Yj);
G← Adam(∇GL,G,xi,xj , Yi, Yj);

end
if loss < bestloss then

bestloss ← loss;
stop ← 0;

end
else stop ← stop +1 ;

end

followed by a comparison using Euclidean distance. In this section we describe how the
linear transformation can be swapped out for a nonlinear embedding model.

Gouk et al. (2015) recently presented a framework that allows algorithms that create
nonlinear regression models to be used as components in distance metrics. The method is
composed of two phases: learning the targets vectors that encode the ideal representation
for each instance, and then learning the embedding function. The target vectors are found
by minimising any distance metric learning loss function that involves embedding instances
into a vector space where some predefined metric (such as Euclidean distance) is a useful
indicator of similarity. Equation 8 is a perfect example of the kind of loss function intended
to be used by this method.

In this first phase, rather than actually learning a function that can perform the embed-
ding, the method simply computes what the ideal embedding for each instance is for the
supplied loss function. This method also requires the hyper-parameter, t, that determines
the size of these embeddings. The first phase can be concisely described as the following
optimisation problem:
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E∗ = arg min
E

1

|Z|
∑

((xi,Yi),(xj ,Yj))∈Z

L(xi,xj , Yi, Yj) (10)

L(xi,xj , Yi, Yj) =

{
(DJ(Yi, Yj)−D(xi,xj)

2)2, if DJ(Yi, Yj) < 1

−min(1, D(xi,xj)
2), otherwise

(11)

D(xi,xj) = ‖ei − ej‖2 (12)

In Equation 12 ei, ej ∈ E are the t-dimensional target vectors associated with xi,xj ∈
X . We use the Adam optimiser to find the set, E∗, of locally optimal target vectors.
However, for this problem we must take the derivative with respect to the target vectors
we are attempting to learn:

(
∂L

∂ei
,
∂L

∂ej
) = (ei − ej , ej − ei)

× 2×


2(D(xi,xj)

2 −DJ(Yi, Yj)), if DJ(Yi, Yj) < 1

−1, if DJ(Yi, Yj) = 1 and D(xi,xj)
2 < 1

0, otherwise

(13)

The optimisation is performed by adapting Algorithm 1 to use the appropriate deriva-
tives and simply perform 10,000 epochs of training. We found that, for this problem, our
simple stopping criterion of monitoring the value of the loss function was not a good heuristic
for determining when the optimisation was complete.

Once the target vectors are obtained, one must train a model that can perform multi-
target regression—the equivalent of multi-label classification where one wishes to estimate
a vector of real valued response variables. In their experiments Gouk et al. (2015) used only
deep neural networks on image datasets, however they acknowledge that any multi-target
regression method can be used. In this work we investigate how well this framework performs
when the multi-target regression model is a set of random forests trained for regression.
That is, we train a separate random forest to make predictions for each component in the
target vector space. This can be seen as a binary relevance method for regression. Figure 1
outlines the procedure for constructing distance metrics using this nonlinear approach.

After the metric has been learned it can be applied to novel instances in a similar
manner to other embedding based metrics. Firstly, two instances are embedded into a t-
dimensional vector space by the random forests. Secondly, these embeddings are compared
using squared Euclidean distance, resulting in an estimate of the Jaccard distance between
the two unknown label sets.

5. Experiments

In our experiments we evaluate our metric learning approaches using two use cases for cus-
tom embedding based distance metrics: the improvement of k-NN type classifiers, and the
utility for data visualisation. We take advantage of several freely available datasets that are
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Features Learn Regression Model

Target Vectors

Learn Target Vectors Labels

Embedder

Embedded Features k-NN Classifier

Figure 1: This diagram provides an overview of how the nonlinear metrics are constructed.
The first step in the process is to learn the target vectors for which squared Eu-
clidean distance is an accurate estimate of the Jaccard distance over the original
label sets. Once the target vectors have been learned they, along with the original
features, are used to create a multi-target regression model. In this work we use a
separate random forest for each target vector component. Once the multi-target
regression model has been learned, it can be used to embed the features into the
same space as the target vectors. Now the embedded features and the original
labels can be used to construct a k-NN style classifier that has been adapted to
work with multi-label data.

Table 1: A summary of the datasets that we use in our experiments. The label cardinality
is the average number of labels assigned to each example.

Dataset Instances Features Labels Cardinality

scene 2,407 294 6 1.074
yeast 2,417 103 14 4.237
enron 1,702 1,001 53 3.378

emotions 592 72 6 1.869
genbase 662 1,186 27 3.392
medical 978 1,449 45 1.245

summarised in Table 1. The algorithms were implemented in the MEKA framework (Read
et al., 2016) and the source code has been released publicly.2

2. http://github.com/henrygouk/meka-metric-learning
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5.1. Classification

The motivation behind distance metric learning is to improve the performance of k-NN
classifiers that, in our case, have been adapted to work with multi-label data. As such,
we compare several standard k-NN multi-label classification schemes that use only Eu-
clidean distance with variants of each method that incorporate metrics learned using the
techniques presented herein. In particular we consider the binary relevance method and
ensembles of classifier chains (both with k-NN base learners) as implemented by the MEKA
framework. We also compare against the MLkNN scheme implemented in the MULAN
framework (Tsoumakas et al., 2011). We set k = 10 for all models, and for all the models
taking advantage of the nonlinear metric learning procedure we set t = 16. In the case of
the linear models we set t = 32. All ECC models use an ensemble size of 50.

As there is no single evaluation metric that is suitable for multi-label classification, we
report results using the Jaccard index, the log loss averaged over each label, the hamming
loss, and the F1 score averaged over each example.

We first investigate how well the linear metric learning algorithm performs. The results
for these experiments are summarised in Table 2. On average, performance is competitive
with two of the three baselines. MLkNN is the clear winner according to all evaluation
metrics, however the performance of all the linear metric learning approaches is significantly
better on enron and medical, the high dimensional natural language datasets.

Results for the models taking advantage of learned nonlinear distance metrics can be
found in Table 3. In this experiment we also evaluate the MANIAC method (Wicker et al.,
2016), which is similar to our technique in the sense that a nonlinear transformation of
the labels is used in an attempt to improve predictive accuracy. When considering only
the average rank of each method for each metric, one can see that the all the models
taking advantage of the Jaccard embedding have superior performance to all models that
simply use Euclidean distance. We observe that the performance of MANIAC is positively
correlated with the number of labels in the dataset, which is congruent with conclusions
made by Wicker et al. (2016). In contrast, our nonlinear method performs well irrespective
of the number of labels in the dataset. Investigating further, the BR models that use
the Jaccard embedding perform the best on three of the four metrics, and on the other
metric they are ranked second best. We see this as strong evidence that the nonlinear
Jaccard embedding method coupled with the BR problem transformation is a good choice
for instance based learning on multi-label data.

5.2. Target Vector Size

The size of the target vectors, controlled by t, has a huge impact on the final performance of
a k-NN based multi-label classification scheme. The dimensionality of the vector space the
features are embedded into must be large enough to accurately capture all the interactions
(correlations, dependencies, etc) between the different labels. However, setting t to be too
large could make the optimisation problem unnecessarily harder and the process of training
the multi-target regression model more time consuming. Thus, we investigate how t impacts
the performance of k-NN trained under the BR scheme when using our nonlinear metric
learning method. The results of these experiments are summarised in Figure 2. It can be
seen that the performance of each algorithm on each dataset converges towards a constant
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Table 2: Results for the instance based multi-label classification methods when using no
learned distance metric and when the linear metric learning method presented
herein is used. Methods prefixed with LJE indicate the use of our linear metric
learning method.

(a) F1 score (macro averaged over examples, higher is better)

Datasets BR MLkNN ECC LJE-BR LJE-MLkNN LJE-ECC

yeast 0.660 (6) 0.652 (4) 0.656 (5) 0.641 (2) 0.640 (1) 0.649 (3)
enron 0.364 (2) 0.456 (3) 0.339 (1) 0.507 (4) 0.533 (6) 0.518 (5)
medical 0.610 (2) 0.662 (3) 0.583 (1) 0.686 (4) 0.689 (5) 0.696 (6)
emotions 0.648 (5) 0.638 (4) 0.657 (6) 0.611 (2) 0.608 (1) 0.624 (3)
genbase 0.945 (5) 0.961 (6) 0.914 (2) 0.919 (3) 0.890 (1) 0.941 (4)
scene 0.642 (3) 0.663 (6) 0.634 (1) 0.652 (5) 0.647 (4) 0.641 (2)

Avg. Rank 3.833 4.333 2.667 3.333 3.000 3.833

(b) Hamming loss (lower is better)

Datasets BR MLkNN ECC LJE-BR LJE-MLkNN LJE-ECC

yeast 0.217 (5) 0.202 (2) 0.201 (1) 0.229 (6) 0.210 (4) 0.206 (3)
enron 0.079 (6) 0.067 (3) 0.071 (5) 0.068 (4) 0.059 (1) 0.063 (2)
medical 0.020 (5) 0.018 (3) 0.022 (6) 0.018 (4) 0.017 (1) 0.017 (2)
emotions 0.209 (3) 0.207 (2) 0.200 (1) 0.233 (6) 0.226 (5) 0.217 (4)
genbase 0.007 (2) 0.006 (1) 0.011 (4) 0.043 (6) 0.014 (5) 0.008 (3)
scene 0.136 (6) 0.119 (1) 0.131 (4) 0.134 (5) 0.126 (2) 0.131 (3)

Avg. Rank 4.500 2.000 3.500 5.167 3.000 2.833

(c) Jaccard index (higher is better)

Datasets BR MLkNN ECC LJE-BR LJE-MLkNN LJE-ECC

yeast 0.551 (5) 0.546 (4) 0.556 (6) 0.529 (1) 0.531 (2) 0.546 (3)
enron 0.260 (2) 0.324 (3) 0.260 (1) 0.375 (4) 0.405 (6) 0.399 (5)
medical 0.562 (2) 0.616 (3) 0.536 (1) 0.634 (4) 0.645 (5) 0.653 (6)
emotions 0.559 (5) 0.551 (4) 0.575 (6) 0.523 (2) 0.518 (1) 0.542 (3)
genbase 0.930 (5) 0.946 (6) 0.894 (2) 0.902 (3) 0.841 (1) 0.922 (4)
scene 0.606 (1) 0.631 (6) 0.611 (2) 0.616 (3) 0.620 (5) 0.619 (4)

Avg. Rank 3.333 4.333 3.000 2.833 3.333 4.167

(d) Log loss (averaged over labels, lower is better)

Datasets BR MLkNN ECC LJE-BR LJE-MLkNN LJE-ECC

yeast 0.422 (1) 0.431 (2) 0.435 (3) 0.443 (4) 0.446 (5) 0.458 (6)
enron 0.179 (5) 0.157 (3) 0.226 (6) 0.151 (2) 0.149 (1) 0.160 (4)
medical 0.049 (5) 0.046 (3) 0.057 (6) 0.045 (2) 0.044 (1) 0.048 (4)
emotions 0.399 (3) 0.416 (4) 0.372 (1) 0.428 (5) 0.444 (6) 0.391 (2)
genbase 0.015 (3) 0.014 (2) 0.023 (6) 0.013 (1) 0.017 (4) 0.018 (5)
scene 0.245 (6) 0.232 (3) 0.227 (1) 0.239 (4) 0.240 (5) 0.228 (2)

Avg. Rank 3.833 2.833 3.833 3.000 3.667 3.833
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Table 3: Results for the multi-label instance based learning algorithms with and without
the nonlinear metric learning methods presented in Section 4. Methods prefixed
with NJE indicate the use of our nonlinear metric learning method.

(a) F1 score (macro averaged over examples, higher is better)
Datasets MANIAC BR MLkNN ECC NJE-BR NJE-MLkNN NJE-ECC

yeast 0.567 (1) 0.660 (4) 0.652 (2) 0.656 (3) 0.667 (7) 0.663 (5) 0.664 (6)
enron 0.441 (3) 0.364 (2) 0.456 (4) 0.339 (1) 0.534 (5) 0.540 (7) 0.535 (6)
medical 0.745 (7) 0.610 (2) 0.662 (3) 0.583 (1) 0.736 (6) 0.693 (4) 0.728 (5)
emotions 0.472 (1) 0.648 (3) 0.638 (2) 0.657 (5) 0.673 (7) 0.668 (6) 0.656 (4)
genbase 0.985 (7) 0.945 (4) 0.961 (6) 0.914 (2) 0.914 (3) 0.849 (1) 0.960 (5)
scene 0.435 (1) 0.642 (3) 0.663 (4) 0.634 (2) 0.727 (7) 0.689 (5) 0.721 (6)

Avg. Rank 3.333 3.000 3.500 2.333 5.833 4.667 5.333

(b) Hamming loss (lower is better)
Datasets MANIAC BR MLkNN ECC NJE-BR NJE-MLkNN NJE-ECC

yeast 0.216 (6) 0.217 (7) 0.202 (5) 0.201 (4) 0.196 (2) 0.197 (3) 0.195 (1)
enron 0.051 (1) 0.079 (7) 0.067 (5) 0.071 (6) 0.060 (4) 0.058 (2) 0.059 (3)
medical 0.013 (1) 0.020 (6) 0.018 (5) 0.022 (7) 0.015 (2) 0.017 (4) 0.016 (3)
emotions 0.334 (7) 0.209 (6) 0.207 (5) 0.200 (4) 0.188 (2) 0.186 (1) 0.191 (3)
genbase 0.002 (1) 0.007 (4) 0.006 (2) 0.011 (5) 0.065 (7) 0.019 (6) 0.006 (3)
scene 0.255 (7) 0.136 (6) 0.119 (4) 0.131 (5) 0.102 (1) 0.113 (3) 0.102 (2)

Avg. Rank 3.833 6.000 4.333 5.167 3.000 3.167 2.500

(c) Jaccard index (higher is better)
Datasets MANIAC BR MLkNN ECC NJE-BR NJE-MLkNN NJE-ECC

yeast 0.450 (1) 0.551 (3) 0.546 (2) 0.556 (4) 0.565 (7) 0.561 (5) 0.564 (6)
enron 0.339 (4) 0.260 (2) 0.324 (3) 0.260 (1) 0.409 (5) 0.413 (6) 0.414 (7)
medical 0.704 (7) 0.562 (2) 0.616 (3) 0.536 (1) 0.698 (6) 0.656 (4) 0.691 (5)
emotions 0.385 (1) 0.559 (3) 0.551 (2) 0.575 (4) 0.593 (7) 0.589 (6) 0.576 (5)
genbase 0.979 (7) 0.930 (4) 0.946 (6) 0.894 (2) 0.898 (3) 0.775 (1) 0.942 (5)
scene 0.366 (1) 0.606 (2) 0.631 (4) 0.611 (3) 0.708 (7) 0.668 (5) 0.704 (6)

Avg. Rank 3.500 2.667 3.333 2.500 5.833 4.500 5.667

(d) Log loss (averaged over labels, lower is better)
Datasets MANIAC BR MLkNN ECC NJE-BR NJE-MLkNN NJE-ECC

yeast 0.552 (7) 0.422 (1) 0.431 (2) 0.435 (3) 0.483 (4) 0.502 (5) 0.503 (6)
enron 0.194 (6) 0.179 (5) 0.157 (1) 0.226 (7) 0.165 (2) 0.169 (3) 0.174 (4)
medical 0.047 (4) 0.049 (5) 0.046 (2) 0.057 (7) 0.045 (1) 0.047 (3) 0.050 (6)
emotions 0.597 (7) 0.399 (5) 0.416 (6) 0.372 (4) 0.360 (3) 0.358 (1) 0.358 (2)
genbase 0.006 (1) 0.015 (5) 0.014 (3) 0.023 (7) 0.012 (2) 0.015 (4) 0.016 (6)
scene 0.456 (7) 0.245 (6) 0.232 (5) 0.227 (4) 0.183 (2) 0.196 (3) 0.182 (1)

Avg. Rank 5.333 4.500 3.167 5.333 2.333 3.167 4.167
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Figure 2: A demonstration of the impact that the target vector size has on the performance
of the nonlinear models, as measured by several standard multi-label evaluation
measures. The same legend applies to all plots.

value under all metrics as the target size grows larger. In most cases the best performing
models are when t ≥ 16, however for genbase this is not the case, and we believe the
cause for this is that the embedder is overfitting due to the small number of instances and
large number of attributes. Another potential concern is that because the loss function has
multiple minima and we are only performing local optimisation, we may find low quality
local minima. In practice we have found that the local minima that have been reached
during optimisation are of similar quality across multiple runs.
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5.3. Visualisation

An interesting aspect of our framework is the ability to reduce the dimensionality of the data
to an arbitrary size, which gives one the ability to create two dimensional visualisations of
multi-label data. Figure 3 uses the scene dataset to demonstrate how this can be an effective
visualisation method. These images are the result of plotting the output of a nonlinear
metric learned using the technique described in Section 4, with t = 2. An ensemble of
random forests trained using the BR scheme was used to perform multi-target regression.
A separate plot is used for each label and, possibly because the label cardinality of this
dataset is quite low, it can be seen that each label is mapped primarily to one cluster.
There are several small groups of instances that appear between clusters, and one can see
that the instances in these groups have multiple labels and generally belong to the classes
associated with both nearby clusters.

Figure 4 shows a similar visualisation for the emotions dataset. This dataset has a
noticeably higher label cardinality, which has resulted in a more interesting visualisation.
Each label is associated with multiple clusters, and each cluster is also associated with
multiple labels, as one would expect from multi-label data. This requirement that certain
clusters must be adjacent, as enforced by the correlations between labels, is something that
is absent from distance metric learning for multiclass classification.

6. Conclusion

In this paper we have introduced linear and nonlinear distance metric learning methods
aimed at improving the performance of k-NN applied to multi-label data. The linear metric
learning approach was of little added benefit in the general case, however we observed a sig-
nificant increase in performance when applying it to problems with high dimensional data.
When the nonlinear extension is used performance is further improved. The nonlinear ex-
tension enables us to utilise random forests for performing a wider class of transformations,
relative to the linear method, when computing distances between instances. In addition to
improving classification performance, the embedding components of the nonlinear metrics
are effective tools for multi-label data visualisation.

In the future we would like to explore other ways in which the proposed loss function
can be applied to nonlinear models. For example, a deep convolutional neural network
trained with this loss function could be used to perform web image tag prediction. We
would also like to investigate the scalability of this approach to large datasets—likely taking
advantage of an algorithm specialised for multi-target regression instead of using a problem
transformation method.
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Figure 3: Visualisation of a random sample of the scene dataset. Each plot indicates the
presence (red) or absence (blue) of a label for each instance.
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Figure 4: Visualisation of the emotions dataset. Each plot indicates the presence (red) or
absence (blue) of a label for each instance.
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