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Abstract

In many real-world applications data exhibits non-stationarity, i.e., its distribution changes
over time. One approach to handling non-stationarity is to remove or minimize it before
attempting to analyze the data. In the context of brain computer interface (BCI) data
analysis this is sometimes achieved using stationary subspace analysis (SSA). The classic
SSA method finds a matrix that projects the data onto a stationary subspace by optimizing
a cost function based on a matrix divergence. In this work we present an alternative
method for SSA based on a symmetrized version of this matrix divergence. We show
that this frames the problem in terms of distances between symmetric positive definite
(SPD) matrices, suggesting a geometric interpretation of the problem. Stemming from this
geometric viewpoint, we introduce and analyze a method which utilizes the geometry of
the SPD matrix manifold and the invariance properties of its metrics. Most notably we
show that these invariances alleviate the need to whiten the input matrices, a common step
in many SSA methods which often introduces error. We demonstrate the usefulness of our
technique in experiments on both synthetic and real-world data.

Keywords: Stationary subspace analysis, dimensionality reduction, Riemannian geome-
try, SPD manifold, Grassmann manifold

1. Introduction

A common assumption in statistical modeling is that the distribution of observed data
does not change over time, i.e., that it is stationary. In most cases it is this assumption
of stationarity which allows results to be effectively generalized from the sample to the
population. When the stationarity assumption is violated, as is often the case in real-world
applications such as speech enhancement (Cohen and Berdugo, 2001) or neurological data
analysis (Samek et al., 2012), specialized machine learning methods must be developed in
order to maintain adequate prediction capabilities.

A relatively well-studied non-stationary setting is covariate-shift (Shimodaira, 2000), in
which the input distribution changes but the conditional distribution of the outputs does
not. The problem of covariate-shift has received growing attention in recent years, and
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many theoretical and practical aspects have been addressed (see Sugiyama and Kawanabe
(2012) for an in-depth exploration of this topic).

These works typically do not aim to remove or reduce non-stationarity in the data, but
rather they try to cope with its existence. A different approach is to remove, or minimize,
any existing non-stationarities before attempting to analyze the collected data. In the
context of brain computer interface (BCI) data analysis, two such note-worthy methods
are stationary subspace analysis (SSA) (von Biinau et al., 2009a) and stationary common
spacial patterns (sCSP) (Wojcikiewicz et al., 2011).

Similar in spirit to independent component analysis (ICA) (Hyvérinen et al., 2004), SSA
statistically models the data as a mixture of stationary and non-stationary signals. Unlike
ICA, however, the signals are not assumed to be independent of each other. The data is
first split into (possibly overlapping) time frames called epochs. Then a projection matrix
is found by optimizing a cost function based on the divergence between distributions in
various epochs.

Although SSA is essentially an unsupervised method, variations of it exist which are
useful for supervised tasks such as classification (Samek et al., 2012). These methods
attempt to remove non-stationarity while keeping the discriminative inter-class variations
intact. A different supervised method, by now quite a standard step for classification tasks
in BCI systems, is sCSP. Its goal is to project the data onto a subspace in which the
various data classes are more separable. The sCSP method directs this subspace towards a
stationary subspace by means of regularization.

In this work we present another approach to stationary subspace analysis, focusing for
the moment on the unsupervised setting. Unlike SSA, the inputs to our algorithm are not
the raw signals themselves, but rather covariance matrices, computed from the signals (or
from features based on the signals) using one of the many existing covariance estimators
(e.g., Ledoit and Wolf (2004)).

Covariance matrices have gained increasing attention in recent years, and are now com-
monly used in many machine learning and signal processing applications such as computer
vision applications (Tuzel et al., 2006), brain imaging (Pennec et al., 2006) and BCI data
analysis (Barachant et al., 2013). Their rich mathematical structure has been extensively
studied (Bhatia, 2009), and advances in optimization methods on matrix manifolds in re-
cent years have motivated the development of geometric methods for various tasks such
as dictionary learning (Cherian and Sra, 2014), metric learning (Kusner et al., 2014) and
dimensionality reduction (Fletcher et al., 2004).

Many methods, and among them SSA, whiten the input covariance matrices as a way
to handle correlation between input signals (Hyvérinen et al., 2004). However, as the signal
covariances are often erroneously estimated (due to noise or small sample size, for example),
this introduces spurious errors. In this work we propose a method that, using the geometric
properties of the symmetric positive definite (SPD) matrix manifold and its metrics, not
only to produce better stationary subspace estimation, but also to alleviate the need to
whiten the input covariance matrices.
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2. Geometry-aware stationary subspace analysis

As discussed in the introduction, the task of extracting the stationary part from an observed
mixture of stationary and non-stationary signals is essential in various applications. In this
section we present our approach to this problem. We name it geometry-aware SSA (gaSSA)
since we utilize the geometric properties of covariance matrices.

To find a stationary subspace, SSA uses a cost function which is based on a matrix
divergence. As a first step we suggest a formulation that uses a symmetrized version of
the same matrix divergence. We then show that this symmetrized matrix divergence is a
distance between SPD matrices and offer a geometric interpretation to the problem of SSA.
We end this section with a theoretical analysis which leads to an elegant, simplified form
for gaSSA.

2.1. Stationary subspace analysis

We begin with a formal statement of the problem. To this end we provide a review of the
original SSA model and framework (von Biinau et al., 2009a): Let z(t) € R” be a vector
of D input signals, composed of m stationary sources s°(t) = [s1(t), ..., sm(t)] (s-sources)
and D — m non-stationary sources s*(t) = [sms1(t),...,sp(t)] (n-sources), mixed by a
linear mixing transformation,

2(t) = As(t) = [A2A"] [85(“] (1)
(1))
where A € GLp(R), the general linear group of size D over R, i.e., the set of all D x D
invertible matrices with entries in R. The spaces spanned by the column vectors A° and A"
are referred to as the s-space and n-space, respectively.

The SSA model makes relatively few assumptions on the s- and n-sources. First, the
s-sources are stationary only in the weak (or wide) sense (Kantz and Schreiber, 2004).
That is, their first and second moments are required to be constant in time. For the n-
sources, their first two moments may vary between epochs of length T denoted by 7; =
[to(7),...,to(7) + T, where to(i) is the start time of the i-th epoch. The sources do not
necessarily follow a Gaussian distribution, but non-stationarities are assumed to be visible
in the first two moments. Furthermore, this model does not assume that the sources are
independent, namely, their covariance matrix is given by

() =E {s(n)s(n)q = <Egnz(]j_i)T Z;:((:))) )

where ¥¥ € Rm>m 30 ¢ R(P=m)x(D=m) and 350 ¢ R™*(P=m) Since ¥ is time independent
we have dropped the notation (7;).

The goal of SSA is to find a de-mixing transformation A1 that separates the s-sources
from the n-sources. This matrix A~ is not unique, but rather undetermined up to scaling,
sign and linear transformations within each of the s- and n-spaces. So, w.l.o.g., the data
may be centered and whitened such that the s-sources have a zero mean and a diagonal
covariance matrix with unit variance.! Put differently, the de-mixing matrix is written as

(2)

1. This is also common practice in ICA (Hyvérinen et al., 2004)
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A1 = BZ where Z = Cov(x)*l/ 2 is a whitening matrix created by a covariance estimator
Cov(-) (in this case it is the empirical estimator) and B € Op = {VeRP*P . VTV =T},
the set of all D x D orthogonal matrices.

To find the matrix B, the signals are split into N epochs 7, ..., 7y of length T. Each
epoch is characterized by its empirical mean fi; and covariance ;. Then for each epoch,
the mean and covariance of the s-sources may be written as

~ ~ ~ o~ ~ T
i =TpBzi, S5 =TpBzS, (15B7) 3)

where 1’5 is the D x D identity matrix, truncated to the first m columns. Since the true
1® and >° are by definition stationary, the matrix B is the one which achieves minimal
variation of fif and f)f across all epochs. Owing to the maximum entropy principle, SSA
uses the Kullback-Leibler (KL) divergence between Gaussian distributions to compare the
epoch distributions up to their second moment. The matrix B is thus found by minimizing
the following cost function:

c(B) = iDKL W (5,5) 1TV O, = - i (logdet S+ T7), (4)
=1 )

1=

where Dy, is the KL divergence and NV (i, Y) denotes a multivariate Gaussian distribution
with mean p and covariance X..

2.2. Symmetrized matrix divergence

SSA and its variants use in their cost function the KL divergence between Gaussian distri-
butions. In what follows we assume that these distributions have a zero mean. Under this
assumption the KL divergence is a Bregman matrix divergence (Banerjee et al., 2005) be-
tween covariance matrices. The family of Bregman matrix divergences is generally defined
as

Do (X,Y) = &(X) — B(Y) — tr ((V(I) )T (X - Y)) . (5)

Dy, is obtained for ®(X) = —logdet X, so it is often called the log-determinant divergence
(Kulis et al., 2009).

Bregman matrix divergences are useful in machine learning and have a number of useful
properties (Kulis et al., 2009; Banerjee et al., 2005) such as linearity and convexity in the
first argument (and, in the case of the KL divergence, also in the second). However, as can
be seen from their definition, they are asymmetric and do not satisfy the triangle equality. In
particular, we have that Dk, (X || Y) # Dk (Y || X) for two arbitrary matrices X # Y.
Subsequently, symmetrized versions of the Bregman matrix divergence, namely Jensen-
Bregman divergences, have been studied in recent years (Nielsen and Nock, 2009; Banerjee
et al., 2009). For the KL divergence (for zero mean distributions), this gives

Djgip (X,Y) = % [DKL (X I ;(X"‘Y)) + Dk, (Y I ;(X‘FY))]
~ logdet <; (X + Y)> _ %log det (XY) (6)
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Figure 1: An illustration of our covariance-based approach. A set of input covariance ma-
trices {%; € S};} are made up of a mixture (purple) of stationary (blue) and
non-stationary (red) parts. Due to non-stationarities, in the original space the
matrices are spread out. The matrices are mapped to two lower dimensional
spaces, the s— (stationary) and n— (non-stationary) spaces, via the matrices @
and W, respectively. In the s-space the matrices are now more localized compared
to the n-space in which they have a high variance.

and is called the Jensen-Bregman log-determinant (JBLD) divergence (Cherian et al., 2011).

The JBLD has many favorable properties (see Sra (2011)), primarily that its square
root comprises a metric on the SPD matrix manifold. Moreover, in Sra (2011) it has been
shown that it is a close approximation to the affine invariant Riemannian metric (AIRM)
(Bhatia, 2009) and shares many of its mathematical properties. The practical properties
of both metrics, specifically their invariance properties, will be discussed in Section 2.5. In
the context of SPD matrices, the JBLD is referred to as the symmetric Stein divergence or
the (square of the) log-determinant metric (Sra, 2011). In the sequel we adopt the notation
Is (X,Y).

Motivated by the above, we reformulate SSA using a cost function based on d5 (cf. Eqgs.

(3) and (4)):
N N N 1 1
L(B) =Y 8D =Y Q50,1 = [10 det< §§+11)—1o det Eﬁ] 7
(B)= 38550 = 3_8QTEQ.D = 3 |logaet (55741 ) — logaet(S) . (1)
~\ T ~ _ _
where Q) = <]I’BB> and ¥; = Z%;Z " are the matrices whitened with Z = ~1/2, ¥ =

argmin >,_; 62(%;, %), the mean of ¥; w.r.t. ds. S}, denotes the set of all D x D SPD
YeSh
matrices.

2.3. A geometric interpretation

By replacing the cost function with one based on the symmetrized divergence we gain not
only the benefits of the symmetric divergence, but also new insight into the problem of SSA.
Note that in Eq. (7) the problem is ultimately framed in terms of distances between SPD
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matrices. This suggests adopting a geometric perspective, whereby the notion of stationarity
is captured by the dispersion of the matrices ¥;. In this view, the assumption that the
covariance matrices of stationary signals do not vary much between epochs translates to
them having small distances between them.

An illustration of this idea is presented in Fig. 1. In this figure, the matrices X; are seen
as points on the SPD matrix manifold SB. The goal of our method is to find transformations
@ and W that map the matrices onto two separate manifolds of lower dimension - the
stationary and non-stationary space, respectively. The matrices in the stationary space will
exhibit small variation, while the non-stationarities will be captured in the non-stationary
space where the variation of the matrices will be greater. The transformations Q and W
may be chosen to be orthogonal to each other, producing well separated s- and n-spaces.
That is, W € Q* for @ = spanQ (likewise Q € W), where L denotes the orthogonal
complement.

Put formally, our objective is to find a rank-m transformation matrix Q € RP*™ which
maps %; € SB to f)f € §;b for m < D such that the log-determinant distance between the
compressed whitened matrices f]f = Q"%,Q and their mean, which for the whitened matri-
ces is I, is minimized. Note that the space spanned by the columns of @) is of importance,
and not the specific columns themselves. So, we may optimize ) over the Grassmann
manifold (Edelman et al., 1998), ¢ = {span(Q) : Q € RP*™, Q'Q = I}, the set of all
m-dimensional linear subspaces of RP*P.

In practice, for optimization we employ a Riemannian trust-regions method described in
Absil et al. (2009) and implemented efficiently in Boumal et al. (2014). We add that, once
the problem is framed in geometric terms, the previous zero-mean assumption becomes
unnecessary. This is because the SPD (covariance) matrices, which are the focus of our
work, encode the second moment of the data distribution.

2.4. A generic geometric formulation

Given the strong relation between the log-determinant metric and the AIRM (Bhatia, 2009),
a natural progression is to incorporate the AIRM into the cost function. To understand why
it would be beneficial to use the AIRM it is necessary first to briefly discuss the geometry
of the SPD matrix manifold.

When equipped with the Frobenius inner product (A, B)r = tr(A' B), the set S;" of
SPD matrices of size n x n, belongs to a Euclidean space. In this case, similarity between
SPD matrices can be measured simply by using the Euclidean distance derived from the
Euclidean norm. This is readily seen in the following example for 2 x 2 SPD matrices. A
matrix A € S can be written as A = [¢§] with ab — ¢ > 0, @ > 0 and b > 0. Then matrices
in 82+ can be represented as points in R? and the constraints can be plotted as a convex
cone whose interior is populated by the SPD matrices (see Fig. 2). In this representation,
the Euclidean geometry of symmetric matrices implies that distances are computed along
straight lines.

Despite its simplicity, the Euclidean geometry has several drawbacks and is not always
well suited for SPD matrices (Fletcher et al., 2004; Arsigny et al., 2007; Sommer et al.,
2010). For example, due to an artifact referred to as the swelling effect (Arsigny et al.,
2007), for a task as simple as averaging two matrices, it may occur that the determinant
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Figure 2: Comparison between Euclidean (blue straight dashed lines) and Riemannian (red
curved solid lines) distances measured between points of the space S; .

of the average is larger than any of the two matrices. Another drawback, illustrated in
Fig. 2 and documented by Fletcher et al. (2004), is the fact that this geometry forms a
non-complete space. Hence, in this Euclidean space interpolation between SPD matrices
is possible, but extrapolation may produce indefinite matrices, leading to uninterpretable

solutions.

An efficient alternative which addresses these issues is to consider the space of SPD
matrices as a curved space, namely a Riemannian manifold. Of the possible Riemannian
distances, the AIRM, due to its favorable mathematical properties, is widely used in many
applications (see, for example Fletcher et al. (2004); Pennec et al. (2006)). It is defined for

any X,YESE as: ,
2 (X,Y) = Hlog (X_l/QYX_l/Q) HF (8)

where log(-) is the matrix logarithm and || X ||z = tr (XTX) is the Frobenius norm.
In the curved space, the geodesics between matrices obtained by the AIRM are computed

on curved lines as illustrated in Fig. 2 for the space S, . Symmetric matrices with null and
infinite eigenvalues (i.e., those which lie on the boundary of the convex cone, but not in it)
are both at an infinite distance from any SPD matrix on the manifold (within the cone).
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So, let us now consider a cost function of the same form defined w.r.t. the AIRM.2 A
general expression for our gaSSA is then:

Q= argmin > 6% (Q"S.Q.1) (9)
QeG(Dm)
where ; = Z%,Z | are the matrices whitened with Z = £~/2 and ¥ = argmin >_,_, 62 (%;, %)
Yesh

is the matrix mean w.r.t. §. In the next section we will show that the need for matrix
whitening can be alleviated.

We note that this cost function is similar in spirit to an unsupervised version of the one
in Harandi et al. (2014). For reference, the Euclidean gradient w.r.t. @ of the cost function,
used for the optimization, can be found in Horev et al. (2015).

2.5. Symmetries and invariance properties

We now discuss the symmetries of our optimization problem and the invariance properties
of our chosen metrics. These properties will enable us to significantly simplify our problem
and eliminate the matrix whitening step. For brevity we will state the results in terms of
the AIRM, but the same holds true for the log-determinant metric.

Our key observation stems from the fact that §, and Jg are invariant to congruent
transformations of the form X ~ PTXP for P € GLp(R) (Bhatia, 2009).® So, we have

52 (X,Y) = 82 (PTXP, PTYP) . (10)

for X,Y € SB and a real-valued invertible matrix P. This is a crucial point since both the
whitening matrix Z and the mizing matriz A act on the covariance matrices in this way.

Proposition 1 Let A = {A;}i_, for A; € S;f be a set of SPD matrices of size n x n and
let ¥; = ANAT for some real invertible matriz A. Denoting the Riemannian mean (the
mean w.r.t. 6;) of A by A, the Riemannian mean ¥ of the set X = {Z:}i is given by
¥ = AAAT.

Proof The Riemannian mean of the set A is defined as A = argmin >, 62 (A;, A). Using

AES;T

the congruence invariance (Eq. (10)) we have 62 (A;, A) = 62 (X;, AAAT), so AAAT is the
minimizer of Y, 62 (3;,¥) and the result follows. [ |

Using the above and by simple manipulation we obtain the following equivalence rela-
tions.

Corollary 2 The following expressions are equivalent:
52 (ii,]l) = §2 (%, %) = 62 (1;, 1), (11)

where 1'; is the covariance matrixz of the unmixed sources in the i-th epoch.

2. Other metrics such as the Euclidean metric or the log-Euclidean metric (Arsigny et al., 2007) may also
be used.
3. This also holds for complex matrices P € GLp(C) where the matrix transpose is replaced by the

=T
conjugate transpose P =P .
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We have shown that both the whitening operation and the mixing matrix A do not
affect the distance between the covariance matrices of the original unmixed signals. We can
then re-write our optimization problem as

~

Q= argmin Y4 (QTZ 0, ) = argmin Y 6° (QTAF AT, QTAFATQ)

QeG(D,m) Qeg(D,m)
= argmin 2 (Q'NQ,Q Q). (12)
Q’Eg(D,m) ; ( )

One may remark that A" Q no longer has orthonormal columns and so does not belong
to the Grassmann manifold. While this is indeed true, the final transition is due to the
observation that the solution to our problem is not unique. Our interest is in recovering
the stationary subspace and not the exact sources themselves, so the solution is invariant
to any transformation (e.g., subspace scaling and rotation) acting within each of the s- and
n-spaces separately. Furthermore, we have chosen W € Q= and so the s-space is orthogonal
to the n-space. Now, choosing orthogonal bases within each of the subspaces we may restrict
ourselves to orthogonal mixing matrices A and find a transformation @’ which lies in the
Grassman manifold.

The final result is quite remarkable. First, it shows that our problem is essentially
agnostic to the mixing matrix. Secondly, it eliminates the need to whiten the matrices. This
is useful when the covariance matrices are poorly estimated and data whitening introduces
additional error, for example, when the epochs are short compared to the number of signals
or when data is corrupted by noise.

In conclusion, we have two variations of gaSSA given in the first and last terms of
Eq. (12). The difference between the two is whether or not the input covariance matrices
are whitened. Our analysis shows that whitening does not improve performance, and may
in fact lead to a degradation of the results in certain cases. So, we claim that it is in
general preferable not to whiten the matrices. In terms of the chosen metric, we do not
expect a significant difference when using 6§, vs. ds. In the following section we will present
experimental evidence to support these claims.

3. Experimental results

In this section we present experimental results on synthetic data and data taken from
real BCI experiments. We compare the performance of gaSSA to the existing SSA and
investigate the effects of matrix whitening and the choice of metric.

3.1. Toy data

For our first experiment we generated data following the SSA model as a mixture of sta-
tionary and non-stationary sources. To generate non-stationarity in the data we used a
slightly modified version of the scheme provided in the SSA toolbox (Miiller et al., 2011)
and detailed in its user manual. Here we bring only a brief description:

The elements of the mixing matrix A are chosen uniformly from the range [—0.5,0.5]
and its columns are normalized to 1. The distribution of the s-sources is constant over all
epochs, namely s°(t) ~ N (0, A®). In the SSA toolbox, A is taken to be the identity matrix,
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however we choose A® to be a random matrix of the form A®* = BI'BT for an orthogonal
matrix B and diagonal matrix I.

The n-sources are correlated with the s-sources, and for the i-th epoch 7; = [to(i), ..., to(i) + T
they are given by s"(t) = C;s*(t) + Y"(t) for t € 7, where C; € R(P=™)Xm apd
Y™ (t) ~ N (i, Al). The covariance matrices A} are generated for each epoch in the same
way as A®.

So, the covariance matrix of the (unmixed) sources in the i-th epoch may be written as

o 0 AS (CiA)T
Ai = cov (Ln(t)]) - [CiAﬁ CiASCT + AP

(13)

Using the data generated by the scheme above we compared the performance of gaSSA
to that of SSA. As a performance measure we used the distance between the estimated
n-space A" and the true n-space A". This is owing to the fact that, as discussed in von
Biinau et al. (2009b), the n-space and s-sources are identifiable, while the s-space and n-
sources are not. To illustrate this, note that to be stationary, the s-sources must consist
strictly of stationary sources, while the n-sources will remain non-stationary even if they
are mixed with stationary signals. The distance between sub-spaces is computed using dg,
the metric on the Grassmann manifold (Absil et al., 2004). Shortly, this metric is based on
the principal angles between the two spaces.

We generated 50 epochs of length T' = 250 for several values of D and m. For each
pair (D, m) we conducted the experiment 25 times. At each iteration the optimization
was restarted 5 times with different initial guesses and the transformation matrix which
obtained the lowest cost was selected. The results are summarized in Table 1.

Our gaSSA method obtained results roughly twice as good as those of SSA for all
iterations. The improved performance of our method can be attributed to three factors:
optimization over the Grassmann manifold, the lack of matrix whitening and the geometric
cost function itself. Although the optimization is carried out over different manifolds in
SSA (Grassmann manifold) and gaSSA (rotation manifold), both manifolds capture the
invariance properties of the solution. Since both problems are non-convex, it is difficult to
assess which optimization problem allows for better minimization of its corresponding cost
function. Our analysis in Section 2.5 shows that in general the scheme with and without
matrix whitening should produce the same solution. Indeed, we see that the error in the
ns-subspace estimation is essentially identical for the two schemes. This suggests that it is
the new geometric objective function itself which improves the estimation of the stationary
subspace.

3.2. Brain-computer interface

Next, we applied our method to data taken from the BCI competition IV dataset II. This
dataset contains motor imagery (MI) EEG signals affected by eye movement artifacts. It
was collected in a multi-class setting, with the subjects performing more than 2 different
MI tasks. However, as in Lotte and Guan (2011), we evaluate our algorithms on two-class
problems by selecting only signals of left- and right-hand MI trials.

We applied the same pre-processing as described in Lotte and Guan (2011). EEG signals
were band-pass filtered in 8 — 30 Hz, using a 5*" order Butterworth filter. For each trial, we
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Table 1: Average error in subspace estimation for various numbers of stationary and non-
stationary signals. (w) and (nw) signify that matrix whitening was / was not
performed. The standard deviation of the results appears in parentheses.

D m gaSSA 4, (w) gaSSA 4, (nw) gaSSA 05 (w) gaSSA & (nw) SSA

19 7 00018 (led)  0.0018 (le-d)  0.0018 (le-d)  0.0018 (le-d)  0.004 (le-4)

19 5 0.0022 (led) 0.0022 (led)  0.0022 (led)  0.0022 (le-d)  0.0123 (2e-4)
13 7 0.001 (led)  0.001 (le-d)  0.001 (le-d)  0.001(le-4)  0.0042 (1.5e-4)
13 5 0.0025 (led)  0.0025 (le-d)  0.0025 (le-d)  0.0025 (le-4)  0.0045 (20-4)

extracted features from the time segment located from 0.5s to 2.5s after the cue instructing
the subject to perform MI.

The data was initially divided into two parts: a training data set and a test data set.
Similarly to von Biinau et al. (2009b) the first 20% of the test trials were set aside for
adaptation. The aim of the adaptation part is to mitigate any non-stationarities between
the test and the training session. We then learned the s-space in an unsupervised manner
over the training and adaptation part. As before, our method was reinitialized 5 times and
the transformation attaining the lowest cost was chosen.

The performance was measured by means of the classification rate on the test set. We
used the following naive classifier, referred to as minimum distance to the mean (MDM) in
Barachant et al. (2012): Using the labels of the training set, we compute the mean (in the
s-space) for each of the two classes. Then, we classify the compressed covariance matrices
in the test set according to their distance to the class means; each matrix is assigned the
class to which it is closer.

The original data is comprised of 22 signals. Since the true number of stationary signals
is unknown, we repeated the experiment for several values in the range m € [10,18]. The
results for the nine subjects in the dataset are summarized in Table 2.

The results show that our method outperforms SSA for most subjects. As m grows
and there are assumed to be less non-stationary components, the problem of SSA becomes
simpler. Our method can better identify the few key elements that contribute most to the
stationary subspace. As we search for more components, their significance is diminished
and the gap in performance between SSA and gaSSA decreases. In terms of the metric, we
see that 6, and dg perform roughly the same. The schemes that performed matrix whitening
generally achieved lower accuracy than those which did not. In this complex setting, more
accurate estimation of the mixing matrix does not guarantee better classification.

Initially these results may seem contradictory to the analysis of section 2.5, however
the results of the whitening/non-whitening versions differ for two reasons. The first is the
non-convexity of our problem and its dependency on initialization. In our experiments we
initialize both versions with the same matrix. However, due to the action of the whitening
matrix the subspace spanned by the initial Q is effectively rotated, yielding a different initial
subspace (the reasoning here is similar to that of the final transition in Eq. (12)). Secondly,
we note that the test set is whitened with its own Riemannian mean. After whitening
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Table 2: Classification accuracy for (from top to bottom) m = 10,12, 14,16, 18 s-sources.
Best results are highlighted in boldface. (w) and (nw) signify that matrix whitening
was / was not performed.

subject # 1 2 3 4 5 6 7 8 9 avg

gaSSA 0, (w) 4896 55.65 63.48 58.22 60.69 56.26 68.09 71.30 48.70 59.04
gaSSA 4, (nw) 73.91 59.13 91.3 69.3 57.67 66.43 58.70 93.91 86.09 72.94
gaSSA s (w) 49.83 55.65 63.57 61.43 589 55.7 68.17 72.17 4734 59.2
gaSSA 4 (nw) 74.13 60 91.3 68.52 57.03 63.96 ©59.48 93.91 8599 72.7

SSA 47.74 57.16 60 57.61 56.02 54.17 67.3 75.89 53.82 58.86

gaSSA o, (w) 59.26 56.26 71.17 62.61 5826 57.39 70.68 72.70 73.04 64.6
gaSSA 4, (nw) 73.96 57.39 93.83 68.7 5826 66.09 62.61 94.26 86.09 73.46
gaSSA 4 (w) 59.13 56.39 687 60.87 58.09 57.39 70.43 7281 71.3 639
gaSSA 4 (nw) 73.04 58.26 92.17 69.57 583 64.35 62.61 93.28 86.09 73.07

SSA 57.96 5291 6148 61.04 62.91 53.78 65.28 74.78 66.16 61.81

gaSSA o, (w) 65.02 5391 7235 65.22 62.61 59.13 7293 77.39 7739 67.33
gaSSA 4, (nw) 74.4 58.26 88.74 67.83 60 65.22 68.91 94.78 87.83 T4
gaSSA 4 (w) 65.02 53.91 7235 65.22 62.61 5887 72.83 77.39 76.52 67.19
gaSSA dg (nw) 74.4 58.26 88.78 (7.83 60 63.83 68.15 93.91 87.83 73.67
SSA 67.06 54.72 66.7 68.7 ©56.87 ©55.57 73.48 7565 77.39 66.24

gaSSA o, (w) 68.17 60.78 86.17 70.43 62.61 5826 74.78 84.35 82.46 72
gaSSA 4, (nw) 78.43 60.87 90.26 73.04 59.3 67.83 67.83 94.78 88.77 75.68
gaSSA §, (w) 66.78 61.65 86.78 70.43 62.74 56.52 74.78 8348 81.74 71.65
gaSSA dg (nw) 76.87 60.3 90.09 71.3 60 68.7 67.83 94.78 88.7 754
SSA 74.83 56.3 76.52 68.7 623 63.35 75.59 8522 79.06 71.32

gaSSA 4, (w) 73.04 60.13 86.96 72.78 61.74 62.61 72.17 86.09 8522 73.41
gaSSA 4, (nw) 85.22 60.96 90.43 7235 61.74 69.57 71.3 94.78 88.7 77.23
gaSSA d (w) 70.43 60.83 86.96 72.78 61.74 61.74 73.04 86.09 85.22 73.2
gaSSA 4 (nw) 84.35 61.09 90.43 72.35 61.74 69.57 68.7 94.78 88.7 76.86

SSA 71.3 60.61 78.09 70.3 65.39 6522 73.79 84.35 8087 72.21

the position of the test set relative to the training is different than when the sets are not
whitened. This changes the results of our classifier, but not the subspace estimation.

4. Conclusion

We presented a covariance-based method for unsupervised stationary subspace analysis.
The problem was phrased in terms of the distance between matrices.Owing to the sym-
metries of the problem and the invariance properties of the metrics, we derived useful
equivalence relations that showed that it is not necessary to whiten the input covariance
matrices. Experiments on both synthetic and BCI data supported our theoretical analysis
and showed that our method outperforms SSA.

In the future we wish to tackle the challenges stemming from to different types of non-
stationarity, occurring both within sessions (intra-session) and between them (inter-session),
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and due to the introduction of class-wise variation which must not be discarded as non-
stationarity in classification tasks. A promising application is change point detection, where
more accurate estimation of the n-space may lead to better detection of change points.
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