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Abstract

Link prediction in multi-relational social networks has attracted much attention. For in-
stance, we may care the chance of two users being friends based on their contacts of other
patterns, e.g., SMS and phone calls. In previous work, matrix factorization models are
typically applied in single-relational networks; however, two challenges arise to extend it
into multi-relational networks. First, the interaction of different relation types is hard
to be captured. The second is the cold start problem, as the prediction of new entities
in multi-relational networks becomes even more challenging. In this article we propose a
novel method called Hierarchical Probabilistic Matrix Factorization with Network Topol-
ogy (HPMFNT). Our model exploits the network topology by extending the Katz index
into multi-relational settings, which could efficiently model the multidimensional interplay
via the auxiliary information from other relationships. We also utilize the extended Katz
index along with entitiy attributes to solve the cold-start problem. Experiments on two
real world datasets have shown that our model outperforms the state-of-the-art with a
significant margin.

Keywords: link prediction, multi-relational social network, probabilistic matrix factoriza-
tion, network topology.

1. Introduction

Multi-relational social networks are universal in the real world. People usually interact
through multiple patterns; e.g., they may contact with friends, or share photos and online
posts with different people, forming a multi-relational network. Given such a network, a
typical problem is to predict missing links (e.g., friendship interactions). This is known as
the link prediction problem, an important branch in relational learning and recommender
systems.
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Although matrix factorization (MF) models have been wildly studied in link prediction
problems, most of them have limitations. Well-known MF methods such as probabilistic
matrix factorization (PMF) (Salakhutdinov and Mnih, 2007) are effective for single-relation
problems, but are not scalable to multi-relational networks. There are two challenges to
extend MF into multi-relational settings. One is to capture the correlation among different
relationships. Some previous efforts based on PMF (Zhang et al., 2010) seek to embrace
the multidimensional interaction into the covariance matrix of the latent feature variables
implicitly. However, network topology, which contains informative structures across diverse
relationships explicitly, is seldom considered under the MF framework. The other challenge
is how to handle new entities, i.e., the cold-start problem. By exploiting side information
from entity attributes, a majority of former tasks (Park et al., 2013)(Simm et al., 2015)
have obtained desirable results. Nevertheless, network topology, aside from depicting mul-
tidimensional interaction, acts as good supplementary information for sparse networks as
well, but has been ignored in the literature.

In this paper, we present a novel MF-based model called hierarchical probabilistic matrix
factorization with network topology (HPMFNT) to address the above challenges. Grounded
on PMF, a number of other latent factors are introduced to collectively improve its per-
formance. Specifically, to model the interaction among relationships, we investigate the
network topology explicitly by exploiting a multi-relational network extension of Katz in-
dex (Katz, 1953). To alleviate the cold-start problem, we further exploit the extended Katz
index together with entities’ attributes. We also sort to variational inference to learn the
parameters with reduced computational cost. Furthermore, experiments have demonstrated
the advantages of our model over the state-of-the-art. The contributions of our work are
two folds:

e We model the interactive pattern of different relationships explicitly, making matrix
factorization methods scalable to multi-relational networks.

e We incorporate entity attributes and topological features into the modeling of matrix
factorization to collectively solve the cold-start problem.

The rest of the paper is structured as follows: Section 2 gives a brief review of the
related work. In Section 3 we demonstrate our model in detail, and Section 4 presents the
variational inference for the parameters. In Section 5, the description of experiments and
the performances of HPMFNT against baselines are presented. Finally Section 6 concludes
the paper and describes the future work.

2. Related Work

Multi-relational link prediction and its relevant problems have a long history with vast
literature, and here we first give a snapshot on the matrix factorization approaches, since
they are the focus of this paper. Then we introduce some other methodologies on the same
issue.

Traditional matrix factorization models such as PMF (Salakhutdinov and Mnih, 2007)
and Bayesian PMF (BPMF) (Salakhutdinov and Mnih, 2008) are single-relation targeted,
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and could not take advantage of multidimensional knowledge. To extend matrix factoriza-
tion models into multi-relational settings, various approaches are proposed. One focus of
these models is to capture the interactive pattern of relations. Collective matrix factor-
ization (Singh et al., 2008; Li et al., 2016), in which entities evolved in multiple relations,
contains have common parameters along with the decomposed matrices. Based on PMF,
(Zhang et al., 2010; Krohn-Grimberghe et al., 2012) consider the latent features as matrix-
variate Gaussian variables, and embed the interdependence of different relations into the
covariance matrix. Another focus is to solve the cold-start problem. A common way is
to incorporate entity attributes and side information based on MF models, as shown in
(Menon and Elkan, 2011; Park et al., 2013; Simm et al., 2015).

A number of MF approaches focus on symmetric social networks, and propose a sym-
metric decomposition. For instance, in community-based social networks, the stochastic
equivalence assumption requires the decomposed community weight matrix to be symmet-
ric (Holland et al., 1983; Zhou, 2015; Acharya et al., 2015) . However, in our paper we focus
on both symmetric and asymmetric social networks, and propose a UV decomposition. For
symmetric settings we expose a constraint of V = U. There are also similar investigations
on asymmetric networks, such as (Hoff, 2008).

Aside from MF, tensor approaches are also an important branch for multi-relational link
prediction. Classical tensor factorization models like Candecomp/Parafac (CP) (Harshman,
1970; Carroll and Chang, 1970) could model the relational interaction via a higher dimension
of latent features. An increasing number of tensor approaches like (Nickel et al., 2011; Xiong
et al., 2010; Sheng et al., 2012) are also based on the classical models like CP and Dedicom
(Harshman, 1978), and display competitive performance. Other efforts include extending a
number of supervised measurements (Liben-Nowell and Kleinberg, 2007) such as Common
neighbors (CN) (Newman, 2001), Adamic/Adar (Adamic and Adar, 2003), Katz (Katz,
1953) into multi-relational settings, as shown in (Davis et al., 2012; Rossetti et al., 2011).
Typically these measurements are based on statistical indices of network topology.

3. Model

In this section, we present HPMFNT. Suppose Y = {Y(l),Y(2), ..... , Y(R)} denotes a multi-

relational social network, and R is the number of relations. We use yg) = 1 to denote that
(r) (r) _9

there exists a link between entity ¢ and j in relation r, and Yij i

denotes an unobserved link.

= 0 vice versa. ¥y

In the following paragraphs, we choose relation r as a representative to formulate our
model. We first introduce a set of latent variables to map the binary values of yz(;) into
continuous space, then exploit network topology with an extended Katz index to model
the interdependence of relationships, and combine it with hierarchical probabilistic ma-
trix factorization models to form HPMFNT. Finally we present the joint distribution of

HPMFENT.

3.1. Probit noise function

Typically, network entries take values in binary space. Since entries recovered from MF
approaches are not discrete, a common way is to map the elements of Y ) into continuous
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(r)

space via a latent matrix X, Specifically, we assign a probit function on x; e and assume

that the elements of Y(") are conditionally independent given X, then we have

)y r —y
p(YOIXO) = T @@y (1 - e, (1)

()
1<i<j<N

where ®(-) is the cumulated distribution function of a standard normal distribution.
However, direct inference on X (") is intractable. For the convenience of parameter
estimation, similar to (Albert and Chib, 1993) and (Yan et al., 2012), we incorporate another

latent matrix Z(") = {zg)} as an augmented representation of the probit model:

p(y) =) = 60 = 1)6(=) > 0) + 6(y) = 0)6(=L) < 0), 2)
p(= ) = N (22D, 1), (3)

where J(-) is the indicator function (i.e. its value is 1 if the statement inside is true, and
(r) (r)

ij ij
marginalize zl(;) in Equation (2), it could be found that this is an equivalent representation
of the probit model.

0 otherwise). z;:’ is a normal distribution with its mean x;.’ and covariance 1. If we

3.2. Network topology via extended Katz index

Network topology often contains structural information, and is therefore quite helpful in
link prediction problems. As discussed in Section 2, a number of supervised measurements
are proposed to extract the network topology. Especially, Katz index (Katz, 1953) has
been applied widely in link prediction problems for its simplicity and effectiveness, which
is defined as

e.)
score(i, j) = ZBZ . |paths§7j], (4)
=1

where [ is the parameter of the predictor, | - | is the cardinality of the set, and pathsé ; is
the set of length-{ paths from i to j.

Our model would extend Katz index into multi-relational networks from the prospec-
tive of Bayesian framework. The advantages include that Katz index could be naturally
extended into multi-relations, and parameter 8 would be learned from data rather than
a subjective choice. Besides, this removes the restriction of exponential damping of path
lengths. Furthermore, as it will be illustrated later, in Katz index the path numbers con-
tribute to the score linearly, while we generalize it to handle nonlinear network interactions.
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Ky

Figure 1: An example of entities 7, j and their intermediate entities ki, ko in three rela-
tions. The black, red and blue lines correspondingly denote relation 1, 2 and 3
respectively.

Specifically, for an entity pair (i,j) in a multi-relational network, entity ¢ usually takes
paths of various patterns via its intermediate entities to the target entity j, as shown in
Figure 1. In order to model the mutual interaction of different relations, we introduce latent
regression parameters B(") to augment the path weights 8 in Katz index, where B! ig
an N x 1 vector, B("?) is an N x N matrix, and B("Y) is an l-way tensor (I > 3). In order
to incorporate the extended Katz index into the PMF framework, we set Gaussian priors
on B("):

R
PO = T[N i)

T1,72,...7;=1

We use path(™ (i, j) to represent the set of length-I paths from i to j in relation r, and
path® (i, ) = path(WY (i, 5) | path®D (i, YU ... U path(FD (4, j) therefore denotes the set of
length-I paths from ¢ to j in all relations.

Moreover, note that Katz index assumes the paths between entity ¢ and j linearly
contribute to the score(i,j). However, this may be insufficient to capture the complex
social interactions, i.e. the probability of the presence of a link may not be proportional
to the number of the shared intermediate entities. Therefore, we replace |[path(™) (i, ;)]

in Equation (4) by a nonlinear mapping pg’l) = ¢(|path™V (i, §)|) to model the nonlinear
network interactions. We further set pg.) = [pz(.;’l), pl(.?’l), vy pz(.f’l)
in multi-relational settings.

Consequently, for each entity pair (7, ) in relation r, the Katz index can be extended as

| as the path-counting vector

l
score™ D (i, j) = 3 [] B"%mp}). (5)

where X, is the n-mode(vector) product defined in (Kolda and Bader, 2008), and L is the
maximum path length to consider. Note that usually for L > 3. Note that the contribution
of paths becomes negligible to the summation while it boosts the computation significantly
(Lu et al., 2010), therefore it is often the case to set L = 1,2.
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To give a concrete example, Figure 1 shows three relations Y = {Y(l),Y(Q),Y(?’)}
denoted by the black, red and blue lines correspondingly. By counting the lines of different
relations with different path lengths, Equation (5) can be formulated as:

SCOT‘G(T’2) (1,]) = pz(;)T . B(Tzl) 4 pgi)—r . B(T,Q) . p](é)

1 T BY’I) 2 T Bﬂg) Bgz) 3592) 1
(r,1) (r,2) (r,2) (r,2)
1 BBT 1 B3711 Bi’; B3§ 0

For notation simplicity, we use B(") = {B(1) B2 B} to embrace all the path
regression parameters, and SE;’L) to replace score™L) (,7) in the following paragraphs.

3.3. Incorporating the extended Katz index into hierarchical probabilistic
matrix factorization

We aim at the decomposition of both symmetric and asymmetric social networks, and follow
(Salakhutdinov and Mnih, 2007) to introduce U, V(") € RN*E a5 latent feature matrices
in relation r, where K denotes the decomposition rank. ul(r), vﬁ.r) are the entity-targeted
latent vectors of ¢ and j, respectively. For symmetric networks we expose the constraint of
U™ = V) to preserve the mutual interaction. The entry of latent matrix :1;2(;) is generated

by a sum of inner product of user latent variables, regression terms «, B on the entity
(r)

feature vectors fj, fj and their corresponding path scores s;;" , plus a noise &;;:

2D =V T+ BT+ s 4 e,

where ¢;; ~ N (g,j]0,071), and o is the precision. Thus

N
(r)_
p(XOUN, VD, a, 8,BY,0) = [TV "] Tv; + @'t + 878 + 57,07 05 =0,
Z’hj

In terms of the prior distribution on the latent variables, we first assign Gaussian distribu-
tions on entity latent feature variables:

N
p(UD |y, Ap) = [TN @ |y, AGY,

N
p(VO |y, Ay) = [N |y, AGY).
J
(r)

)

(r)

and v, are assumed to be Gaussian-

Furthermore, the mean and covariance of u
Wishart distributions:

p(py, Av) = N(py o, (YAD) " HYW(AY W, o),

p(py, Av) = N (py o, (YAV) T W(AY[Wo, 1),
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where pg, Wy, vg are the hyper parameters. We also set the regression parameters on entity
feature as Gaussian variables:

p(a) = N(a’a()’ Agl)v

P(B) = N'(B18o, A5 "),

where similarly g, By Aq and Ag are the hyper parameters as well.

3.4. Joint distribution
Combining all the variables together, the joint distribution of HPMFNT becomes

() zr x() yr) v (r)
(Y 20, X\ U VY a, B, BYY)
= Hp yz] 7,]7 ’L] ) ( (T)’-ZU(T))

e v e, B, BO)p(ul” |, Av)p(v |y, Ay)
plpy, Av)p(py, Av)p(a)p(8)p(BM).

Given the observed networks Y, the next task is to estimate all the latent variables,
and then predict unknown links. We would like to use the maximum a posteriori (MAP)
method by uplifting the lower bound of Equation (6) iteratively, as will be discussed in the
next subsection. The graphical presentation of our model is shown in Figure 2.

A Ay
vy, W, vy, W,
Ho Ho
i | o’
x;.r)
b0> Py o—>O o 0
B(r)
@ A" SO p.A
a ol

Figure 2: Graphical representation of HPMFNT.
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4. Variational inference for parameter estimation

Typically in Bayesian inference problems, sampling and variational inference are two com-
mon tools for parameter inference. Due to low efficiency of sampling, here we sort to
variational inference to estimate the parameters in the model. The posterior distribution is
approximated via a set of latent variables:

Z={X,Z,U,V,a,3,B, uy, Ay, pv,Av}.
Then our task is to maximize the lower bound

(Y, Z2)
q(2)

log p(Y) = log / p(Y, 2)dZ > / 4(Z) log 02 = L(q).

Assume density function ¢(Z) is fully factorized by

q(2) = q¢(X)q(Z)q(U)q(V)q()q(B)qa(B)g(pulAvu)q(Avu)q(pv |AvAv).

It is known in (Bishop, 2006) that when maximizing the lower bound £L(q), the distri-
bution of each variable ¢;(Z;) can be derived by

log q;(Z;) = Eixj[logp(Y, Z)| + const, (7)

where Fj;;[-] represents an expectation with respect to the variational posterior distribu-
tions over all variables except Z;. By successively applying Equation (7) on each latent
variable, we could iteratively maximize the lower bound like the coordinate ascent algo-
rithm, and (Boyd and Vandenberghe, 2004) proved this method would finally converge
since the bound is convex. Note that variables that share a similar derivation are skiped in

the paper.
The variational posterior of azg)

mean

is a normal distribution with precision ¢* = o + 1 and

(@) = 2o TTv0) + ()T 4+ (8) T8 + (55 + (),

ij o* J ij
(r)

where (-) denotes the regarded expectation. The variational posterior of z;;” is a truncated

normal distribution

a(2D) = N (=05 (20), 1) (6 (y

(r) _ (r) (r) _ (r)
ij 0 \Vij i 1)(5(le > 1) + 5(yw = 0)5(2’ < O)),

]
(r)

and hence the mean of 2 takes the form

(7)) = @)~ DN () 0,1) + ()20 — 1)),

iJ 1]

To derive ¢(py) and g(Ay), we have the Gaussian-Wishart distribution

(b, Av) = N (py|ug, AoA) " HW(ALIWE, 1),
« _ dopgt+NT * B T A o N~ S N (S P O
Whereﬂ0:ﬁ7%:V0+N7)\o:/\0+N7u:N2<ui ) S =5 > (ulu’]")

=1 =1

and
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AN
)\0 + N

(o — ) (o — 1) .

(W)t =Wy!+ NS+

To update the entity latent features U("), we have

q(U") = HN Dl (AL,

N
niy = AT @) — @ = (BT — (s)o + (Au) (o).
To solve the regression parameter a on entity attributes, we have
q(a) = N(aag, (A") ™),

where A" = (A >—|—Zaf ,

aj = (AL)” Zf .T)> — (BN — <s§§)>)o + ALap).

The variational posterior of B1("1£:1“)2,...Tl is a Gaussian distribution

q(BT(‘T:lT)Q,TZ) :N(B7(‘1,7‘2, T‘l|lu’£"r1.,l7‘2, ’I‘l’(p'g':,l’r):, l)_l)’

(r,0)*

with precision pr'7y...r, = po+Z(pZ;1’ Z(;Q’l) pl(;l’ ))20, and mean in a bit more complicated
form:
l _((rl b (el il
i r =055 ) ™ (oobo + prl pi Y

el — ()T <v§~”>—<a )i = (BT — (s ey ),

1,79, T]

(r0)

denotes the expectation with all random variables except By 'y, ...
71 T,...T]

where (s; (r) -

i B

5. Experiment

In this section, we demonstrate the performance of our model on two real world datasets:
Reality Mining (Pentland et al., 2009) and Social Evolution (Dong et al., 2011). We
compare our HPMFNT with several other models:
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e Probabilistic matrix factorization (PMF) (Salakhutdinov and Mnih, 2007). PMF is
a well-known MF model, which utilizes latent feature variables to capture network
structures. PMF utilizes stochastic gradient descent (SGD) to update the parameters.

e Bayesian probabilistic matrix factorization (BPMF) (Salakhutdinov and Mnih, 2008).
BPMF uses the Gibbs sampler to estimate the parameters in PMF. Moreover, BPMF
is a hierarchical model, providing a wider space for latent parameters to fit data.
We choose PMF and BPMF to verify the improvement by the network topology and
entity attributes.

e Candecomp/Parafac (CP) (Harshman, 1970) factorization. CP is a classical tensor
factorization approach. Unlike PMF and BPMF, CP can capture the interaction of
different relations via its higher dimension. With the analytical solution of each latent
matrix, parameters of CP can be updated iteratively.

We shall report the AUC performance of these models.

5.1. Dataset description

¢ Reality Mining dataset is to infer the structures of social network. There are R = 3
relations in the network: friendship, in-lab interactions and out-lab interactions, with
13,395 observed links in total. Each relation consists of N = 94 entities. Moreover,
the entities’ features are also recorded in the data, e.g., satisfaction level of the current
social circle, etc. We choose 25 features and form a feature matrix F € R?5*94,

e Social Evolution dataset is to track the everyday life of undergraduates on campus,
with N = 84 entities and 8,964 observed links in total. We choose R = 7 relations in
the data: social activity, political discussion, friendship, shared photos, shared online
activities, voice calls and proximity network. We omit some other relations because
either it’s too sparse or it contains too much unknown outside entities. Some links
(e.g., voice calls) repeats multiple times and are deduplicated. Entities’ features are
recorded, like grade, living floor etc, forming a feature matrix F' € R?*84,

5.2. Experiment setup

First, we randomly split each relation of the network into training set and validation set,
and evaluate the performance on each relation. The calculation of path score is only based
on the training set. The split ratio is also varied to evaluate the robustness of these models.

Then we compare our model with PMF, BPMF and CP. Our HPMFNT is trained for
each relation together with the auxiliary information of other relationships, which predicts
the unobserved links based on the mean of yl(;) in Equation (1). For PMF and BPMF,
we also separately implement them to each relation, and make prediction from the learned
entity latent features. Since CP can model the interactive pattern via the higher dimension,
it needs to be learned only once to make prediction for different relationships.

To set proper hyper parameters, we choose the learnning rate e = 0.1 and hold the rest
parameters as default for PMF. For BPMF and CP, most parameters remain unchanged.
Then we initialize our model based on user latent matrices U and V obtained by PMF.
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Similar to BPMF, we also choose pg = 0, vy = K, and Wq = I, and beyond that, we set
bp =0, ap = By = 0 and A, = Ag = I. Moreover, grid search is applied with presicion A in
{0.01,1,100} and pp in {0.01,1,100}. We consider the cases of L = 1 and L = 2 (denoted
as HPMFNT-1, HPMFNT-2 respectively), since paths of L > 3 contribute very little to the
score. We set sigmoid function o(+) as the nonlinear mapping in Equation (5).

5.3. Results

We first compare the AUC with PMF, BPMF and BPTF with 80% obersved links in the
training set and 20% in the validation set in each dataset. Due to the space limitation, we
randomly pick three relations to display the results.

From Figure 3, we could find that both HPMFNT-1 and HPMFNT-2 perform generally
better than PMF and BPMF'. This validates the effectiveness of the network topology and
entity attributes in MF framework. Moreover, HPMFNT also beats CP for a considerable
degree, since HPMFNT-1 is better or at least comparable to CP, and HPMFNT-2 generally
achieves a higher AUC than that of CP. This shows the advantage of our HPMFNT over
CP-based tensor factorization methods. We could also observe that both HPMFNT-1 and
HPMFNT-2 have lower standard bar than the rest models, which indicates the stability and
robustness of our method. To have a better interpretation of the result, the test networks
and the predicted networks are also visualized by Gephi, presented in Appendix A.

0.95
09 r
0.85
08
]
D075
<
0.7
0.65
06

0.55

0.5
Friendship In-lab Out-lab Friendship Voice call Proximity

(a) Reality mining (b) Social evolution

Figure 3: AUC performance on two datasets. The colorbars in panel (b) have the same
meaning as those in (a). Note that each model keeps the decomposition rank
K = 10 for both datasets, while maximum iteration is 50, and each experiment
is repeated for 10 times. Standard error bar is plotted.

Since as the network gets more sparse, the cold-start problem becomes even more chal-
lenging. Therefore, we vary the split ratio on Reality mining dataset to evaluate the ro-
bustness of our model. As shown in Figure 4, both HPMFNT-1 and HPMFNT-2 achieve
better results than those of PMF and BPMF. Although HPMFNT-1 is generally lower than
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CP, HPMFNT-2 outperforms CP at each split rate. Furthermore, HPMFNT-2 obtains
considerable results even if the training set and the validation set are heavily imbalanced
(i.e., the split ratio is 20%). This verifies that a larger path length could better exploit the
network topology as supplementary information for the sparse network, and hence alleviate
the influence of the cold-start problem.

Auc
N
*+ X|
1

4 4
9% split ratio 9 splitratio 9% splitratio

(a) Friendship (b) In-lab (c) Outlab

Figure 4: AUC performance with varying split ratio on Reality mining dataset. The colors
in panel (b) and (c) have the same meaning as those in (a).

6. Conclusion

In this paper we have presented HPMFNT, a new method to make MF models scalable
to multi-relational networks. By extending Katz index into multi-relational settings, we
could efficiently utilize the auxiliary networks and hence successfully model the interactive
pattern of different relationships. Moreover, incorporating network topology and entity
attributes into matrix factorization modeling considerably solves the cold-start problems.
The experimental results illustrate that our model outperforms the competing models.

We consider several branches for future directions. First, aside from Katz index, we
could attempt to introduce other supervised measurement into the Bayesian MF framework.
Second, to make HPMFNT more suitable to heterogeneous attributes of entities, we will seek
a more comprehensive attribute-encoding approach. Finally, since tensor-based relational
learning has been a raising topic, we may also investigate the function of network topology
in tensor factorization models.
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Appendix A. Visualization of Reality mining
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Figure 5: Visualization of Reality mining social network. Since the network partitions are

random when imported, the arrangement of entities may be different between test
network and predicted network.
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