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Abstract

Convolutional neural networks (CNNs) are seen to be extremely effective in many large
object recognition tasks. One of the reasons for this is that they learn appropriate features
also from the training data. The convolutional layers of a CNN have these feature gen-
erating filters whose weights are learnt. However, this entails learning millions of weights
(across different layers) and hence learning times are very large even on the best available
hardware. In some studies in transfer learning it has been observed that the network learnt
on one task can be reused on another task (by some finetuning). In this context, this paper
presents a systematic study of the exchangeability of weight filters of CNNs across different
object recognition tasks. The paper proposes the concept of bank of weight-filters (BWF)
which consists of all the weight vectors of filters learnt by different CNNs on different tasks.
The BWF can be viewed at multiple levels of granularity such as network-level, layer-level
and filter-level. Through extensive empirical investigations we show that one can efficiently
learn CNNs for new tasks by randomly selecting from the bank of filters for initializing the
convolutional layers of the new CNN. Our study is done at all the multiple levels of gran-
ularity mentioned above. Our results show that the concept of BWF proposed here would
offer a very good strategy for initializing the filters while learning CNNs. We also show
that the dependency among the filters and the layers of the CNN is not strict. One can
choose any pre-trained filter instead of a fixed pre-trained net, as a whole, for initialization.
This paper is a first step in the direction of creating and characterizing a Universal BWF
for efficient learning of CNNs.

Keywords: CNN, deep learning, neural networks, transfer learning, bank of weigh filters,
BWF

1. Introduction

Object recognition is an important problem in computer vision. Over the years many
pattern recognition techniques (such as SVMs, random forests etc.) have been employed
for it. In recent times deep neural networks or, more specifically, convolutional neural
networks (CNNs) are seen to be phenomenally successful in many difficult object recognition
tasks (Krizhevsky et al. (2012); Zeiler and Fergus (2013); Simonyan and Zisserman (2014);
Szegedy et al. (2015)). An interesting aspect of CNNs (or, in general, of deep neural
networks) is that feature generation part is fused with the classifier part and both parts are
learned together using the training data.

In the more traditional pattern recognition techniques in computer vision, the features
to be used are separately designed and classifier is then learnt using training data images
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represented using the chosen features. Thus feature generation part and classification part
were mostly well separated and agnostic to each other. For example, a typical vision task
may use SIFT(Lowe (2004)) and/or histogram of oriented gradients(HOG)(Dalal and Triggs
(2005)) as prefixed features. On the other hand, the neural network viewpoint always
emphasized the learning of appropriate features using the training data. (For example,
an early paper that made backpropagation very popular emphasized the idea of learning
appropriate internal representations (Rumelhart et al., 1988)).

One motivation for the neural networks view of the importance of learning appropriate
features is an analogy with the human visual system where multiple layers of neurons seem
to be measuring many different features which are all presumably brought together to evoke
the object perception. In such a view, it is conceivable that many of the features that human
visual system uses are universal in the sense that there are features which are useful for all
image based pattern recognition tasks. Possibly such features are learnt through evolution
of the species. Then an interesting question for computer vision is whether there exist such
universally applicable features for computer vision systems and, if so, how do we identify
them.

The idea of a bank of weight filters that we discuss in this paper is a small attempt at
investigating this viewpoint empirically in the context of CNNs for object recognition.

The initial layers of a CNN are convolutional layers which consist of many filters. The
later layers are the fully connected layers. In the usual view of CNNs, the convolutional
layers are viewed as feature generators while fully connected (FC) layers are viewed as the
classifier. In this context, bank of weight filters (BWF) could be a set of weight-filters (that
is, a set of weight vectors characterizing the filters) collected from many different CNNs
which are trained on different object recognition tasks. By building many CNNs trained
on object recognition tasks we may be able to generate a corpus of weight filters that can
then be easily reused for all other object recognition tasks. This immediately raises some
interesting questions. Are the weight filters learnt in all convolutional layers universally
useful or only those learnt in the early layers can be used for other image recognition tasks?
Is the set of all filters in a single convolutional layer together form a useful bank of filters
or can we create such a bank of filters by randomly choosing filters from different CNNs?

In this paper we present an empirical investigation of these questions. Our overall
strategy is as follows. (We explain our experimental set-up in more detail later on). We
choose a set of object recognition tasks and then train a standard CNN architecture on
these tasks using the standard algorithms. We then create different new CNNs whose weight
filters are set randomly by sampling from the weight filters of already trained CNNs. We
do this at different levels of granularity (such as network-level, layer-level and filter-level).
We then compare the accuracies achievable with the new CNNs on object recognition tasks
when we train only the classifier part (that is, the fully connected layers). We also look at
the accuracy and time trade-offs in finetuning the convolutional layers of CNNs initialized
randomly from the bank of weight filters. Thus the investigations presented in this paper
essentially address the issue of exchangeability of weight filters across CNNs which we feel
is a very important issue. Our results indicate that the individual weight filters learnt by
different CNNs are indeed exchangeable (in the sense that they are useful for other object
recognition tasks) and thus support our view that this is an interesting direction to pursue
for creating new CNNs for different applications. Having access to such pretrained weight
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filters can greatly reduce the training time (as well as, possibly, the training set size) for
training CNNs on new object recognition tasks.

The idea of re-usability of weight filters has been investigated earlier in the framework
of transfer learning. In many transfer learning tasks the pre-trained CNNs are finetuned
with lower learning rate for convolutional layers and higher learning rates for FC layers as
in (Karayev et al. (2013)). This is similar to our view of keeping the feature generation part
fixed and classification part trained afresh. The works of (Yosinski et al. (2014); Agrawal
et al. (2014)) extensively studied the re-usability and expressibility of convolutional layers.
The material presented here is closer to (Yosinski et al. (2014)) who studied this in a
structured way up-to layer-level granularity. Unlike that paper here we do more elaborate
analysis which is more granular, starting from the network-level and going all the way till
the filter-level. We also study the random choice of layers and filters. There have also been
studies on the weight initializations and their impact on training time and quality as in
(Krähenbühl et al. (2015)). Their first layer is training data dependent and the other layers
are initialized from the k-means cluster centers of the previous layer activations. Here we
initialize using weight-filters from the pretrained CNNs which is different from training-
data-dependent initialization used in that paper. In the process we also report the time
(iterations) taken to attain best accuracy which is faster by a factor of 2 to 5 compared
to the normal-training of CNNs. To the best of our knowledge no prior work exists on the
analysis of exchangeability of the filters to the level of granularity that is investigated here.
We would like to reiterate that unlike (Krähenbühl et al. (2015)), our objective here is to
propose, construct and show the efficacy of BWFs. Our motivation is to eventually work
towards the idea of building a universal set of weight filters and characterizing them.

The rest of the paper is organized as follows. In section 2 we give a detailed description of
our experiment design. Section 3 explains our choice of the CNN architecture and learning
algorithm, the choice of different object detection tasks and also some implementation
details. Section 4 describes the actual empirical studies done and presents the results. We
conclude the paper in Section 5.

2. Bank of weight-filters and experimental design

The Bank of weight-filters(BWF ) is defined as a set of weight filters from many pretrained
CNNs. This set can be viewed at multiple levels. At the highest level, each element of
BWF is the entire set of weights taken as a whole from an entire CNN. We can represent it
as BWF = {Wn1 ,Wn2 , ....}, where Wni is weights of network-i. At the lowest level, BWF
would have individual weight-filter as its elements. This can be represented as BWF =
{Wf1 ,Wf2 , ....}, where Wfi represents weights of a specific filter which may be in any one
of the learnt CNNs. If a BWF is constructed using a large number of CNNs trained on a
given set of tasks then such a BWF can serve as a universal BWF for other (related) tasks
to initialize CNNs. This idea is illustrated in Fig. 1.

In Fig. 1, three levels of BWFs are illustrated. Fig. 1(a) shows network-level BWF where
each element consists of the five convolutional layers of a network and the set consists of
n-elements where n is the number of trained CNNs that we have. From this set an element
can be randomly chosen and used to initialize a target-net. The target-net initialized by
network-level BWF is called target-net-NR (NR for network random). Fig. 1(b) shows layer-
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level BWF whose elements consist of all weight filters taken together from a particular layer
of a CNN. These elements would be collected from many pretrained CNNs. An element from
this set can be chosen at random to initialize a layer of taget-net that would be called target-
net-LR. (LR stands for layer-random). Along similar lines, we can have filter-level BWF as
shown in 1(c). This is divided into as many subsets as the number of convolutional layers in
the network. The elements of a subset would be weights filters of that particular layer from
any of a number of pretrained CNNs. Now the target-net FR is a filter random network
initialized by randomly chosen weights from the filter-level BWF. The details of construction
of different target networks are explained further when we describe our empirical studies in
section 4.

Next we describe our overall experimental design. All the CNNs we use have the same
architecture as the Alexnet (Krizhevsky et al., 2012). We chose this because this is a
very standard structure for CNNs. Thus all our networks would have five convolutional
layers and three fully connected (FC) layers. There are 3 kinds of nets that we use here.
First is normal-CNN, for which we do the standard random initialization of the weights
and train all the layers of the network from the scratch. Second kind of network is the
noise-initialized-CNN. For this we do the standard random initialization of all weights. But
when training the network, we keep the convolutional layer weights fixed (at their initial
values) and train only the fully connected layers, namely, layers 6, 7 and 8. From now
on, we refer to this type of training, where weights in convolutional layers are fixed at
their initial values but the weights in the three FC layers are trained, as 3-FC training.
The third kind of net we use is called target-net whose convolutional layers are initialized
by random sampling without replacement from different BWFs (that is, network-level,
layer-level and filter-level BWFs). Our method of characterizing the performance of the
BWFs and assessing the exchangeability of the weight-filters is as follows. We consider
the normal-CNN as the networks that achieve maximum attainable accuracy on the task
and the noise-initialized-CNN as the ones that represent the least attainable accuracy. We
report the accuracy achieved by the respective target-nets with different BWF initializations
to assess the efficacy of the idea of BWFs. Since our BWF initializations are only for the
convolutional layers, in these target nets we use the 3-FC training. We show that the BWF
initialized networks achieve much better accuracy than noise-initialized CNNs though the
accuracy is some what less than that of normal-CNN for that task. We also use a CNN
with the 5-convolutional layers and two of the three fully connected layers(layer 6 and 7)
initialized from the pretrained CNNs and train only the final layer, namely, layer-8. We
call this CNN as FC-layer-8 trained. Such a CNN is seen to achieve better accuracy than
noise-initialized-CNN but much worse than any BWF initialized CNNs. This FC-layer-8
training was done just to show that convolutional layers are reusable but FC layers are
not. This also provides justification for restricting BWFs in our study to the convolutional
layers.

Apart from this we also did finetuning of the target-net CNNs by training the fully con-
nected layers from random initializations and convolutional layers from BWF initializations.
Finetuning was done to show that loss of accuracy due to BWF initialization is recoverable
and also to show the advantage gained in terms of training time by BWF initialization. The
parameter setting for finetuning is given in the table-5 of appendix- A. We have not used
differential learning rates for convolutional layers and fully connected layers as is popularly
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done in CNN finetuning. Wherever the CNNs were initialized by random sampling from
the BWFs we experimented five times and training on normal-CNNs was done once. For
this analysis we have trained about 200 CNNs totally, encompassing various initializations
and training methods.

Before we present the results of our empirical study, we explain our choice of CNN
architecture and different object recognition tasks along with the datasets used.

3. Choice of CNN and different object recognition tasks

3.1. Alexnet

As mentioned already we have used the same architecture as Alexnet for all our CNNs. This
is because it is a standard structure and seen to be very effective in object recognition. For
the sake of completeness we describe Alexnet briefly. (For more details refer (Krizhevsky
et al., 2012)). Alexnet is a CNN with five convolutional layers and three fully connected
layers followed by a softmax layer for classification. The convolutional layers are incorpo-
rated with fixed dimensional kernel and stride for each layer. The stride and kernel width
is progressively reduced across layers. The number and size of kernels of five conv layers
are: 96 each of size 11×11×3, 256 each of size 5×5×48, 384 of size 3×3×256, 384 of size
3× 3× 192 and 256 of size 3× 3× 192. Each of the three FC layers have 4096 neurons and
the last is a softmax max layer with 4096 inputs and 1000 outputs. Unlike the traditional
neural nets, the Alexnet uses the Rectified Linear Unit(ReLU) as the non-linearity which is
found to reduce training time. Normalization in Alexnet is done across small neighborhood
of responses from adjacent kernels, and not the entire layer. Alexnet uses max-pooling layers
after each convolutional layer.

In our work we use Caffenet (Jia et al. (2014)) implementation of Alexnet. The pa-
rameter settings used are provided in the appendix- A. For training normal-CNN, we use
parameters specified in table-4 in appendix- A. The parameter setting for finetuning is given
in the table-5 of appendix- A.

3.2. Object recognition tasks

In order to explain the effectiveness of BWFs and exchangeability of filters in the CNNs,
we would need to define different kind of tasks which are related. We create these different
tasks as follows. Starting with ISLVRC12 (Russakovsky et al. (2015)) we choose five-subsets
each consisting of 10 classes. The five subsets chosen are named set-1 to set-5 and their
ILSVRC12 class numbers are 1-10, 991-1000, 501-510, 511-520 and 10 randomly chosen
ones, respectively. The classes in the subsets belong to both man-made/natural categories.
These five subsets can be thought of as five different tasks of object recognition. Table.1
lists the class names of each subset(one per class). Fig. 2 shows 64 sample images in each
subset. One can notice the diversity of the classes, the color and the background in the
images used.

For the sake of completeness we briefly describe the dataset from which our object
recognition tasks are formed. The ILSVRC2012 (Russakovsky et al. (2015)) dataset consists
of 1000 classes with 1.2million training images, 50,000 validation images and 100,000 testing
images, among which majority are color and full resolution (as captured by the camera).

338



Bank of Weight Filters for deep CNNs

Figure 1: Illustration of bank of weight filters and random sampling of weights from BWF
for weight initialization of taget-nets. (a) shows Network-level-BWF, a set with
each element being a pretrained network, (b) shows Layer-level-BWF, with five
subsets corresponding to five layers of pretrained CNNs and (c) is Filter-level-
BWF with five subsets corresponding to five layers and elements of each subset is
a weight-filter, collected from many pretrained CNNs. Target-net-NR is initial-
ized by randomly choosing an element from a network-level-BWF. Target-net-LR
is a layer-random target-net, which is initialized by randomly choosing a layer
from each subset of layer-level-BWF. Target-net-FR is a filter-random target-
net, where each layer of a target-net is initialized with a sufficient number of
weight-filters randomly chosen from a subset corresponding to that layer using
the Filter-level-BWF.(This figure is best viewed in color)
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The images were collected by web searching with the synonym sets (synsets) of words
representing 1000 classes. The synsets of 1000 classes are non-overlapping. The images are
manually annotated and verified for 99.7% precision across synsets. The classes consists
of natural objects like birds, animals, fruits, beach, mountains, lake side and man-made
objects like tables, chair, car, musical instruments and many more. Each class has about
1300 images and most of them are color images.

Class Names in each subset

set-1 set-2 set-3 set-4 set-5

tench buckeye cliff dwelling container ship drake

goldfish coral fungus cloak convertible isopod

white-shark agaric clog corkscrew hyena

tiger-shark gyromitra cocktail shaker cornet electric guitar

hammerhead stinkhorn coffee mug cowboy boot loudspeaker

electric ray earthstar coffeepot cowboy hat speedboat

stingray Grifola frondosa coil cradle window shade

cock bolete combination-lock crane wreck

hen ear keyboard crash-helmet pomegranate

ostrich toilet-tissue confectionery crate potpie

Table 1: Ten class names with one name per class in each of the 5-subsets used.

4. Experiments with different levels of BWFs

In the next few subsections we present results of our empirical studies on each level of BWF.

4.1. Network level BWF

A network level BWF is a set, each of whose elements consists of weights of all the convolu-
tional layers of a network, taken as a whole, from pre-trained CNNs. We construct this set
by training normal-CNNs on each of the five 10-class object recognition tasks described in
section 3.2. These object recognition tasks/datasets would be referred to as set-1 to set-5
This way we would have the weights from five-CNNs trained separately on the five tasks
and this serves as our five-element network level BWF,

BWFnet-wts = {Wcnnset1 ,Wcnnset2 , ....,Wcnnset5}, (1)

where Wcnnseti
consists of the weights of all convolutional layers of a CNN trained on dataset

set-i.
These normal CNNs are trained with learning rate, lr = 0.005, reduced to one-tenth

after 100,000 iterations and for a total of 150,000 iterations (refer Appendix- A). The target-
nets for each task set-i was initialized with the weights of a net randomly chosen from the
nets trained on datasets set-j, where i, j ∈ {1, 2, ..., 5}, i ̸= j. We re-trained the target-net in
two ways. First, we trained only the FC-layer-8 with standard initializations of FC-layer-8.
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Figure 2: Randomly chosen representative images in each of the five subsets.
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Second, we trained only the 3-FC layers with standard initialization of the FC layers. (See
appendix. A for details of initializations).

These results are presented in Table 2. The top row in the table indicates the different
training strategies used for the results presented in different columns of the table. These
consist of normal-CNN , 3-FC training and FC-layer-8 training. The second row of the table
indicates the initialization method used for the results in different columns. For normal-
CNN and FC-layer-8 training the initialization is as in appendix- A. For the 3-FC training
there are many possible initializations: noise-init, network-level BWF (denoted by NR),
layer-level BFW (LR) and filter-level BWF (FR). In this subsection only results under NR
are discussed. The LR and FR results are discussed in the next two subsections.

We found that FC-layer-8 retrained target-net had accuracy which was better than that
of the noise-initialized-CNNs but lesser than that of the target-net-NR with 3-FC layers
retrained, as can be seen from Table. 2. The target-net with the 3-FC layers retrained had
accuracy in the range of 60-70% which is much higher than that of noise-initialized-CNNs
which was about 25%. This implies that fixing the weights of convolutional layers using the
corresponding weights from other pretrained CNNs (which are trained on different image
recognition tasks) will still give us fairly good performance. The performance of FC-layer-8
trained target-net was inferior to the net with 3-FC training, strengthening the popular
notion that in CNNs, the convolutional layers are more reusable than the FC layers.

Nature of re-training in most of the transfer learning tasks using CNNs, like in the case
of imagenet to PASCAL dataset adaptation (Oquab et al.), flickr finetuning (Karayev et al.,
2013) and others, is by initialization of the entire convolutional layers or initialization till
fully connected layer-7. In many such adaptation/transfer-learning applications the config-
uration of the CNNs, the weight arrangements, are taken as sacrosanct and customization
is confined to FC and softmax layers only. This is like our network-level BWF.

The network-level BWF we considered is the target-net-NR as shown in Fig. 1 (a).
We take the performance achieved by the network-level BWF as a baseline and pursue the
question of dependency of the filters to their position in the CNN network architecture. This
is in keeping with our motivation of exploring exchangeability of weight filters at different
levels of granularity.

4.2. Layer level BWF

We define layer-levelBWFs as a set whose elements are layer weights of trained CNNs.
The layer-level-BWF we use here can be specified as follows,

BWFlayer-wts = {WL1
cnnset1

,WL1
cnnset2

, ...WL1
cnnsetk

;

WL2
cnnset1

,WL2
cnnset2

....,WL2
cnnsetk

; .............

WLm
cnnset1

,WLm
cnnset2

, ....,WLm
cnnsetk

; },
(2)

where W
Lj
cnnseti consists of all the weights of jth convolutional layer of the CNN trained on

dataset set−i.
A layer-levelBWF would treat the weights of all the filters in a convolutional layer as a

single peice as far as exchangeability is concerned. We can think of it as having subgroups
with each subgroup consisting of a particular convolutional layer weights from all pretrained
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CNNs. In this way the Alexnet would have five sub-groups in the layer-levelBWFs corre-
sponding to each convolutional layer. We use the layer-level BWF for creating a target-net
by randomly choosing each convolutional layer of the this network from each sub-group of
the layer level BWF as shown in the Fig. 1(b). The target-net built like this could be hav-
ing each layer picked from CNNs trained on different datasets for different tasks. We call

this as target-net-LR where LR stands for layer-random. Suppose W
Lj
cnnsetr represents the

weights in the jth convolutional layer of the target-net for dataset set−r. While creating

the target-net, we make sure to use only W
Lj
cnnsets from BWFlayer−level, such that r ̸= s.

After initializing target-net-LR using randomly chosen layers from BWFlayer-wts, we
train only the three FC layers. The accuracy of the target-net-LR, thus trained, is in the
range of 52 to 69% as can be seen from the results presented in Table 2. This is about 10%
lower than the target-net-NR, but much higher than the FC-trained random initializations
or FC-layer-8 re-trained net. Recall that in target-net-LR, weights of different convolutional
layers are fixed from different pretrained CNNs (and these weights are not modified for the
resullts discussed here). Surprisingly the CNNs are quite robust to the alteration of the net
configuration. Equipped with the robustness evidence of CNNs to the configuration change
we next go an extra step and see what happens if we create the target-net by random choice
of individual filters from pretrained CNNs.

Train. Normal 3-FC FC-layer-8 3-FC

Init. App A. noise-init 7-layers NR LR FR

set-1 0.716 0.209 ± 0.07 0.467 ± 0.05 0.681 ± 0.03 0.584 ± 0.08 0.586 ± 0.08

set-2 0.810 0.282 ± 0.06 0.492 ± 0.07 0.720 ± 0.04 0.626 ± 0.09 0.625 ± 0.09

set-3 0.732 0.274 ± 0.04 0.379 ± 0.06 0.609 ± 0.06 0.528 ± 0.03 0.545 ± 0.05

set-4 0.774 0.214 ± 0.04 0.432 ± 0.11 0.670 ± 0.06 0.595 ± 0.08 0.605 ± 0.08

set-5 0.864 0.228 ± 0.06 0.562 ± 0.11 0.782 ± 0.04 0.695 ± 0.09 0.687 ± 0.09

Table 2: Accuracy of the nets with normal, noise and 7-layers (from pre-trained CNN)
initialization along with the target-nets with Network-Random(NR), Layer-
Random(LR) and Filter-Random(FR) initialization. The training done here are
normal, 3-FC and FC-layer-8.

4.3. Filter level BWF

We define filter-levelBWFs as a set whose elements are individual filter weights of trained
CNNs. A filter-levelBWF would be organized into subgroups with each subgroup con-
taining filters from a particular convolutional layer from all pretrained CNNs. Thus, the
Alexnet would have five sub-groups in the filter-levelBWFs corresponding to the five con-
volutional layers (The different subgroups for filter-levelBWF exists due to the variation
in filter sizes across convolutional layers). The filter-level-BWF we use here is specified as
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follows,

BWFfilter-wts = {WF1
L1cnnset1

,WF2
L1cnnset1

, ...W
FkL1
L1cnnset1

;

WF1
L2cnnset1

,WF2
L2cnnset1

, .....W
FkL2
L2cnnset1

; ...............

WF1
L5cnnset5

,WF2
L5cnnset5

, ....,W
FkLj

Ljcnnset5

; },

(3)

where WFk
Ljcnnseti

is the weight vector of filter-k of layer-j of the CNN trained on set-i and

kLj is the total number of filters in layer-j.
We now create our target-net by randomly choosing each filter of each layer of the

network from the appropriate sub-group of the filter-levelBWFs as shown in the Fig. 1(c).
The target-net built like this could be having each weight-filter picked from CNNs trained
on different datasets for different tasks. We call this as target-net-FR where FR stands for
filter-random.

In our target-net, let W̄Fv
Ljcnnsetr

denote the weights for the filter-v of layer-j of the

target-net meant for dataset set-r. These weights are chosen by randomly sampling from
WFu

Ljcnnsets

where u can be anything and r ̸= s. After forming the target-net-FR like this

by randomly choosing filters, we train the three FC layers. As can be seen from the results
presented in Table 2, the accuracy of the target-net-FR, thus trained, is in the range of
54 to 68.7%. This is about 10% lower than the target-net-NR, but much higher than the
FC-trained random initializations or FC-layer-8 re-trained net. What is very interesting is
that the performance of the target-net-FR is on par with that of the target-net-LR, showing
that the CNNs are very robust to the alteration of the net configuration. This seems to
suggest that the interdependence among filters due to their co-learning is very minimal (or
non-existant) at the layer level. This supports our view of a possible universal BWF with
reusable weight filters. The BWF at filter level also provides more flexibility than the one
at network level.

So far, in all the target-nets, the weights in the convolutional layers are fixed from BFWs
(formed using other pretrained CNNs). While the performance is good, there is still some
drop in performance compared to a normally trained CNN which is trained for the task at
hand. We next address this issue by finetuning target-nets.

4.4. Finetuning

By finetuning we mean a training process where the weights in the convolutional layers are
initialized through appropriate BWFs and then these weights are also adjusted along with
the weights of FC layers (which are initialized randomly) in the normal training process.
This is unlike FC-3 training where we trained only the fully connected layers. The results of
finetuning using different initializations and on the different datasets are shown in Table. 3.
In the table, the Normal-CNN refers to initializing all weights randomly and then training
all weights. The specific learning parameters are given in Appendix. The NR, LR and FR
in the table refer to initializing the convolutional layer weights using the different BWFs.

As can be seen from the table, post-finetuning, all the initializations using network level,
layer level and filter level BWF, achieve almost the same accuracy as that of the CNNs
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Figure 3: Plot of Accuracy versus initialization type (showing standard deviation for 5-
trials), with normal, NR, LR and FR type of initializations and normal, 3-FC
layers and finetuning type of trainings. The accuracy of all the initializations
are similar once finetuned. Note: The bars of 3-FC layers and finetuning are
overlapping with only the gain due to finetuning is visible in green and the normal
CNN accuracy is for a single trial on each set. (This figure is best viewed in color)
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Figure 4: Accuracy versus Number of iterations (mean of 5-trials) for normal-CNN, and
NR, LR and FR type of initializations. The subplots a-e refer to set-1 to set-
5 respectively. Notice that the number of iterations required by the normally
initialized CNN to reach its best performance is much more than that by NR, LR
and FR initialized CNN. (This figure is best viewed in color)
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trained normally.1 Thus after initializing the weight filters using our BWF, by finetuning
we can get the same performance as by learning a CNN from scratch. Fig. 3 shows the
accuracies gained by finetuning on different initializations. The target-nets NR, LR and FR
gained 10%, 20% & 20% respectively, as seen from Fig. 3. The finetuning takes fewer
iterations to learn because the target-nets NR, LR and FR already have filter weights that
are quite good. The number of iterations taken by normally trained CNN in comparison
to those for NR, LR and FR initialized and finetuned CNNs to reach a stable performance
are shown in Fig. 4. As can be seen the NR, LR or FR initialized CNNs needed much
fewer iterations. These took about 300-500 iterations while normal-CNN took 1500-2500
iterations. This brings out the efficiency gained by using BWFs for initializing the weights
in the convolutional layers.

Training Normal-CNN Finetune

Init. ref:App. A. NR LR FR

Set-1 0.716 0.734 ± 0.011 0.733 ± 0.017 0.728 ± 0.013

Set-2 0.810 0.812 ± 0.008 0.817± 0.004 0.814 ± 0.009

Set-3 0.732 0.726 ± 0.017 0.729± 0.023 0.730 ± 0.025

Set-4 0.774 0.752 ± 0.017 0.771± 0.019 0.758 ± 0.005

Set-5 0.864 0.869 ± 0.015 0.863± 0.008 0.856 ± 0.007

Table 3: Accuracies of the target-nets (along with standard deviation for 5-trials), with
Network-Random(NR), Layer-Random(LR) and Filter-Random(FR) initializa-
tions after finetuning. Here normal-CNN refers to network trained normally from
random initialization of all weights. (The parameters for learning as in Appendix-
A). As we can see, the accuracies of the target-nets NR, LR and FR are similar
to that of normal-CNN for all the datasets.

5. Conclusion

CNNs are highly successful for many computer vision tasks such as object recognition,
segmentation etc. They are also seen to be very effective in areas such as speech and NLP.
However, training a CNN needs a large number of examples as well as large computational
effort. The CNNs essentially learn to extract useful features by the process of adapting the
filter weights in the convolutional layers. Hence, it is reasonable to suppose that many of
the filters learnt by any CNN in an image-based pattern recognition task should be useful
in other such task too. In this paper we presented an empirical investigation of this issue
of exchangeability of weight filters of CNNs at different levels of granularity. We proposed
the idea of a bank of weight filters which is a repository of filters from other trained CNNs
as a means to initialize convolutional layers of a target CNN. We showed that even random
choice of filters from other nets gives us fairly good accuracy. We also showed that by

1. All the proposed initializations for set1 seem to outperform normal training consistently. The reason
could be that most of set1 images have sea/ocean ambiance and are uncluttered. But we did not
investigate this specifically because the motivation here is to only explore the applicability of the idea of
BWFs.
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finetuning a net initialized like this, we can get the same accuracy as a CNN trained from
scratch but takes much fewer iterations for training. Further our results also show that the
individual filters learnt in a CNN are fairly exchangeable.

We feel the results presented here provide enough justification for our view that creating
a universal BWF may be a good way to make CNN learning more efficient. In this paper
we have treated all convolutional layers as same. However, it is possible that the filters
learnt in early layers may be more universal (in the sense that they are useful in many other
tasks) as compared to filters learnt in later layers. In this paper we explored only random
choice from the BWFs. In general, to initialize a new network we should take a set of
filters which have high level of ‘diversity’ and low level of ‘redundancy’ among them. Thus,
better characterization of BWFs with better strategies for sampling from them to initialize
target-nets may be needed for efficient learning of CNNs. All such issues are important
in characterizing a universal BWF and we would be exploring some of these issues in our
future work.
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Appendix A. Parameters used for training Alexnet

These are the standard parameters used in caffenet implementation of Alexnet (Jia et al.
(2014)). Table-4 contains the parameters used for normal-CNN and all the target-nets,
network random, layer random and filter random. In Table-5 we have given the parameters
used for finetuning.

Normal training

Test Learning-rate

Iters Interval Base Policy Gamma Step-size Momentum Wt-decay Iters

1000 1000 0.005 step 0.1 100K 0.9 0.0005 150K

Finetuning

100 100 0.005 step 0.1 10K 0.9 0.0005 40K

Table 4: Parameters of Caffe implementation of Alexnet.

Initialization - (with Gaussian ∼ (µ, σ) where µ = mean, σ = standard deviation).

CONV-1 CONV-2 CONV-3 CONV-4 CONV-5 FC-6 FC-7 FC-layer-8

0, 0.01 0, 0.01 0, 0.01 0, 0.01 0, 0.01 0, 0.005 0, 0.005 0, 0.005

Table 5: Initialization of layers.
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