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Abstract
Many real-world applications require multi-label classification where multiple target labels
are assigned to each instance. In multi-label classification, there exist the intrinsic corre-
lations between the labels and features. These correlations are beneficial for multi-label
classification task since they reflect the coexistence of the input and output spaces that can
be exploited for prediction. Traditional classification methods have attempted to reveal
these correlations in different ways. However, existing methods demand expensive compu-
tation complexity for finding such correlation structures. Furthermore, these approaches
can not identify the suitable number of label-feature correlation patterns. In this paper, we
propose a Bayesian nonparametric (BNP) framework for multi-label classification that can
automatically learn and exploit the unknown number of multi-label correlation. We utilize
the recent techniques in stochastic inference to derive the cheap (but efficient) posterior
inference algorithm for the model. In addition, our model can naturally exploit the useful
information from missing label samples. Furthermore, we extend the model to update pa-
rameters in an online fashion that highlights the flexibility of our model against the existing
approaches. We compare our method with the state-of-the-art multi-label classification al-
gorithms on real-world datasets using both complete and missing label settings. Our model
achieves better classification accuracy while our running time is consistently much faster
than the baselines in an order of magnitude.

1. Introduction

Although many supervised learning methods assume only one associated outcome with the
input data, several real-world applications have to deal with multiple outcomes. Medical
data is an important example of this problem - for instance, a cancer patient when being
treated with chemotherapy or radiotherapy may have multiple toxicity outcomes (labels).
Prediction of such adverse events before treatment offers opportunity to alter treatment to
mitigate such adverse effects.

A straightforward solution to multi-label learning is to decompose the problem into a
series of binary classification problems, each for one label. However, the key challenge of
learning these binary decomposition is the overwhelming size of output space, i.e. the number
of label sets grows exponentially as the number of class labels increases. For example, given
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a label space with 30 class labels, the number of possible label sets would exceed one billion
(i.e. 230) (Zhang and Zhou, 2014). Such a solution, nevertheless, neglects the fact that
information of one label may be helpful for the learning of another related label; especially
when some labels have insufficient training examples, the label correlations may provide
useful extra information.

To exploit label correlations, external knowledge such as existing label hierarchies can be
used (Cai and Hofmann, 2004). However, such external information may be hard to obtain.
Many other approaches try to learn label correlations hidden in the training data. Hidden
label correlations are exploited either locally (Huang and Zhou, 2012) or by constructing
label-specific features using positive and negative instances (Zhang and Wu, 2015). A better
approach is to exploit both label and feature correlations - one example is to exhaustively
encode the conditional dependencies of the label and feature set through a Bayesian network
(Zhang and Zhang, 2010). Other approaches utilize different versions of the classifier chains
(Read et al., 2009; Cheng et al., 2010) for learning the feature-label correlation. However,
the exhaustive encoding and classifier chain come at computational cost. Moreover, it is
challenging in choosing the appropriate number of label-feature patterns. We consider it as
the first challenge of multi-label classification.

The majority of multi-label classification work (Cheng et al., 2010; Zhang and Zhang,
2010; Huang and Zhou, 2012; Zhang and Wu, 2015) has focused on the supervised settings
whose assumption is that a large amount of labeled training data is available. Unfortunately,
labeling training example is expensive and time-consuming, especially when it has more than
one label. However, abundant unlabeled data is easy to obtain in many cases. For example,
unlabeled data are enormously available in electronic medical records while a significant
manual effort is required to label them. Therefore, we concern handling missing labels as
the second challenge.

Very often, we need to perform supervised learning task when the data come in sequence,
without revisiting past data. In particular, we consider the task of diagnosing patients to
multiple cancers based on the historical data of other patients. These patients come daily and
constantly. Retraining predictive models on a daily basis may not be feasible. The promising
way to deal with this problem is using online learning. Online learning algorithms (Borodin
and El-Yaniv, 1998; Rosenblatt, 1958) allow updating classifiers with new examples, without
retraining the whole data. As more and more data points are added into the training set, the
multi-label model will be updated accordingly. Proposing the algorithm which can perform
online multi-label classification becomes our third challenge.

To address three challenges described above in a unified framework, we propose the
Bayesian Nonparametric Multi-label Classification (BNMC) model that jointly learns the
latent spaces of label-feature and estimates a classifier for each label. Our goal is to find a
subset of labels and features that are strongly correlated. Especially, the number of these
subsets are unknown in advance. BNMC offers the following points to solve the multi-label
challenges. (1) The model jointly estimates the unknown number of latent distribution of
label and feature correlations and thus solves the model selection problem. (2) As a by-
product of Bayesian setting, it can handle the uncertainty of missing labels appropriately.
(3) The model parameters can be updated in an online fashion using stochastic variational
inference and stochastic gradient descent. We demonstrate extensive multi-label classifica-
tion experiments using different settings: batch setting, learning with unlabeled data and
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online setting. Our BNMC achieves superior performance in terms of accuracy and speed
than the state-of-the-art multi-label classification approaches.

2. Variational Inference and Stochastic Variational Inference

We first briefly describe the variational inference, then present the stochastic variational
inference (SVI) for scalable posterior estimation which is later used in the proposed model.
Let us split the hidden parameters in our Bayesian model into a global parameter β (shared
across all observations) and groups of local parameter z1,2,...,N (each of which is associated
to a small group of observations). Variational inference (Blei and Jordan, 2006; Wainwright
and Jordan, 2008) turns the posterior inference problem into an optimization problem where
a new distribution over the hidden variables q (z, β) (called the variational distribution)
is introduced. The variational distribution is a function of a set of free parameters that
are optimized such that the variational distribution is as close as possible to the actual
target posterior distribution where closeness is measured in terms of Kullback–Leibler (KL)
divergence. Minimizing the KL divergence between the variational distribution and the
target posterior is equivalent to maximizing the evidence lower bound (ELBO) that is

log p (x) = log

(
E
q

[
p (x, z, β)

q (z, β)

])
≥E
q

[log p (x, z, β)]− E
q

[log q (z, β)] , L (q) (1)

where x is a collection of observations. In addition, each hidden variable is governed by
its own variational parameter, e.g., β̃ governs for global variable β and z̃i governs for zi.
The variational distribution has the property that it can be efficiently computed by making
each hidden variable independent of each other: q (Θ) = q

(
β | β̃

)∏N
i=1 q (zi | z̃i) where

q
(
β | β̃

)
and q (zi | z̃i) take the same form as the complete conditionals p(β | x, z, α) and

p(zi | x, z−i, β), but the parameters are now β̃ and z̃i.
We maximize the ELBO objective function in Eq. (1) with a coordinate ascent procedure.

We find its gradient with respect to the global variational parameter β̃ and find its value
that sets the gradient to zero. We do the same thing for the local parameters z̃. We
iterate between these updates until we converge to the maximum of the ELBO. The general
procedure is to write the ELBO in terms of parameter of interest (either β̃ or z̃i) then take
the gradient and set it to zero.

β̃ = E
q

[ηg (x, z, α)] z̃i = E
q

[ηl(x, z−i, β)]

Therefore, the updates of each variational parameter are equal to the expected value of
the natural parameters of the complete conditionals (ηg and ηl).

Different from variational inference, stochastic variational inference (SVI) (Hoffman
et al., 2013) uses a stochastic optimization technique to sequentially maximize the ELBO
using unbiased samples from the data set. Instead of updating for the whole batch β̃ =
E
q

[ηg (x, z, α)], the SVI updates are performed with the following formula

β̃(t) = β̃(t−1) + ρt∇t
(
β̃(t−1)

)
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where ∇t
(
β̃(t−1)

)
is a noisy gradient of the objective function obtained from a subsample

of the entire data and ρt is the learning rate. Since the objective function is not convex, it
is guaranteed to converge to only local optima.

We are now going to detail how to update the variational parameters using SVI (Hoffman
et al., 2013). First we write the ELBO in terms of a global term and a sum of local terms

L(β̃) = E
q

[log p (β)]− E
q

[log q(β)] +
N∑
i=1

max
z̃i

(
E
q

[log p (xi, zi | β)]− E
q

[log q(zi)]

)
We consider a randomly chosen data point index I sampled from Uniform (1, ..., N). For
this data point xI let us define

LI(β̃) = E
q

[log p(β)]− E
q

[log q(β)] +N max
z̃i

(E
q

[log p(xI , zI | β)]− E
q

[log q(zI)])

This is equivalent to the original ELBO if the entire data set was made up of xI . There
are two important facts that one must understand about LI(β̃). The expectation of LI(β̃)
with respect to the data point xI is equivalent to the original ELBO. As a consequence, the
gradient of LI(β̃) can be thought of as a noisy gradient of the original ELBO L(β̃) because it
is unbiased. The usual gradient assumes that the parameter space is Euclidean but it turns
out that it is better to assume that it has a Riemannian metric structure (in the context of
minimizing KL divergence) which is what the natural gradient (Amari, 1998) does. Thus,
we take the natural gradient of LI(β̃). The natural gradient of LI(β̃) is

∇LI(β̃) = E
q

[
ηg

(
x

(N)
I , z

(N)
I , α

)]
− β̃

where x(N)
I , z

(N)
I are a data set formed by N replicates of observation xI and hidden variable

zI . We set the above gradient to zero giving the update

β̂ , E
q

[
ηg

(
x

(N)
I , z

(N)
I , α

)]
= N × E

q
[ηg (xI , zI , α)] .

where β̂ is the intermediate global parameter of β̃. Then, we update the current estimate of
the global variational parameters β̃(t) = (1− ρt) β̃(t−1) + ρtβ̂. This process is repeated until
the algorithm is converged or reaching maximum number of iterations.

3. Bayesian Nonparametric Multi-label Classification

We present the Bayesian Nonparametric Multi-label Classification (BNMC). We first mo-
tivate our approach. Then, we introduce our model and posterior inference in batch and
online settings.

3.1. Motivation

We observe that inferring the hidden label-feature correlation in the data is not trivial.
The number of correlation patterns (detailed in Sec. 3.2) is unknown and changing with
the growing data. Bayesian nonparametric approaches have received increasing attention
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Figure 1: BNMC graphical model.

Figure 2: Generative process for BNMC

1: π ∼ Stick (α)

2: φk
iid∼ H (u), ∀k = 1, ...,∞

3: ψk,c
iid∼ Mult (λ) ∀k, ∀c = 1...C

4: wc
iid∼ S (ρ) ∀c = 1...C

5: for each data point i = 1, ..., N do
6: zi

iid∼ π and xi ∼ F (φzi)
7: Ti = N

(
Ȳ , σȲ

)
8: yi,1....C ∼ Mult

(
ψzi,1....C × σ

(
xTi w1...C

)
, Ti
)

9: end for

recently due to their capability to perform automatic model selection (Orbanz and Teh, 2010;
Nguyen et al., 2014). Nevertheless, to the best of our knowledge, there is no previous work
attempting to solve the multi-label classification using BNP due to computational burden.
To overcome the computational issue for BNP models, stochastic variational inference (SVI)
(Hoffman et al., 2013) is introduced to approximate the posterior distribution in an online
setting using stochastic optimization. In this paper, we use the idea of SVI to develop the
scalable inference for learning label-feature correlation. In addition, as a Bayesian model,
our proposed method allows handling the uncertainty of missing label data.

3.2. Model

We have a set of N data points (xi,yi)
N
i=1, where xi ∈ RD is the feature and yi ∈ (0, 1)C

is the label. We assume that an observed feature-label pair {xi,yi} is drawn from a pair
of latent parameters {φk, ψk}, which represents label-feature correlation. This correlation
indicates that if we observe the feature vector xj ∼ φk, we are likely to know the label
ŷj (by the corresponding pattern ψk). Taking an example in the healthcare domain, from
the training data, we learn that the symptoms {a, b, c} often come with the diseases {u, v}.
Then, in a testing set, if we know that a new patient with symptoms {a, b, c}, we infer that
he will have diseases {u, v} with high probability.

Since the underlying label-feature correlation is not observed, we observe the raw label
and feature instead. The key idea is to learn the lower dimensional representation such as
{φk, ψk}K→∞k=1 which capture the inter-dependencies of the features and labels. However, the
number K of these patterns are unknown and may be changing over time.

Using Dirichlet process (Ferguson, 1973) as a nonparametric prior for the unbounded
space of label-feature correlations, we describe the graphical representation in Fig. 1. Then,
we present the generative process in Alg. 2 indicates how the latent parameters and obser-
vations in our model are generated. There are two key ingredients to characterize our model.
The first one is the label-feature correlation {φk, ψk} where the number of K is inferred by
the Bayesian nonparametric setting. The second one is the classifier wc (such as Bayesian
Logistic Regression (BLR) and Bayesian Support Vector Machine (BSVM) (Polson et al.,
2011, 2013; Nguyen et al., 2015)) to discriminate for each class, the number of classes C is
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known and fixed. In this paper, we have used the classifier as either BSVM or BLR, other
classifiers under Bayesian setting could also be used.

The label vectors are assumed to follow Multinomial distribution as the product of these
two views, yi,1....C ∼ Mult

(
ψzi,1....C × σ

(
xTi w1...C

)
, Ti
)
. The number of trials in Multino-

mial distribution is defined as Ti = N
(
Ȳ , σȲ

)
where Ȳ is the average number of labels per

data point and σȲ is the standard deviation. These statistics (Ȳ and σȲ ) are obtained from
the training set. Generating labels using Multinomial distribution includes the following
benefits. The number of labels (per data point) is bounded by the mean Ȳ and standard
deviation of the number of labels σȲ observed in the training set (i.e. ranging from Ȳ − σȲ
to Ȳ + σȲ ). In addition, the predicted labels can be concentrated on the most certain label
with highest probability by the probability simplex ν later defined in Section 3.6.

3.3. Posterior Inference

Using the idea of SVI, we derive stochastic variational inference for our model given the
ELBO L (q) defined in Eq. (1). Our model parameters, defined in the previous section,
include Θ = {z,w,ψ,φ,π} where z is the local parameter and the others are the global
parameters. We note that the observations include both the feature x and the label y.

Figure 3: BNMC algorithm.

Input (xi,yi)
NTrain

i=1 and (xj)
NTest

j=1

1: for i = 1, 2, . . . NTrain do
2: Estimate z̃ki using Eq. (2)
3: Estimate φ̃(i)

k using Eq. (3)
4: Estimate ψ̃(i)

k using Eq. (4)
5: Estimate π̃(i)

k using Eq. (5)
6: Estimate w̃(i)

c using Eq.(7)
7: end for
8: for j = 1, 2, ...NTest do
9: Compute νjc using Eq. (8)

10: Tj = N
(
Ȳ , σȲ

)
11: Predict ŷj,1..C using Eq. (9)
12: end for
Output:

(
yj
)NTest

j=1

Using SVI, we learn the variational pa-
rameters in our model as follows. We up-
date z̃i, φ̃, ψ̃, π̃ in a standard SVI form while
updating w̃ is more complicated since it is
not in an exponential family distribution.
Hence, we develop two schemes to compute
w̃. Firstly, we estimate the local conditional
distribution of η̃ using augmented Gibbs ap-
proach (Polson et al., 2011, 2013). We note
that using Gibbs sampling within SVI to
maintain certain posterior dependencies is
extremely effective (Shah et al., 2015; Hoff-
man and Blei, 2015). However, iteratively
sampling w̃ will demolish the online nature
of SVI. Therefore, we propose an alterna-
tive technique to compute w̃ using Stochas-
tic Gradient Descent by a noise gradient vec-
tor evaluated at local data point.

With a slight abuse of notation, we de-
note the parameters as follows: φk is the
variable in the original distribution. φ̃k is the parameter in variational distribution
q
(
φk | φ̃k

)
. φ̂k is the natural gradient to update φ̃k. Other variables are used in similar

notations. We summarize the posterior inference below. We refer to the supplementary
material for detailed derivations.

Estimating z̃i The Multinomial conditional distribution for zki in the original distribution
p is defined as p

(
zki | .

)
∝ exp {log πk + log p (xi | φk) + log p (yi | ψk)}. The variational

distribution for zi is q (zi | z̃i) = Mult (z̃i). The local variational parameter is set equal to
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the expected natural parameter of its complete conditional distribution, that is

z̃ki = E
q

[ηl (xi,yi, φ, ψ, π)] = exp
{
E [log πk] + E [log φk,xi

] + E
[
logψk,yi

]}
. (2)

We utilize the property of the exponential family, Dirichlet distribution in our case, to
compute these expectations (see the supplement for details). Explicitly, we have that
E [log φk,xi

] =
∑D

d=1 xid

[
Ψ(φ̃k,d)−Ψ(φ̃k,∗)

]
, E
[
logψk,yi

]
=
∑C

c=1 yic

[
Ψ(ψ̃k,c)−Ψ(ψ̃k,∗)

]
and E [log πk] = Ψ (π̃k)−Ψ (

∑
π̃∗) where ∗ denotes for the sum and Ψ is the first derivative

of the log Gamma function.

Estimating φ̃k This is a global variable that its complete conditional depends on the
feature x and latent assignments z. The conditional distribution for the topics are defined
as p (φk | z,x, H) ∝ Dir

(
ωφ +

∑N
i=1 z

k
i xi

)
. The variational distribution for each topic is

a D-dimensional Dirichlet q (φk) = Dir
(
φ̃k

)
. Then, the natural gradient is computed as

φ̂k = ωφ +Nz̃ki xi. Finally, the variational parameter φ̃k is updated as

φ̃
(i+1)
k = (1− ρi) φ̃(i)

k + ρiφ̂k (3)

where ρi is the learning rate.

Estimating ψ̃k We estimate ψ̃k similar to the case of φ̃k. First we compute the natural
gradient ψ̂k = ωψ +Nz̃ki yi and update ψ̃k as

ψ̃
(i+1)
k = (1− ρi) ψ̃(i)

k + ρiψ̂k. (4)

Estimating π̃ The full conditional for the proportions follows a standard stick-breaking
construction p (πk | α, z) = Beta

(
1 +

∑N
i=1 z

k
i , α+

∑N
i=1

∑
j>k z

j
i

)
. Then, the natural gra-

dient (two dimensional) vector is estimated as π̂ =

(
1 +NE

q

[
z̃ki
]
, α+N

∑K
j=k+1 Eq

[
z̃ji

])
and the stochastic updates are given

π̃
(i+1)
k = (1− ρt) π̃(i) + ρtπ̃. (5)

Estimating wc in batch setting We consider the local conditional distribution given
by q (wc | w̃) = p (wc | µ0,Σ0,x,y). We use MCMC samples to compute wc using Gibbs
sampler. Using Gibbs sampling within SVI to maintain certain posterior dependencies is
also highlighted in recent works (Shah et al., 2015; Hoffman and Blei, 2015).

We assume the prior distribution wc ∼ N (µ0,Σ0), then the posterior distribution of
the classifier wc is given as

p (wc |) ∝ N (wc | µ0,Σ0)
∏

∀i|yic=1

p (yic = 1 | xi,wc)×
∏

∀j|yjc=0

p (yjc = 0 | xj ,wc)

= N (wc | µN ,ΣN ) . (6)

We consider wc for both SVM and LR. For SVM, we have Σ−1
N = µ0Σ

−1
0 +

∑N
i=1

xix
T
i

λi

and µN = ΣN

(∑N
i=1

λi+1
λi
xi

)
. For LR case: Σ−1

N = µ0Σ
−1
0 +

∑N
i=1 λixix

T
i and µN =

ΣN

(∑N
i=1 xi

[
yic − 1

2

]
+ Σ−1

0 µ0

)
. We refer to the supplement for details.
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As a part of sampling wc above, we need to sample the auxiliary variable λi as follows:

λi ∼


[
IG
(∣∣1− xTi wc

∣∣−1
, 1
)]−1

SVM

PG
(
1,xTi wc

)
LR

where IG is Inverse Gaussian distribution and PG is Polya-Gamma distribution.

Estimating wc in online setting For online learning, we use Stochastic Gradient Descent
to estimate the approximate local conditional distribution given by q (wc | w̃) as

w(i+1)
c = w(i)

c −
1

λ× i
gi (7)

where 1
λ×i is the learning rate and gi is the gradient w.r.t. wi

c evaluated at data point i.
We summarize the learning algorithm for BNMC in Alg. 3.

3.4. Handling Missing Labels in Training Data

As a Bayesian model, the proposed framework naturally handles the case of missing labels
in the training set. Given a incomplete data point xi without yi, we will compute the latent
assignment using the prior and feature information z̃ki ∝ exp

{
E [log πk] + E [log φk,xi

]
}

where these expectations are defined in Eq. (2). Then, we update φ̃k = ωφ +
∑N

i=1 z̃
k
i xi

using the estimated z̃ki and the observed feature xi. We note that the label topic ψ̃k is only
updated where yi is available. For estimating the classifier wc, we only use the training
samples which are fully observed in both x and y to reduce the uncertainty. In BNMC, the
missing labels data points are still beneficial to build a good label-feature correlation.

3.5. Model complexity

The cost of estimating the label-feature correlation (steps 2− 5 in Alg. 3) is O (N [D + C])
where the number of hidden topics K is assumed to be smaller than the feature size D and
the label size C. The complexity of estimating the classifier wc using augmented approaches
(cf. Section 3) is O

(
ND2 + CD2.3

)
where O

(
D2.3

)
is the complexity of solving a linear

system equations for each class c in Eq. (6). When we compute wc using stochastic gradient
descent as in step 6 of Alg. 3, the complexity is reduced to O (N [D + C]).

3.6. Prediction

Given the estimated model Θ = {φk, ψk, wc, π} and the testing observation xTesti , we predict
the label yTesti =

[
yTesti1 , ...yTestiC

]
, assumed to follow a Multinomial distribution parameterized

by νi = [νi1, ...νiC ]. Concretely, the probability of each element νic , p
(
yTestic = 1 | xi,Θ

)
is

computed as:

νic ∝
K∑
k=1

p
(
yTestic = 1 | zi = k,xTesti ,Θ

)
× p

(
zi = k | xTesti ,Θ

)
(8)

=

K∑
k=1

p
(
yTestic = 1 | wc,x

Test
i

)
× p

(
yTestic = 1 | ψzi

)
× p (zi = k | π)× p

(
xTesti | zi = k, φk

)
.
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Given Ti = N
(
Ȳ , σȲ

)
( cf. Section 3.2), we predict the labels from Multinomial distribution:

ŷj,1..C ∼ Mult (νj,1...C , Ti) . (9)

4. Experiments

In this section, we demonstrate that the proposed BNMC embodies two major merits that
is desirable in any practical useful algorithm. 1) Effectiveness and efficiency: BNMC is
consistently faster and obtaining high prediction accuracy than the baselines. 2) Flexibility:
BNMC is well applicable to handle the unlabeled data and for online learning.

Table 1: Dataset statistics.
Datasets #Data #Feat #Label
Emotions 593 72 6
Medical 978 1449 45
Scene 2,407 294 6
Corel5k 5,000 500 373
Bibtex 7,395 2,515 159
Cancer 16,397 95 33

MediaMill 43,907 120 102

First, we conduct the multi-label clas-
sification task and compare with the state-
of-the-art methods. Next, we present our
model’s behavior. Then, we consider learn-
ing with unlabeled data. Finally, we demon-
strate the proposed model in online learning
setting.

Towards the open science and repeata-
bility of our experiments, we make available
all of our source codes at the URL1.

Competitors We compare the proposed
method with six well-established multi-label learning algorithms including:

• Binary Relevance (BR) (Boutell et al., 2004): We use LibLinear (Fan et al., 2008)
toolbox to train C independent binary classification problems.

• LIFT (Zhang and Wu, 2015): The ratio parameter is set as 0.1.

• LEAD (Zhang and Zhang, 2010): The directed acyclic graph is randomly generated
as the prior structure.

• ML-LOC (Huang and Zhou, 2012): The parameters are set as default λ1 = 1, λ2 =
100, σ = 0.1,m = 15 as recommended (Huang and Zhou, 2012).

• ML-kNN (Zhang and Zhou, 2007): The number of nearest neighbors considered is set
to the average number of label per data point L and Euclidean distance is used.

• BML-CS (Kapoor et al., 2012)2. The compressed rate is set default at 3, logχ = −0.1
and log σ = −0.2.

• Probabilistic Classifier Chain (PCC) (Cheng et al., 2010): We use the Java software
from the author.

The Matlab codes are downloaded from the author’s website. For LEAD and ML-LOC,
we use linear kernel as other kernels are costly for large scale datasets.

1. https://github.com/ntienvu/ACML2016_BNMC
2. https://github.com/yalesong/BGCS
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Table 2: Multi-label classification evaluation using F1 (%) score (mean±std). The highest
score per dataset is in bold and the second highest is in italic.

Datasets
Methods Emotions Scene Corel5K Bibtex Cancer MediaMill
LIFT 22.1±.4 5.1±.5 6.5±.2 31.1±.6 54.0±.5 -
LEAD 23.2±.2 23.5±.7 5.4±.3 32.8±.5 - -

ML-LOC .3±.3 30.7±.5 13.9±1.0 37.1±.8 23.9±.3 -
ML-kNN 32.0±.2 22.3±.6 2.3±.6 16.8±1.0 48.2±.3 52.3±.3
BML-CS 30.5±.3 19.3±.5 26.3±.7 33.4±.9 6.4±.4 12.8±.3

BR 14.0±6.0 28.4±.6 13.3±.2 37.4±1.0 44.3±.3 10.1±.3
PCC 34.6±9.0 70.21±8.0 15.87±.4 40.9±.4 54.5±.2 55.5±.2

BNMC-S 36.0±.3 70.4±.5 21.1±.2 41.0±.4 56.2±.1 47.4±.2
BNMC-L 32.0±.2 71.5±.4 19.8±.2 40.3±.4 55.3±.4 48.3±.2

Datasets We use 6 multi-label datasets representing different kinds of the real-world data
obtained from the URL 3. The dataset statistics are summarized in Table 1. In particular,
we have collected the Cancer dataset from a regional hospital in Australia. This cohort
consists of 2,869 patients who visited the hospital during 2000-2015 and diagnosed with
toxicity. We extract admissions of patients as data points and obtain approximately 16,000
data points. The features of each data point comprise of patient-specific attributes (e.g. age,
gender, cancer types, cancer stage) and treatment attributes (e.g. radiotherapy durations,
chemotherapy drugs, past toxicities). The multiple labels of each data point include 32 types
of toxicities. Our goal is to predict the presence of toxicities for a new admission.

The training and testing data are already available by these standard datasets, except
the Cancer data where we split it into 90% training and 10% testing sets.

Evaluation It is an advantage that our model can estimate the number of labels for each
data point in Eq. (9) without specifying the top k labels. Given a predicted label vector
ŷi and the ground truth vector yi where each element yic is a binary value, we compute F1
score and Exact Match. The F1 formula is given as follows F1 = 1

N

∑N
i=1

2
∑C

c=1 yicŷic∑C
c=1 ŷic+

∑C
c=1 yic

.

Exact Match evaluates how many times the ground truth labels and the predicted labels
are exactly matched. Exact Match score is very important in some applications, e.g., in
healthcare and cancer prediction: ExactMatch = 1

N

∑N
i=1 [yi = ŷi].

Implementation and Parameters Setting Our implementation is done in Matlab. All
experiments are run on a Windows PC with 3.40 GHz Intel i7 CPU and 24 GB RAM.
We repeat the experiments 10 times, then report the mean and standard deviation. The
hyperparameters used in stochastic variational inference for φk, ψk and πk are initialized as
ωφ = 0.1, ωψ = 0.01 and α = 1. The learning rate for SVI is set as ρ = 0.001 (Hoffman et al.,
2013). We use the standard learning rate for SGD as 1

λt where λ = 32
#Train . We note that

the optimal λ can be selected using cross-validation or Bayesian optimization techniques
(Nguyen et al., 2016).

3. http://mulan.sourceforge.net/datasets-mlc.html
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Table 3: Multi-label classification evaluation using Exact Match (%) score (mean±std).
Datasets

Methods Emotions Scene Corel5K Bibtex Cancer Media Mill
LIFT 2.9±2 1.2±.9 0.6±.02 14.8±.5 41.1±1 -
LEAD 4.4±2 20.0±.9 0.4±.02 15.6±.4 - -

ML-LOC 1.0±2 28.2±1.2 0.8±.02 14.8±.6 16.8±2 -
ML-kNN 6.4±2.1 19.8±1.0 0.4±.02 6.8±.5 35.0±2 3.2±.05
BML-CS 3.9±1.7 11.2±.9 1.0±.01 4.0±.6 4.0±2 3.4±.02

BR 4.9±1.5 20.5±.9 0.6±.01 13.6±.5 20.3±3 0.1±.01
PCC 1.49±1.4 46.15±.7 0.1±.01 13.7±.5 58.54±3 5.3±.01

BNMC-S 10.2±1 66.2±.8 0.3±.01 16.5±.3 45.43±1 5.9±.01
BNMC-L 9 .0±1 63.2±.7 0.4±.01 17.6±.3 41.4±1 5.9±.01

4.1. Multi-label Classification

We next conduct experiments on the multi-label classification. We use six datasets to
evaluate the proposed algorithm and compare with the baseline approaches. Due to high
complexity, some methods (e.g., LIFT (Zhang and Wu, 2015) and LEAD (Zhang and Zhang,
2010)) can not run on large scale datasets (e.g., MediaMill). Therefore, we set the time limit
of 50,000 seconds (or 14 hours). If the algorithms exceed this limit, we will ignore them.

We report and compare the classification performance using F1 score in Table 2 and
using Exact Match score in Table 3. Our BNMC beats all of the baselines in most of the
datasets, except BML-CS does better for Corel5k dataset and PCC obtains the best score
in Exact Match in Cancer dataset. From our observation, ML-kNN performs relatively well
and robust among the baselines. We note that the numerical evaluation using Exact Match
is smaller than F1 since Exact Match is a strict criteria. Especially, Exact Match criteria is
hard to achieve when the output space for matching is large.

The different effects of “using label-feature correlation” against “not using it” can be seen
through the performance of BR and BNMC. Learning each class independently in BR results
in poor performance and can not exploit effectively the label-feature correlations.

Running Time By running time, we mean the total time of training and testing. We
compare our model with other multi-label methods, except BR because BR treats each
class independently that is obviously the fastest algorithm. We present the computational
results in Table 4. BNMC is absolute faster than all the baselines by orders of magnitudes.
Particularly, BNMC is 10-50 times faster than LIFT, LEAD and ML-LOC while 2-5 times
faster than BML-CS and ML-kNN. The reason is that the training time of other algorithms,
except BML-CS, is quadratic in the number of data points N . Therefore, these algorithms
are not scalable to situations where N is high.

As our model’s complexity is O
(
N
[
D2 + C

]
+ CD2.3

)
which is less sensitive to the

number of training instances N . Due to this complexity, BNMC (batch setting) will take
longer for the datasets with high dimensional feature. To have matters concrete, in Bibtex
dataset (N = 7, 395;D = 2, 515), BNMC takes 295 secs while it consumes 60 secs for
MediaMill (N = 43, 907;D = 120) which contains more number of data points, but in
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Table 4: Computational time comparison. Time is recorded in seconds.
Datasets

Methods Emotions Scene Corel5K Bibtex Cancer MediaMill
LIFT 1.65 206 3192 7668 32,207 >14 h
LEAD 2.51 17 3672 22,728 >14 h >14 h

ML-LOC 6.16 398 2730 13,955 48,494 >14 h
ML-kNN 1.53 14.8 367 835 967 5564
BML-CS 0.8 4.92 1271 1160 98 477
PCC 2.07 3.08 4093 345 137 1743

BNMC-Batch 0.6 2.5 117 295 30 60

lower dimensions. Later, we show that BNMC in online setting will overcome the curse of
dimensionality and be much faster with the complexity of O (N [D + C]).

4.2. Model Analysis

In our model, a data point i includes a pair of feature and label {xi,yi}, assumed to draw
from a pair of parameter {φk, ψk}. Intuitively, if we observe the feature vector x ∼ φk,
we are likely to know the ŷ (by the corresponding pattern ψk). This is what we mean
label-feature correlation in the paper. To have better understanding about this correla-
tion, we examine the Scene dataset in which BNMC automatically identifies that there
are K = 4 latent label-feature correlations representing by a pair of {φk, ψk} in Fig. 4.

Figure 4: Label-feature correlations from Scene dataset

We manually pick two
correlations (1st and
4th) in Fig. 4 where we
learn that the classes
1, 2 and 3 are strongly
correlated while the class
4 always exists alone.
These labels patterns ψ
(Right Fig. 4) link
to the feature patterns
φ (Left Fig. 4) to
form label-feature cor-
relations. We note that
the feature patterns φk
look visually similar to
each other because (1) the feature is more noisy and complex than the label and (2) some
columns of the feature matrix have high numerical values than the other columns.

In addition to the label-feature correlation estimation, our BNMC also learns a set of
classifiers using Support Vector Machine and Logistic Regression. Given the model parame-
ters Θ = {φk, ψk, ηc} and testing data point x, we aim to predict the label y = [y1y2...yC ] ∼
Mult (ν) where ν is computed in Eq. (8). For ease of interpretation, we illustrate and
compare the effects of the classifier wc and the label-feature correlations to predict the final
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Figure 5: The final predictive probabilities of labels (Right) is a product of classifiers (Left)
and label-feature correlations (Middle). The red and green boxes highlight two
examples of the effects in two views to the final prediction.
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Figure 6: Multi-label classification with unlabeled data.

labels in Fig. 5 where the predictive likelihood by the classifier wc is in Left Fig. 5 and the
predictive likelihood by the label-feature correlation is in Middle Fig. 5. We highlight this
effects in the red and green boxes. In red boxes, the classifiers (Left) give low probabilities
while the label-feature correlations returns high probabilities, then the final probability will
be calibrated. The reverse story can be seen for the green boxes.

4.3. Learning with Unlabeled Data

We conduct experiments for multi-label classification with unlabeled data. By unlabeled
samples, we only observe the feature x while the label y is missing for these data points.
We remove a fixed fraction of training labels randomly from each dataset considered. We
then apply our method to such training data. BNMC can utilize feature information from
the samples with missing labels to have better estimation of pattern φk. Similar setting
can be achieved for missing feature, but observing labels. However, within the scope of this
paper, we focus on the missing labeled case, not missing feature case.

We compare our approach with BR, ML-KNN (Zhang and Zhou, 2007) and BML-CS
(Kapoor et al., 2012) for handling missing labels. While BML-CS can utilize the missing
label directly, BR and ML-KNN simply remove samples with missing labels. We present
the results in Fig. 6 with the percentage of labels missing ranging from 70% to 90%. It is
expected that as the amount of missing labels increases, there is a smooth dip in the F1

266



A Bayesian Nonparametric Approach for Multi-label Classification

#Data Points
0   1000 2000 3000 4000

F
1 

S
co

re

0.05

0.1

0.15

0.2

0.25
Corel5k Dataset - Online Setting

BNMC-Online
BNMC-Batch

0   1000 2000 3000 4000

#Data Points

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
1 

S
co

re

Bibtex Dataset - Online Setting

BNMC-Online
BNMC-Batch

#Data Points
0  40 80 120 160 200 240 280 320 360

F
1 

S
co

re

0.2

0.25

0.3

0.35

0.4
Emotions Dataset - Online Setting

BNMC-Online
BNMC-Batch

Figure 7: Multilabel classification in online setting.

score of the models. Although BML-CS obtains better performance than our model when
the labels are fully observed in Corel5k dataset (cf. Table 2), when the number of missing
labels increases, we equal it at 80% and surpass at 90% of missing (cf. Right Fig. 6).

4.4. Online Multi-label Classification

We evaluate the proposed BNMC in online setting of multi-label classification problem that
data becomes available in a sequential order. At each step we use the new data to update our
model parameters for future prediction. Although online classification (binary and multi-
class setting) (Le et al., 2016) is a well-studied field, online multi-label classification is some-
what premature. We compare our BNMC-Online against our batch counterpart. BNMC-
Online updates the model parameters when a data point comes in while BNMC-Batch is ap-
plied on the whole data. The more samples taken, the better our model learned (evaluated by
F1 score). We plot the results in Fig. 7.
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Figure 8: BNMC-Online is much faster than
the BNMC-Batch counterpart.

There is a trade-off in speed and accu-
racy in our model using online and batch
setting. On the one hand, our batch
version is estimated in closed-form and
gains good accuracy. Its complexity of
O
(
N
[
D2 + C

]
+ CD2.3

)
is affected by the

feature size and slower than the BNMC-
Online although it is still significantly faster
than other baselines. On the other hand,
BNMC-Online is approximated sequentially
using the noisy gradient vectors at each data
point and gets slightly worse accuracy than
its batch counterpart. However, the com-
plexity of the online algorithm is smaller
at O (N [C +D]) and thus runs faster. We
plot the running time comparison between
BNMC-Online and BNMC-Batch in Fig. 8.
Because of the high dimensional feature (D = 2, 515) in Bibtex dataset, our online version
highlights its superiority in running time that is 6 times faster than the batch version.
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5. Summary

We presented a BNP framework for multi-label classification that jointly learns the label-
feature correlation over the low dimensional latent space. We develop an algorithm to
estimate the model in batch and online settings. We carry out extensive experiments to
highlight the efficacy of the proposed method. BNMC runs fast and gains high accuracy.
Additionally, it can handle unlabeled data and perform online learning. BNMC is appealing
for large-scale multi-label task with the ideal complexity is O (N [C +D]).
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