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Abstract

In this paper, we consider a wide class of constrained nonconvex regularized minimization
problems, where the constraints are linearly constraints. It was reported in the litera-
ture that nonconvex regularization usually yields a solution with more desirable sparse
structural properties beyond convex ones. However, it is not easy to obtain the proximal
mapping associated with nonconvex regularization, due to the imposed linearly constraints.
In this paper, the optimization problem with linear constraints is solved by the Linearized
Alternating Direction Method of Multipliers (LADMM). Moreover, we present a detailed
convergence analysis of the LADMM algorithm for solving nonconvex compositely regular-
ized optimization with a large class of nonconvex penalties. Experimental results on several
real-world datasets validate the efficacy of the proposed algorithm.

Keywords: LADMM, Constrainded Nonconvex Regularized Optimization

1. Introduction

In this paper, we are going to focus on solving constrained nonconvex regularized optimiza-
tion problems:

min
x,z

l(x) + r(z),

s.t. Ax−Bz = 0
(1)

where l : Rd → R is a smooth convex function associated with the prediction rule x,
r : Rl → R is a nonconvex regularization function, A ∈ Rm×d, and B ∈ Rm×l.

When r is a convex function, problem (1) can cover graph-guided regularized minimiza-
tion (Hastie et al., 2009) and generalized Lasso (Tibshirani and Taylor, 2011). However, it
was reported in the literature that nonconvex regularization usually yields a solution with
more desirable sparse structural properties. And people manage to impose some nonconvex
regularizations on Eq. (1), which have been proven to be better approximations of ℓ0-norm
theoretically and computationally beyond ℓ1-norm, for example, the compressive sensing
(Xiao et al., 2011). The existing nonconvex regularizations include ℓp-norm (0 < p < 1)
(Foucart and Lai, 2009), Smoothly Clipped Absolute Deviation (SCAD) (Fan and Li, 2001),
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Log-Sum Penalty (LSP) (Candes et al., 2008), Minimax Concave Penalty (MCP) (Zhang,
2010a), and Capped-ℓ1 penalty (Zhang, 2010b, 2013).

Another challenge of problem (1) comes from the linear constraints. Specifically speak-
ing, it is very likely that the proximal mapping associated with r(z) is not easy to be
obtained. Fortunately, since l(x) is smooth and the solution of the proximal mapping asso-
ciated with r(z) can be explicitly given for many commonly used nonconvex regularizers, the
Linearized Alternating Direction Method of Multipliers (LADMM) (Yang and Yuan, 2013)
can be applied regardless of the availability of the proximal mapping on l(x). However, it
remains unclear whether the LADMM algorithm converges when applied to the nonconvex
problem in Eq. (1), although its global convergence is established for convex objectives (He
and Yuan, 2012; Hong and Luo, 2012). This issue is addressed in this paper affirmatively.
The detailed convergence analysis is presented. The efficacy of the proposed algorithm is
demonstrated by encouraging empirical evaluations of nonconvex graph-guided regularized
minimization on several real-world datasets.

2. Related Work

In this section, we review some existing algorithms and discuss their connections to our
work. When A = I and B = I, the commonly used approaches for solving problem
(1) include the multi-stage (MS) convex relaxation (or CCCP, DC programming) algorithm
(Zhang, 2010b), the sequential convex programming (SCP) algorithm (Lu, 2012), the general
iterative shrinkage and thresholding (GIST) algorithm (Gong et al., 2013), and the recent
hybrid optimization algorithm (HONOR) which combines the quasi-Newton method and
the gradient descent method (Gong and Ye, 2015). However, the MS algorithm does not
admit a closed-form solution for graph-guided regularized optimization problems and hence
leads to an expensive per-iteration computational cost. When A or B is non-diagonal,
neither the SCP algorithm nor the GIST algorithm is efficient for solving problem (1) since
the proximal mapping of r(·) is typically not available.

Another related stream of works are the ADMM-type algorithms which are suitable to
solve problem (1) when A or B is not diagonal (Zhong and Kwok, 2013; Zhang and Kwok,
2014; Wang et al., 2014; Zhao et al., 2015). Such a kind of algorithms have recently been
shown effective to handle some nonconvex optimization problems (Magnsson et al., 2014;
Jiang et al., 2014; Hong et al., 2015; Yang et al., 2015; Wang et al., 2015a,b; Li and Pong,
2015). However, the results of (Magnsson et al., 2014; Jiang et al., 2014) require a not
well-justified assumption about the generated iterates, while some other works focus on
certain specific problems such as the consensus and sharing problems (Hong et al., 2015)
and the background/foreground extraction problems (Yang et al., 2015). The rest works
(Wang et al., 2015a,b; Li and Pong, 2015) consider proximal ADMM applied to the linear
constrained problems with convergence established under some mild conditions. However,
they all assume that the proximal mapping of l is easily obtained, which is not the case for
many objective functions encountered in machine learning, such as the logistic function.

3. Preliminaries

To proceed, we make the following assumptions (Assumptions 1-6) throughout this paper.
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Assumption 1 B is column full rank.

Assumption 2 l(x) is continuously differentiable with Lipschitz continuous gradient, i.e.,
there exists a constant L > 0 such that

∥∇l(x1)−∇l(x2)∥ ≤ L∥x1 − x2∥, ∀x1, x2 ∈ Rd.

Assumption 3 l(x) is lower-bounded, i.e., infx l(x) ≥ l∗ > −∞. In addition, there exists
β0 > 0 such that l̄(x) = l(x) − β0∥∇l(x)∥2 is lower-bounded and coercive, i.e., infx l̄(x) ≥
l̄∗ > −∞ and l̄(x)→ +∞ as ∥x∥ → +∞.

We remark that Assumption 2 and Assumption 3 are not restrictive. In fact, they are
easily satisfied by many popular functions in machine learning, such as least squares and
logistic functions:

l(x) =
1

2n
∥Ax− b∥2 or

1

n

n∑
i=1

log
(
1 + exp

(
bi · a⊤

i x
))

,

where A =
[
a⊤
1 ; · · · ;a⊤

n

]
∈ Rn×d is a data matrix and b = [b1, · · · , bn]⊤ ∈ Rn. Specifically,

when l(x) is the least squares function, we have

l̄(x) =
1

2n
∥Ax− b∥2 − β0

n2
∥A⊤(Ax− b)∥2.

Therefore, l̄(x) is lower-bounded and coercive when β0 ≤ n
2λmax(AA⊤)

, where λmax(AA
⊤) is

the largest eigenvalue of AA⊤. When l(x) is the logistic function, ∥∇l(x)∥2 is bounded.
Consequently, l̄(x) is lower-bounded and coercive for any β0 > 0.

Assumption 4 r(x) is a continuous function, which is possibly nonconvex and non-smooth,
can be rewritten as the difference between two convex functions, i.e.,

r(x) = r1(x)− r2(x),

where r1(x) and r2(x) are convex functions. Moreover, r(x) is lower-bounded, i.e., infx r(x) ≥
r∗ > −∞.

In Table 1, we present some nonconvex regularizers widely used in sparse learning,
which satisfy Assumption 4.1 It should be noted that r(x) is not necessarily assumed to be
coercive in our paper, which however is required in (Wang et al., 2015a; Li and Pong, 2015;
Wang et al., 2015b). Indeed, this property does not hold true for some nonconvex penalty
functions such as Capped-ℓ1 regularization.

Assumption 5 The smallest eigenvalue of ((B⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤ is posi-
tive, i.e., λmin(((B

⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤) > 0.

1. We refer interested readers to (Gong et al., 2013) for the detailed decomposition of each nonconvex
regularizer presented in Table 1.
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Table 1: Examples of the penalty function r(x) satisfying Assumption 4. γ > 0 is the
regularization parameter. [x]+ = max(0, x) and r(x) =

∑
i ri(xi).

Name ri(xi)

LSP γ log (1 + |xi|/θ) (θ > 0)

SCAD γ
∫ |xi|
0 min

(
1,

[θγ−y]+
(θ−1)γ

)
dy (θ > 2) =


γ|xi|, if |xi| ≤ γ,
−x2

i+2θγ|xi|−γ2

2(θ−1) , if γ < |xi| ≤ θγ,
(θ+1)γ2

2 , if |xi| > θγ,

MCP γ
∫ |xi|
0

[
1− y

θγ

]
+
dy (θ > 0) =

{
γ|xi| − x2i /(2θ), if |xi| ≤ θγ,
θγ2/2, if |xi| > θγ,

Capped-ℓ1 γmin (|xi|, θ) (θ > 0)

Assumption 6 The critical point set of problem (1) is nonempty, i.e., there exist x∗,
g∗1 ∈ ∂r1(((B

⊤B)−1(B⊤A))x∗) and g∗2 ∈ ∂r2(((B
⊤B)−1(B⊤A))x∗) such that

∇l(x∗) + ((B⊤B)−1(B⊤A))⊤(g∗1 − g∗2) = 0. (2)

Recall that x∗ is called a critical point of problem (1) (Toland, 1979) when Eq. (2) holds.
Moreover, the Lagrangian function of problem (1) is given by

L(y, x, λ) = l(x) + r(y)−
⟨
λ, ((B⊤B)−1(B⊤A))x− y

⟩
,

and it can be easily verified that a critical point (y∗, x∗, λ∗) of the Lagrangian function
satisfies:

0 = ∇l(x∗)− ((B⊤B)−1(B⊤A))⊤λ∗,

0 = g∗1 − g∗2 + λ∗,

0 = ((B⊤B)−1(B⊤A))x∗ − y∗,

where g∗1 ∈ ∂r1(((B
⊤B)−1(B⊤A))x∗) and g∗2 ∈ ∂r2(((B

⊤B)−1(B⊤A))x∗). Hence, x∗ is a
critical point of problem (1) as well.

4. Linearized Alternating Direction Method of Multipliers (LADMM)

In this section, we first review the Linearized Alternating Direction Method of Multipliers
(LADMM) (Yang and Yuan, 2013), and discuss how it can be applied to solve problem (1).
Then we present detailed convergence analysis of LADMM.

4.1. Algorithm

It is well known that problem (1) can be solved by the standard ADMM (Gabay and Mercier,
1976) when the proximal mappings of l(x) and r(z) are both easily obtained. Its typical
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iteration can be written as

xk+1 := argmin
x

Lβ
(
x, zk, λk

)
,

λk+1 := λk − β
(
((B⊤B)−1(B⊤A))xk+1 − zk

)
,

zk+1 := argmin
z

Lβ
(
xk+1, z, λk+1

)
,

where the augmented Lagrangian function Lβ(x, z, λ) is defined as

Lβ (x, z, λ) = l(x) + r(z)−
⟨
λ, ((B⊤B)−1(B⊤A))x− z

⟩
+

β

2
∥((B⊤B)−1(B⊤A))x− z∥2.

The penalty parameter β > 0 is a constant, and can be seen as a dual step-size. Unfor-
tunately, in many machine learning problems, the proximal mapping of the function l(x)
can not be explicitly computed, thus making ADMM inefficient. This inspires a linearized
ADMM algorithm (Yang and Yuan, 2013) by linearizing l(x) in the x-subproblem. Specifi-
cally, this algorithm considers a modified augmented Lagrangian function:

L̄β (x, x̂, z, λ) = l(x̂) + ⟨∇l(x̂), x− x̂⟩+ r(z)−
⟨
λ, ((B⊤B)−1(B⊤A))x− z

⟩
+
β

2
∥((B⊤B)−1(B⊤A))x− z∥2.

Then the LADMM algorithm solves problem (1) by generating a sequence
{
xk+1, λk+1, zk+1

}
as follows:

xk+1 := argmin
x

L̄β
(
x, xk, zk, λk

)
,

λk+1 := λk − β
(
((B⊤B)−1(B⊤A))xk+1 − zk

)
,

zk+1 := argmin
z

L̄β
(
xk+1, xk, z, λk+1

)
. (3)

In this paper, we slightly modify the above LADMM algorithm by imposing a proximal
term on the subproblem of x and update xk+1 via

xk+1 := argmin
x

L̄β
(
x, xk, zk, λk

)
+

δ

2
∥x− xk∥2,

which leads to a closed-form solution

xk+1 :=
[
δI + β((B⊤B)−1(B⊤A))⊤((B⊤B)−1(B⊤A))

]−1

·
[
((B⊤B)−1(B⊤A))⊤λk + β((B⊤B)−1(B⊤A))⊤zk + δxk −∇l(xk)

]
. (4)

The updating rule of zk+1 is the same as Eq. (3), and is equivalent to the proximal
operator problem:

zk+1 := argmin
z

[
1

2
∥z − uk∥2 + 1

β
r(z)

]
, (5)

101



Qiao†‡ Zhang† Su†‡ Lu†‡

Algorithm 1 LADMM

Choose the parameter β such that Eq. (6) is satisfied;
Initialize an iteration counter k ← 0 and a bounded starting point

(
x0, λ0, z0

)
;

repeat
Update xk+1 according to Eq. (4);
λk+1 ← λk − β

(
((B⊤B)−1(B⊤A))xk+1 − zk

)
;

Update zk+1 according to Eq. (5);
if some stopping criterion is satisfied; then

Break;
else

k ← k + 1;
end if

until exceed the maximum number of outer loop.

where uk = ((B⊤B)−1(B⊤A))xk+1 − λk+1

β . For all the regularized functions listed in Table
1, the above problem has a closed-form solution even though r(z) is nonconvex and non-
smooth (details are provided in (Gong et al., 2013)). Taking the Capped-ℓ1 regularized
function for example, its closed-form expression is given by

zk+1
i :=

{
x1, if hi(x1) ≤ hi(x2),
x2, otherwise,

where hi(x) =
1
2

(
x− uki

)2
+ γmin(|x|, θ)/β, x1 = sign(uki )max

(
|uki |, θ

)
, and

x2 = sign(uki )min
(
θ,
[
|uki | − γ/β

]
+

)
. We describe the details of the LADMM algorithm in

Algorithm 1.

4.2. Convergence Analysis

This subsection is dedicated to the convergence analysis of the LADMM algorithm for non-
convex regularized optimization. We first present a couple of technical lemmas as prepara-
tion.

Lemma 1 The norm of the dual variable can be bounded by the norm of the gradient of
the objective function and the iterative gap of primal variables

∥λk+1∥2 ≤ 1

λmin(((B⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤)
∥∇l(xk+1)∥2

+
3L2 + 3δ2

λmin(((B⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤)
∥xk+1 − xk∥2.

Similarly, the iterative gap of dual variables can be bounded as follows:

∥λk+1 − λk∥2 ≤ 3L2 + 3δ2

λmin(((B⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤)
∥xk − xk−1∥2

+
3δ2

λmin(((B⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤)
∥xk+1 − xk∥2.
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To proceed, we define a potential function Φ as

Φ(x, x̂, z, λ) = l(x) + r(z)−
⟨
λ, ((B⊤B)−1(B⊤A))x− z

⟩
+

β

2
∥((B⊤B)−1(B⊤A))x− z∥2

+
3L2 + 3δ2

βλmin(((B⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤)
∥x− x̂∥2.

This function is built to measure the violation of the optimality of the current iterate. Some
key properties of Φ(xk+1, xk, zk+1, λk+1) are stated below.

Lemma 2 Let the sequence {xk+1, λk+1, zk+1} be generated by LADMM, and δ and β sat-
isfy that δ > L

2 and

β ≥ max

{(
3L2 + 6δ2

)
/λmin(((B

⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤)

(
δ − L

2

)
,

3/(2β0λmin(((B
⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤))

}
, (6)

where β0 is defined in Assumption 3. Then Φ(xk+1, xk, zk+1, λk+1) is monotonously de-
creasing and uniformly lower-bounded.

Note that when δ = L
2 + β0 in the LADMM algorithm, Eq. (6) implies that β ≥

(3L2 + 6δ2)/(λmin(((B
⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤)

(
δ − L

2

)
) since

3L2 + 6δ2

λmin(((B⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤)
(
δ − L

2

) =
3L2 + 6δ2

β0λmin(((B⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤)

≥ 3

2β0λmin(((B⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤)
.(7)

Theorem 3 Let {xk+1, zk+1, λk+1} be generated by LADMM, and β and δ be specified in
Lemma 2. Then the sequence is bounded and has at least one limit point. Furthermore, we
have

∥xk+1 − xk∥ → 0,

∥zk+1 − zk∥ → 0,

∥((B⊤B)−1(B⊤A))xk+1 − zk+1∥ → 0,

and that any limit point of the sequence {xk+1, zk+1, λk+1} is a critical point of problem (1).
Finally, we have

min
0≤k≤n

∥xk − xk+1∥2 ≤ Φ(x1, x0, z1, λ1)− Φ∗

nδmin
, (8)

where Φ∗ is the uniformly lower bound of Φ(xk+1, xk, zk+1, λk+1), and δmin is defined as

δmin = δ − L

2
− 3L2 + 6δ2

βλmin(((B⊤B)−1(B⊤A))((B⊤B)−1(B⊤A))⊤)
> 0.

We remark that ∥xk+1−xk∥2 → 0 is the key condition for the convergence of LADMM.
The proof of Theorem 3 presented in Appendix shows that both ∥((B⊤B)−1(B⊤A))xk+1−
zk+1∥ and ∥zk+1− zk∥ can be bounded above by ∥xk+1− xk∥. Therefore, ∥xk+1− xk∥2 can
be used as a quantity to measure the convergence of the sequence generated by LADMM.
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Table 2: Statistics of datasets: n is the number of samples and d is the dimensionality of
the data

dataset classic hitech k1b la12 la1 la2 reviews sports a9a 20news mrms w8a lfcrc

n 7094 2301 2340 2301 3204 3075 4069 8580 32561 16242 8124 64700 84776
d 41681 10080 21839 31472 31472 31472 18482 14866 123 100 112 300 234

5. Experiments

5.1. Capped-ℓ1 Regularized Logistic Regression

In this section, we conduct the experiment to evaluate the performance of our method. We
propose a novel LADMM method as shown in Algorithm 2 for tackling problem (1). The
first task considered is Capped-ℓ1 regularized logistic regression problem:

min
x,z

l(x) + γmin {∥z∥1, θ}

s.t. x− z = 0. (9)

where l is the logistic function, which is widely used in various application fields (Chen et al.,
2016), and γ is the regularization parameter. We formulate problem (9) by eliminating z
as used in (Gong et al., 2013):

min
x

l(x) + γmin {∥x∥1, θ} . (10)

For problem (10) with a simple structure, it is not necessary to formulate it as a two-
variable equality constrained optimization. Instead, we can directly solve problem (10)
without any constraint by using several popular algorithms discussed in Section 2. We
select the GIST algorithm as the baseline since it has been proven more effective than other
competitive algorithms (Gong et al., 2013). The Barzilai-Borwein (BB) initialization and
the non-monotone line search criterion are not used for a fair comparison. Furthermore, it
is unfair to compare our method with the HONOR algorithm since the HONOR algorithm
is the combination of quasi-Newton method and the GIST algorithm while our method is
purely a first-order method.

Experiments are conducted on eight datasets2 summarized in Table 2. They are sparse
and high dimensional. We transform the multi-class datasets into two-class by labeling the
first half of all classes as the positive class. For each dataset, we calculate the lipschitz
constant L as its classical upper bound L̂ = 0.25max1≤i≤n ∥ai∥2. All algorithms are im-
plemented in Matlab and executed on an Intel(R) Core(TM) CPU (i7-4710MQ@2.50GHZ)
with 16GB memory, and we use the code of the GIST algorithm available online3. We
choose the staring point of all algorithms as zero vectors. We terminate all algorithms if
the relative change of the two consecutive objective function values is lower than 10−5 or
the number of iterations exceeds 1000.

2. https://www.shi-zhong.com/software/docdata.zip
3. http://www.public.asu.edu/˜pgong5/
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Algorithm 2 LADMM with line search

Initialize starting point
(
x0, λ0, z0

)
;

repeat
Initialize βk;
repeat

Update xk+1 according to Eq. (4) with β replaced by βk;
λk+1 ← λk − βk

(
((B⊤B)−1(B⊤A))xk+1 − zk

)
;

if line search criterion is satisfied then
Break;

end if
update βk;

until exceed the maximum number of inner loop;
Update zk+1 according to Eq. (5) with β replaced by βk;
if stopping criterion is satisfied then

Break;
end if
update counter state;

until exceed the maximum number of outer loop.

Figure 1 shows the objective value as the function of time with different parameter set-
tings. We have the following observations: (1) Both LADMM-Monotone-Last and LADMM-
Monotone decrease the objective function value rapidly and achieve the fastest convergence
speed. Moreover, LADMM-Monotone achieves the smallest objective function values consis-
tently. (2) LADMM-Monotone-Last and LADMM-Monotone may give rise to an increasing
the objective function at the beginning but finally converges and has a faster overall con-
vergence speed than GIST, which indicates the superiority of LADMM-type algorithms for
solving (1).

5.2. Generalized Capped-ℓ1 Regularized Logistic Regression

The proposed algorithm is more powerful for problems with complex equality constraints,
for which proximal splitting methods such as GIST and HONOR are no longer applicable.
An important class of these problems is called the generalized lasso (Tibshirani and Taylor,
2011):

min
x

l(x) + γ∥Fx∥1, (11)

where l is the logistic function. γ is the regularization parameter and F is a penalty matrix
promoting the desired sparse structure of x. To meet the goal of exploring the sparse
structure of the graph, we replace the ℓ1-norm by the nonconvex Capped-ℓ1 norm, and
obtain the Generalized Capped-ℓ1 regularized logistic regression:

min
x

l(x) + γmin {∥Fx∥1, θ} . (12)

By introducing z = Fx, problem (12) is formulated as

min
x,y

l(x) + γmin {∥y∥1, θ}

s.t. Fx− y = 0. (13)
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Figure 1: Objective Value vs Time of GIST and LADMM on Capped-ℓ1 regularized lo-
gistic regression problem. The parameters of proposed method are setted ex-
actly according to the theory analysis, while the parameters of GIST are setted
by default. LADMM-Monotone-Last/GIST-Monotone-Last refer to the AdaL-
ADMM/GIST algorithm using the monotone line search criterion and last rule
to initialize parameters. LADMM-Monotone/GIST-Monotone refer to the AdaL-
ADMM/GIST algorithm using the monotone line search criterion to initialize
parameters. LADMM/GIST refer to the LADMM/GIST algorithm using the
sufficiently large constant.

Experiments are conducted on five binary classification datasets: 20news4, a9a, mushrooms,
w8a5, and lfcrc6. We use 80% samples for training and 20% for testing and the regularization
parameter λ = 10−5 for all datasets. We generate F by sparse inverse covariance selection
(Scheinberg et al., 2010).

Experimental results are presented in Figure 2. We observe that the propossed algorithm
solves both problem (11) and problem (13) efficiently. Compared with ℓ1 regularization, we
observe that Capped-ℓ1 regularization term recover the better sparse solution, which results
in the smaller test loss. This coincides with some results about statistical learning (Zhang,
2010b, 2013), and further demonstrates the efficacy of the proposed algorithm for solving
nonconvex compositely regularized optimization.

6. Conclusions

We presented the first detailed convergence analysis of the linearized alternating direction
method of multipliers (LADMM) algorithm in solving constrained nonconvex regularized

4. www.cs.nyu.edu/˜roweis/data.html.
5. https://www.csie.ntu.edu.tw/˜cjlin/libsvm/.
6. London financial credit risk control (lfcrc) dataset, provided by Data Scientist Yichi Zhang.
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Figure 2: Test Loss vs Time on Generalized Capped-ℓ1 regularized logistic regression and
Generalized Lasso problems. For problems with complex equality constraints,
for which proximal splitting methods such as GIST and HONOR are no longer
applicable.

optimization with a large class of nonconvex penalties. It turns out that the proposed
algorithm achieves the same rate of convergence as analysed. Experimental results on eight
datasets demonstrated that the proposed algorithm outperforms the GIST algorithm. The
proposed algorithm is well-suited for addressing constrained compositely regularized loss
minimization when graph-guided regularization. In fact, the proximal splitting methods
like GIST and HONOR are no longer applicable to this kind of problems. Experimental
results on the other four datasets demonstrated that the proposed algorithm for solving a
constrained nonconvex regularized optimization problem can attain better solutions than
those obtained through solving its convex counterpart, which again validates the efficacy of
the proposed algorithm.
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