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Abstract

Distance Metric Learning (Dml) aims to find a distance metric, revealing feature relation-
ship and satisfying restrictions between instances, for distance based classifiers, e.g., kNN.
MostDmlmethods take all features into consideration while leaving the feature importance
identification untouched. Feature selection methods, on the other hand, only focus on fea-
ture weights and are seldom directly designed for distance based classifiers. In this paper,
we propose a Feature AwaRe Metric learning (Farm) method which not only learns the
appropriate metric for distance constraints but also discovers significant features and their
relationships. In Farm approach, we treat a distance metric as a combination of feature
weighting and feature relationship discovering factors. Therefore, by decoupling the metric
into two parts, it facilitates flexible regularizations for feature importance selection as well
as feature relationship constructing. Simulations on artificial datasets clearly reveal the
comprehensiveness of feature weighting for Farm. Experiments on real datasets validate
the improvement of classification performance and the efficiency of our Farm approach.

Keywords: Distance Metric Learning; Important Feature Identification; Feature Aware
Metric

1. Introduction

The performance of distance based classifiers such as kNN and RBF kernel method mainly
depends on the distance between instances, and a well defined distance may lead to high
generalization performance. Distance Metric Learning (Dml) aims to find a proper distance
which can reveal the true data distribution well and facilitates the classification. Existing
researches mainly focus on the Mahalanobis distance (Weinberger and Saul, 2009). Given
instances {xi,xj} ∈ Rd, the (squared) Mahalanobis distance with metric M ∈ Rd×d is
defined as:

dist2M (xi,xj) = (xi − xj)
⊤M(xi − xj) . (1)

The metric M is a symmetric Positive Semi-Definite matrix, which implies a certain type
of relationships between features (Friedman et al., 2008).

Since ordinary Dml methods usually learn metrics with few zero elements, we consider
this type of metrics as full metric which implicitly indicates the general relationship between
all features. There are lots of on-the-shelf Dml methods for learning the full metric, e.g.,
LMNN (Weinberger and Saul, 2009) and ITML (Davis et al., 2007). By neglecting the
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relationship between features, Dml algorithms can degenerate to feature weighting meth-
ods (Gao et al., 2014). In this case, the learned metric is restricted to a diagonal matrix
whose diagonal elements reflect the importance of each feature.

Full and diagonal metrics are two directions of upmost extents. In detail, full metric
lacks of the ability on distinguishing the importance of features, while diagonal metric
does not have the ability of figuring the feature correlations out. Structured sparse metric
is desirable: zero elements in entire rows/columns indicate irrelevancy of corresponding
features and the remaining ones reflect the relationship between features. Researchers
focus on learning this type of structured sparse metric by directly imposing types of sparse
constraints on M (Lim et al., 2013) which either leads to the high computational cost or
difficult optimization strategy resulting from the symmetric property of M .

In order to incorporate the abilities of feature relationship discovering and feature se-
lection in one Dml approach, we define the Feature AwaRe Metric (Farm) property of a
metric, and consequently propose the Farm approach which jointly discovering the feature
relationship and selecting important features. In this work, we point out that a structured
sparse metric can be decomposed into full and diagonal parts, which respectively models the
feature relationship and controls the model complexity. Sparsity on the weighting part con-
sequently makes the feature aware metric with zero-value columns and rows. To the best
of our knowledge, we are the first to perform Dml with feature relationship discovering
and feature selection simultaneously in the distance calculation. Except for the compo-
sition property of feature aware metric, the sparse structure leads to acceleration of the
entire training procedure of Farm as well, and in consequence, Farm can be applied to
high-dimensional scenarios.

The main contributions can be summarized as follows:

• A Feature AwaRe Metric learning (Farm) method is proposed to learn structured
sparse metric which incorporates feature correlation modeling and feature selection in
distance based learning scenarios;

• Sparse structures of feature aware metric also yield fast metric learning procedures,
and extend the proposed Dml approach to high-dimensional cases;

• Experiment results validate effectiveness, efficiency and robustness of the proposed
method on different types of data.

The rest of this paper is organized as follows: we first introduce the related work, followed
by the proposed Farm method and its implementation details. Experiments are presented
after a discussion on the differences between Farm and other sparse metric learning methods.
Finally we conclude this work.

2. Related Work

Dml aims to learn a metric for better distance based classification in supervised learning
paradigm by utilizing different regularizations and types of side information. For instance,
information theoretical approaches based on Bregman optimization (Davis et al., 2007);
large margin constraints forced between instances in a triplet (Weinberger and Saul, 2009).
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(Kulis, 2012) and (Bellet et al., 2013) provide a concrete review on metric learning algo-
rithms. These Dml methods directly learn metrics based on all features while leaving
considerations of feature importance untouched.

Feature importance evaluation is also a prominent issue for generalization abilities, es-
pecially for cases with irrelevant features (Friedman et al., 2008) (Choi et al., 2010) (Az-
mandian et al., 2012). Feature selection methods filter the irrelevance and reduce the
computational burden usually by utilizing sparse learning techniques (Hastie et al., 2009),
e.g., Lasso (Tibshirani, 1996) and sparse SVM (Bi et al., 2003). In addition, ℓ2,1-norm for
matrices is also often used in multi-task (Liu et al., 2009) and multi-view learning (Wang
et al., 2013) to achieve a sparse set of common features. Feature selection/weighting can be
regarded as a degradation of learning on diagonal metric (Gao et al., 2014), which obviously
neglects the interactions between features and will seriously affect the distance calculation.

3. Farm Approach

This section gives the detailed description of Feature AwaRe Metric learning (Farm) ap-
proach after a preliminary notation explanation.

3.1. Notations

In supervised Distance Metric Learning (Dml) task, it is supposed there are N instances
{(xi, yi)}Ni=1. Each instance xi ∈ Rd with label yi ∈ {1, . . . , C} and C is the number
of classes. Sd ⊆ Rd×d is the set of symmetric matrices, and S+

d is the Positive Semi-
Definite (PSD) cone. The goal ofDml is to learn a metricM ∈ S+

d satisfying the constraints

derived from side information. For w ∈ Rd, ℓ1-norm of w, i.e., ∥w∥1 =
∑d

i=1|wi|, is the sum
of absolute values of each elements. Tr(·) is the trace of a matrix and ∥M∥F =

√
Tr(MM⊤)

is the Frobenius norm of matrix M . M ’s ℓ2,1-norm is the sum of ℓ2-norm value of all its rows,
while its nuclear norm ∥M∥∗ is the sum of all its singular values. Operator [·]+ = max(·, 0)
preserves the positive part of its input value.

3.2. Decoupling of Feature AwaRe Metric

Mahalanobis distance dist2M (xi,xj) in Eq. 1 is often used to measure similarity between two
instances xi and xj . Mahalanobis distance calculation makes use of the full set of features
while it is the truth that there are irrelevant and redundant features in concrete applications.
Therefore original Mahalanobis distance cannot explicitly indicate the feature importance
in the distance calculation. Feature selection, on the other hand, can pick up important
feature sets while leaving the high-order feature relationship (e.g., pairwise relationship)
seldom considered. In order to calculate distances with key features in accordance with the
data distribution, it is desired to incorporate a mechanism for identifying helpful features
with sparse weighting coefficients.

In order to solve the above problem, we introduce a novel Dml approach after defining
the property of Feature AwaRe Metric (Farm), which restricts a matrix M̂ ∈ S+

d with
entire rows and corresponding columns as zero elements. It is obvious that the zero rows
and columns are related to features that should be neglected during the distance calculation,
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while the remaining non-zero elements in M̂ model the feature relationship and contribute
to the distance value computation.

Directly forcing the properties of feature aware metric leads to complicated optimization
problems, such as symmetric ℓ2,1-norm minimization, which is generally considered as a hard
problem (Lim et al., 2013). In this paper, we decouple the feature aware metric M̂ into a
full metric M and a diagonal weight separately as follows:

M̂ = diag(w)Mdiag(w) , (2)

the diag(·) operator transforms a weighting vector w ∈ Rd to a diagonal matrix, i.e.,
diag(w) ∈ Sd, using sparse vector w as its diagonal elements. The main difference between
metric M̂ in Eq. 2 and the metric used in Mahalanobis distance in Eq. 1 is that the feature
aware metric is considered by combining a full metric M with an additional weights vector
w. It is obvious that wi = 0 results in zero-value for i-th row and column, which means the
corresponding feature i is useless and the relationships between the i-th feature and others
will be neglected as well. From the structure and constraints of w and M , we can regard
them as a feature selector and a relationship constructor, respectively. The decoupling of
feature aware metric makes it more flexible than the traditional one, e.g. structured M̂ can
degenerate to a full metric when elements in weights w all equal to 1, and the structured
sparsity of M̂ can be preserved by sparse constraint on w. It is noteworthy that M̂ can be
easily proved as a valid PSD metric. Consequently, distance between xi and xj using new
metric M̂ can be summarized as:

dist2
M̂
(xi,xj) = (xi − xj)

⊤diag(w)Mdiag(w)(xi − xj) . (3)

The dist2
M̂
(xi,xj) can be understood from two aspects: first, diag(w)Mdiag(w) is the

feature aware metric, hence the difference is measured by taking feature importance into
consideration; second, (xi−xj)

⊤diag(w) is a weighted difference between instances, i.e., the
feature aware distance metric can be regarded as a Mahalanobis distance with full metric
M on weighted instance space.

3.3. Flexible Adaptation of Farm Method

By incorporating different regularizers on w and M , the structure of w and M can be
turned into designed forms and can be used for preserving the structure of M̂ as well. In
this paper, we use triplets T = {xt

i,x
t
j ,x

t
k}Tt=1 as side information. In each triplet, xt

j

should be more similar to xt
i than xt

k. A satisfied distance metric should make the distances
between dissimilar instances larger than those between similar ones. Therefore, objective
function of Farm method is:

min
M,w

∑
t∈T

ℓ(dist2
M̂
(xt

i,x
t
k)− dist2

M̂
(xt

i,x
t
j)) + λ1Ω(M) + λ2∥w∥1 , (4)

where M̂ is the metric defined in Eq. 3. Loss term ℓ(·) is a decreasing convex function,
e.g., hinge loss, which acts as a surrogate for satisfying triplets constraints among distances.
There are two regularizers for controlling and inducing prior knowledge into full metric and
structured sparse weighting vector respectively. Trade-off parameters λ1, λ2 ≥ 0.
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The main property of Farm is that it not only takes high-order relationships between
features into consideration, but also keeps the sparse property for feature selection of the
learned metric. Structure of feature aware metric is controlled by the regularizers on two
components of M̂ . By controlling the ℓ1-norm of w, elements in w are forced to be sparse,
and hence zero elements in w will lead to zero-value rows and corresponding columns of
M̂ , which consequently acts as the role of feature selector. Besides structural sparsity, the
regularizer Ω on full metric component M is also flexible. For example, when Ω(M) =
∥M∥2F , it can be used to prevent overfitting; when Ω(M) = ∥M∥1, elements in M are
also sparse. Thus, in addition to features selected by w, some feature correlations are also
selected (Friedman et al., 2008); when Ω(M) = ∥M∥∗, M should be low rank and sparse
on principal components is forced, so the combined metric M̂ is a sparse and low rank one.
Hence its block property can be discovered (Richard et al., 2012) to benefit the learning on
different feature attribute sets.

The loss term ℓ(·) is used for making distances between instances satisfy triplets con-
straints as much as possible. In our implementation, ℓ(·) is instantiated as the smooth hinge
loss (Qian et al., 2015):

ℓs(x) =


0 if x ≥ 1
1
2 − x if x ≤ 0
1
2(1− x)2 otherwise ,

which keeps a margin between the dissimilar pairs to improve generalization ability and is
convenient for optimization as well. Regularization on full metric is configured as Ω(M) =
∥M∥2F to make it robust to overfitting.

3.4. Optimization Strategy

Farm method in Eq. 4 jointly optimizes on a full metric M and feature weighting vector w.
Due to the relevance between optimization variables, we solve in an alternative style, i.e.,
we optimize on w with M fixed and vice versa. In each subproblem, it is an optimization
problem on a smooth hinge loss plus a regularizer, and both of them can be optimized
efficiently. Detailed optimization process is summarized as follows.
Fix w and solve M : When feature weighting vector w is fixed, it equals to a traditional
metric learning problem on weighted instances. We can define the transformed instance:
x̂ = diag(w)x = w⊙x ∈ Rd, where ⊙ means the element-wise product. Thus we only need
to solve the problem on transformed instances x̂:

min
M∈S+

d

∑
t∈T

ℓs(dist
2
M (x̂t

i, x̂
t
k)− dist2M (x̂t

i, x̂
t
j)) + λ1∥M∥2F

= min
M∈S+

d

∑
t∈T

ℓs(⟨M, (x̂t
i − x̂t

k)(x̂
t
i − x̂t

k)
⊤ − (x̂t

i − x̂t
j)(x̂

t
i − x̂t

j)
⊤⟩+ λ1∥M∥2F , (5)

where ⟨A,B⟩ = Tr(A⊤B). For simplicity, we define Ât = (x̂t
i − x̂t

k)(x̂
t
i − x̂t

k)
⊤ − (x̂t

i −
x̂t
j)(x̂

t
i − x̂t

j)
⊤ ∈ Sd. Due to the smooth property of the whole objective, this subproblem

can be solved with accelerated projected gradient descent (Li et al., 2014). This method
acts in a gradient descent manner and projects current solution to the feasible domain after
each descent operation. It is accelerated using Nesterov’s method (Nesterov, 2004). The
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gradient of smooth hinge loss ℓs(·) w.r.t. full metric M can be decomposed to the sum of

the gradient of each component
∂
∑

t∈T ℓs(⟨M,Ât⟩)
∂M =

∑
t∈T

∂ℓs(⟨M,Ât⟩)
∂M , and

∂ℓs(⟨M, Ât⟩)
∂M

=


0 if ⟨M, Ât⟩ ≥ 1

−Ât if ⟨M, Ât⟩ ≤ 0

(⟨M, Ât⟩ − 1)Ât otherwise

.

Then we just need to compute the gradient for each triplet and then sum them together to
get the gradient of all triplets. The gradient of the subproblem in Eq. 5 can be obtained:

∑
t∈T

∂ℓs(⟨M, Ât⟩)
∂M

+ λ1M .

After gradient step, the current solution should be projected back to the PSD cone, which
can be done by neglecting eigen-vectors with negative eigen-values after eigen-decomposition.
Fix M and solve w: When M is fixed, we can do the following transformation on distance:

dist2(xi,xj) = (xi − xj)
⊤diag(w)Mdiag(w)(xi − xj)

= w⊤diag(xi − xj)Mdiag(xi − xj)w .

Thus distance can be represented as a quadratic form on feature selection weights w. With
the transformation, the difference of distances for the t-th triplet can be transformed as:

dist2(xt
i,x

t
k)− dist2(xt

i,x
t
j) = w⊤diag(xt

i − xt
k)Mdiag(xt

i − xt
k)w

−w⊤diag(xt
i − xt

j)Mdiag(xt
i − xt

j)w

= w⊤Atw .

Here we use At = diag(xt
i − xt

k)Mdiag(xt
i − xt

k) − diag(xt
i − xt

j)Mdiag(xt
i − xt

j) ∈ Sd to
denote the term not related with w. So the optimization subproblem on w becomes:

min
w

∑
t∈T

ℓs(w
⊤Atw) + λ2∥w∥1 . (6)

This subproblem is a composite of smooth loss function ℓs(·) and non-smooth regularizer
ℓ1-norm, and we solve it by fast iterative shrinkage-thresholding algorithm (FISTA) (Beck
and Teboulle, 2009). The FISTA method does gradient descent on the smooth part of the
objective function in Eq. 6 and then optimizes the non-smooth ℓ1-norm term. The gradient
of smooth hinge loss w.r.t. weighting vector w can be computed similarly like the gradient
of M :

∇ℓs(w) =
∂
∑

t∈T ℓs(w
⊤Atw)

∂w
=

∑
t∈T

∂ℓs(w
⊤Atw)

∂w
,

and

∂ℓs(w
⊤Atw)

∂w
=


0 if w⊤Atw ≥ 1
−2Atw if w⊤Atw ≤ 0
2(w⊤Atw − 1)Atw otherwise

.
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After using gradient descent to get an intermediate solution on current solution w′, FISTA
updates w by solving a proximal sub-problem:

proxλ2∥·∥1(w
′) = min

w

L

2
∥w − (w′ − 1

L
∇ℓs(w

′))∥22 + λ2∥w∥1 , (7)

where L > 0 is the Lipschitz constant of smooth objective, which can be tuned by back-
tracking strategy. The proximal subproblem in Eq. 7 takes an intermediate solution after
gradient step as input which can be solved in closed form (Parikh and Boyd, 2013). It
minimizes the non-smooth term ∥w∥1 in the neighborhood of the intermediate solution w′.

Optimization step on M and w is iteratively conducted. Optimizing M focuses on
exploiting the feature relationship for distance calculation, and optimization performed on
w aims to select features given the current full metric M . It is notable that as iterations
proceed, the sub-problem will focus more on important features. Therefore it is convenient
for distance computation due to the redundant feature removing. In each subproblem, our
method can guarantee to get an optimal solution, and the objective value can be decreased,
so the whole objective function can be decreased in each run. Therefore, the Farm approach
will eventually obtain a local optimal solution. The convergence can be proved by the
iterative decrease of the function value, and it is also validated in experiments.

4. Implementation Details

Due to the alternative optimization strategy used in our Farm method, the initialization
plays a significant role to get good performance on the convergence rate. In our implemen-
tation, we solve feature selection weights w first with an identity matrix to initialize metric
M . The reason lies in the fact that: optimization on w is relatively less costly since w is
a d-dimension vector, smaller than the size of metric M (a d× d matrix). After we obtain
the updated w, irrelevant and some redundant features are removed, therefore the compu-
tational burden of the following stage, updating the full metric M , can be greatly reduced,
since we only need to learn a metric on the selected features. It is noteworthy that the first
step of selecting features via updating w with identity matrix picks up important features
as well as preserves distance properties since it equals selecting features in Euclidean space
with Dml objectives.

In each iteration of the update on M , only a small portion of M elements are affected,
i.e., these elements correspond to relevant features indicated by wi ̸= 0. This can greatly
accelerate the M update procedure. It is notable that the initial selection process filters
part of features untouched and following updates affect the remaining part of M . M is
nearly a full metric which is not sparse. In the sub-problem on feature weights w with fixed
metric M , by the relationship M = LL⊤, we can use eigen-decomposition to transform last
learned metric M to a projection L ∈ Rd×d′ . When computing distances, we only need to
decompose M at the start of the sub-problem optimization process and get new projection
with L̂ = diag(w)L, which equals to elements product for each column of L. With projection
L̂, the distance can be computed in the Euclidean form in a low dimensional space:

dist2(xi,xj) = (xi − xj)
⊤L̂L̂⊤(xi − xj) = ∥L̂⊤(xi − xj)∥2 .

The projected dimension also depends on the number of nonzero elements in the current
solution of w. Thus, with sparse selected features, it can be even smaller than d′.
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Farm rMLR ITML DNE LMNN

Figure 1: Learned results of different metric learning methods on data with 48-dimension random
noise added (each metric is scaled to the same size). The degree of color is in proportion to the
absolute value of elements in each metric. Three rows are the results on dataset autompg, mfeat f,
and segment respectively; each column shows results of each method.

5. Discussion

There are some existing researches about learning a sparse metric. In (Ying et al., 2009;
Huang et al., 2009), the authors consider the Farm properties by learning a metric with
sparse principal components. However, they did not directly learn a distance metric in the
original feature space, while considering the Farm property in other unitary spaces. This
results in their proposed method lacking the ability of feature importance weighting.

And as we have mentioned that, to achieve Farm properties forM , we can directly apply
symmetric ℓ2,1-norm on the full metric M . However, direct manipulation of symmetric ℓ2,1-
norm should be with a great challenge. Lim et al. (2013) use both trace norm and symmetric
ℓ2,1-norm to make matrix parameters with jointly row and column sparse property, which
can be used in the task of Farm. In their formulation, ADMM technique is involved.
However, the entire optimization process is with a heavy burden, because ADMM converges
slowly and in each iteration, proximal projections are also costly.

Nevertheless, our Farm approach decouples the Metric M̂ into two parts, i.e., a full
metric M and a structured sparse coefficient vector w, and learns w and M alternatively,
which makes the entire Farm approach efficient and can be applied to large scale data.
Besides, the decoupled variable w can directly perform the feature weighting/selection tasks
on original feature space where the physical meaning of features is generally preserved.
In terms of the usage of our approach, we can perform classification with learned full
metric in applications where feature relationship is emphasized, or with M̂ where both the
feature importance and relationship are considered; while for feature selection dominate
applications, the w or M̂ can be used in testing as well.
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6. Experiments

In experiments, we validate the classification and feature selection performance, scalability
and optimization property of our Farm method. In detail, we first show the effectiveness
of Farm approach on identifying key features on synthetic data, then classification perfor-
mance of Farm is compared with sate-of-the-art Dml methods as well as feature selection
methods. At last, we test the scalability of Farm method and its convergence property.

6.1. Feature Grouping and Feature Importance Detection

The main characteristic of Farm is its ability of identifying key features for distance mea-
surement, which has two perspectives. First, as a general feature selection method, features
related to labels (classes) should be more important than other features. Second, when
concatenated with distance based classifiers, such as kNN, features related to distance com-
putation should have more importance.

We conduct our investigation from synthetic data construction via manipulation of UCI
datasets. For dataset X ∈ RN×d, we generate a noisy counterpart Z ∈ RN×d2 with
Zij ∼ N (0, 1) and obtain the combined data X̂ = [XZ] ∈ RN×(d+d2). The dimension of
the noise part equals to 48, i.e., d2 = 48. Farm is compared with rMLR (Lim et al., 2013),
ITML (Davis et al., 2007), DNE (Zhang et al., 2007) and LMNN (Weinberger and Saul,
2009). The learned metric of each method is showed in Fig. 1 on datasets autompg, mfeat f,
and segment. Gray levels of pixels are proportioned to the absolute value of corresponding
metric coefficients, i.e., important features or feature correlations are with higher gray scale
values. Since the original data is placed first in the training input, top left corner of learned
metric corresponds to the weights of the original features and hence is expected as the only
dark area of the entire plot. From the learned metrics, Farm successfully indicates the area
corresponding to noise features on all 3 datasets, i.e., detects the true features related to
label. However, DNE, ITML and LMNN almost regard all features contained with noise
as useful ones; rMLR can detect true features on the last two datasets, but is still affected
by noise from the lower contrast ratio of the entire plots on 3 datasets. From the above
experiment, Farm can group features by relevance according to the task, which validates
its ability to select features.

To directly test the ability of feature selection of FARM approach, we conduct more
investigations with synthetic datasets. We randomly generate 500 instances with 50 dimen-
sions with random seed equal to 100. Each dimension of the data is generated by a normal
distribution with different mean and variance values. Thus, there are some minor relation-
ships among different dimensions since they are all created by the same type of distribution
but with different parameters. Then we randomly choose 5 dimensions from all features,
i.e., [5, 9, 21, 29, 37]. K-Means are applied on all instances but only on the selected dimen-
sions to cluster data into 10 classes and clustering index can be used as labels for instances.
Thus, distances used in the clustering are computed only based on the selected features.
Consequently, instances of the same class have small distances and the distance measure is
only based on the selected 5 features. In addition, after extracting these five dimensions,
we check their impact on distance calculation by comparing variations between pairwise
distance of all samples and the one computed without one of the 5 dimensions. Average
absolute distance derivations are 6.839, 1.375, 0.007, 0.727 and 0.970, which indicate di-
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Figure 2: Left: Weight values of Farm, rMLR and Lasso learned on synthetic data. Right: Weight-
ing path of each feature when parameter λ2 of Farm is changed. For details, please refer to the
main context.

mension 5, 9 are the most important ones, and 29, 37 are less important. We can view
dimension 21 as irrelevant feature and other unselected dimensions as noise.

Farm is compared with rMLR and Lasso (Liu et al., 2009) on this dataset, which have
feature selection ability. rMLR can output a structured metric with sparse rows and columns.
In Lasso with square loss, ℓ2,1-norm is used to make classifier coefficients sparse among
different features. The ℓ2-norm value for each dimension is used as feature weights for both
methods’ outputs. 70% of the synthetic data are used for training and the remaining is used
for test evaluation. The classification errors of Farm, rMLR and Lasso on the test data
are 38.01%, 38.60% and 52.63% respectively. Since labels are generated by distance based
clustering, Dml can achieve better results than Lasso. From left plot in Fig. 2, feature
weights learned by Farm, rMLR and Lasso are in solid line, dash line and dash-dotted line
respectively. X-axis is the index for each feature, and y-axis is the normalized weight value.
Larger weight value means the corresponding feature is more important. Indexes of selected
features used in label generation are annotated by vertical dash-dotted lines. From Fig.2, it
is showed that Farm can identify all 4 important latent features and the difference between
them is stressed, which is in accordance with their impact on distance value computation.
For redundant index 21, Farm gives it less weight compared to the other four but can
tell it from noisy dimensions. In contrast, Lasso can find the four key features but will
mistakenly regard noises as useful ones. Besides, rMLR can’t distinguish differences among
learned features while it is able to recognize important ones. The right plot in Fig. 2 shows
the weight values of 9 most important features when the sparse parameter λ2 of Farm
is changed. Parameter ranges from 1e-10 to 1e5 with 20 equally log-scale partitions and
x-axis shows the index. When parameter becomes smaller, more features will be identified
and the more important ones will have larger values. Numbers besides path lines are the
indexes of features. From the figure, Farm can detect all 4 important features in accordance
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Table 1: Comparisons of classification performance (test errors, mean ± std.) with other methods.
Farmf and Farmc represent predicts using learned full metric M and combined metric respectively.
Best results on each dataset are in bold. Last two rows list the win/tie/lose counts on all datasets
with t-test against other methods at significance level 95%.

Name Farmf Farmc PLML LMNN ITML EIG SCML rMLR Euclid

autompg .204±.035 .207±.036 .265±.048 .261±.032 .292±.032 .266±.031 .253±.026 .273±.030 .260±.036
clean1 .094±.023 .091±.023 .098±.027 .084±.020 .141±.024 .127±.021 .100±.027 .203±.030 .139±.023
fourcla .000±.002 .000±.001 .000±.001 .001±.001 .002±.003 .000±.001 .000±.000 .165±.128 .001±.002
german .278±.019 .281±.022 .280±.016 .291±.020 .288±.021 .284±.014 .302±.021 .273±.020 .296±.021
glass .330±.056 .318±.062 .389±.050 .301±.046 .311±.038 .314±.050 .328±.054 .457±.052 .307±.042

hayes-r .256±.051 .260±.046 .436±.201 .305±.065 .342±.080 .289±.067 .296±.053 .335±.056 .398±.046
house-v .046±.015 .046±.015 .121±.240 .056±.017 .063±.023 .080±.024 .066±.019 .079±.024 .083±.025
liver-d .362±.031 .361±.035 .361±.055 .360±.046 .377±.052 .380±.037 .371±.042 .372±.049 .384±.040
mfeat f .164±.011 .163±.013 .183±.021 .171±.009 .189±.010 .229±.079 .185±.012 .181±.012 .201±.010
mfeat k .029±.006 .027±.006 .040±.007 .026±.004 .039±.007 .051±.008 .047±.008 .036±.007 .044±.007
segment .030±.007 .029±.007 .041±.031 .038±.007 .050±.012 .059±.016 .041±.008 .030±.007 .050±.007
sonar .147±.050 .150±.039 .171±.048 .145±.032 .174±.039 .159±.042 .193±.045 .209±.052 .168±.036

W / T / L Farmf vs. others 5 / 7 / 0 6 / 3 / 3 8 / 3 / 1 8 / 4 / 0 8 / 3 / 1 9 / 3 / 0 9 / 1 / 2
W / T / L Farmc vs. others 6 / 6 / 0 6 / 5 / 1 8 / 4 / 0 7 / 5 / 0 8 / 3 / 1 9 / 3 / 0 9 / 3 / 0

with their importance in distance computation. Besides, true dimensions used for distance
computation are given larger weights compared with other features.

6.2. Comparisons against Dml Methods

To show the effectiveness of the learned metric, we compare Farm approach with some
state-of-the-art Dml methods on 12 UCI datasets, namely PLML (Wang et al., 2012),
LMNN (Weinberger and Saul, 2009), and ITML (Davis et al., 2007), EIG (Ying and Li,
2012), SCML (Shi et al., 2014), rMLR (Lim et al., 2013). Since Farm learns full metric
M and combined one M̂ , we test both of them and denote the results using M and M̂ as
Farmf and Farmc respectively. We do experiments on each data 30 times, and in each
trial, we randomly split the whole data into two parts, 70% for training and the remaining
for test. Parameters for each training methods are tuned in the first run on the training
data, and fixed for all other trials. Each method learns a metric from training data, and
the quality of the learned metric is measured with kNN (k = 3) on the test data. Mean
and standard derivation (std.) of test error are recorded. We also list directly kNN with
Euclidean distance as a baseline, which is shown as Euclid in our results Table 1. From
comparison results, Farm can achieve best results on 6/12 datasets, and win a lot compared
with other methods on most datasets. Due to the page limit, we only report t-test results
when Farmf and Farmc are compared with DNE, both are 9/3/0. Thus, the learned metric
can help improve the ability of subsequent distance based classifier. In addition, this result
also shows that the structured sparse metric does help for distance computation.
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Table 2: Comparisons of classification performance (test errors, mean ± std.) with other methods.
Farmw and Farmc represent predicts using weights w and combined metric respectively. Best
results on each dataset are in bold. Last two rows list the win/tie/lose counts on all datasets with
t-test against other methods at significance level 95%.

Name Farmw Farmc LassoNN Lasso ℓ1SVMNN ℓ1SVM ℓ1LRNN ℓ1LR ReliefF

autompg .204±.036 .207±.036 .288±.034 .362±.362 .260±.036 .340±.034 .260±.035 .353±.035 .261±.033
clean1 .124±.022 .091±.023 .202±.037 .226±.027 .138±.030 .192±.025 .140±.024 .192±.024 .139±.031
fourcla .000±.001 .001±.002 .333±.026 .307±.021 .333±.026 .313±.022 .333±.026 .313±.020 .329±.028
german .278±.018 .281±.022 .300±.025 .316±.025 .301±.020 .314±.020 .299±.016 .311±.021 .292±.021
glass .290±.050 .322±.065 .327±.046 .455±.034 .307±.042 .421±.041 .306±.042 .434±.040 .300±.049

hayes-r .250±.043 .260±.046 .398±.046 .516±.044 .398±.046 .510±.040 .398±.046 .512±.042 .372±.060
house-v .042±.013 .046±.015 .118±.024 .066±.020 .122±.022 .079±.024 .122±.025 .083±.023 .063±.034
liver-d .371±.038 .361±.035 .398±.045 .383±.042 .400±.041 .372±.041 .400±.041 .375±.039 .386±.050
mfeat f .160±.012 .163±.013 .184±.011 .220±.012 .201±.010 .246±.013 .201±.010 .251±.012 .177±.010
mfeat k .031±.006 .027±.006 .042±.006 .068±.008 .044±.007 .086±.009 .044±.007 .086±.009 .034±.006
segment .030±.006 .029±.007 .040±.006 .187±.010 .050±.007 .176±.010 .050±.007 .182±.010 .045±.007
sonar .163±.041 .150±.039 .295±.056 .257±.047 .202±.053 .253±.042 .276±.040 .255±.046 .184±.051

W / T / L Farmw vs. others 12 / 0 / 0 11 / 1 / 0 11 / 1 / 0 11 / 1 / 0 11 / 1 / 0 11 / 1 / 0 9 / 3 / 0
W / T / L Farmc vs. others 11 / 1 / 0 11 / 1 / 0 11 / 1 / 0 11 / 1 / 0 11 / 1 / 0 11 / 1 / 0 11 / 1 / 0

6.3. Comparisons against Feature Selection Methods

In this part, we will validate the feature selection ability of Farm. We compare our method
with feature selection based methods on the above datasets. Besides testing using learned
metric M̂ , we can also select features using the learned weight w first, and then use kNN
to do classification. This type of learner is denoted as Farmw. We compare Farm with
some feature selection methods such as those in (Hastie et al., 2009) and (Liu et al., 2009),
which use ℓ1-norm and ℓ2,1-norm to select important features. These methods denoted as
Lasso in the result table. We also make a comparison between our method and classic Reli-
efF (Robnik-Šikonja and Kononenko, 1997) method, which finds the near-hit and near-miss
instances using the Manhattan norm. In addition, ℓ1-norm regularized SVM and logistic
Regression (LR) are also compared. Besides classifying directly using learned weights, we
also list the results of kNN on selected features (The name of the feature selection method
has a subscript ‘NN’). We use the same partition strategy as in sub-section 6.2. Error rates
on test data are listed in Table 2, and the best results on each dataset are in bold. From
Table 2, it is showed that our Farm method can work better than other feature selection
methods. Thus, Farm can select useful features for computing distance and it will help
subsequent classification to get better results.

6.4. Investigations on Large Scale Datasets

According to the accelerated implementation of the proposed method, Farm can select
more and more key features during the training process, and the later optimization and
update process will focus more on these selected features for distance computation, thus
the training time is greatly reduced.

To test the scalability and efficiency, we run Farm approach on some datasets with
large number of instances and especially with high dimensions. The M2LMNN is a multiple
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Table 3: Comparisons of classification test errors with other methods. Farmf , Farmw and Farmc

represent predicts using learned full metric M , weights w and their combined metric respectively.
Minimum test error on each dataset is in bold.

Name N D Farmf Farmw Farmc PLML M2LMNN LMNN ITML EIG SCML rMLR Euclid

Aloi 108000 128 0.050 0.059 0.049 - - 0.053 0.110 - 0.107 - 0.073
Caltech30 5478 500 0.645 0.687 0.644 - 0.589 0.581 0.605 0.642 0.723 0.582 0.908
COIL20 1440 1024 0.000 0.007 0.000 0.016 0.005 0.005 0.009 0.037 0.030 0.076 0.030
Msrcorid 1 4313 1024 0.141 0.166 0.122 - 0.131 0.114 0.169 0.165 0.169 0.988 0.168
Msrcorid 2 4313 1536 0.226 0.286 0.236 - 0.208 0.230 0.347 0.342 0.393 0.988 0.294
Msrcorid 3 4313 1250 0.193 0.257 0.188 - 0.247 0.233 0.246 0.251 0.419 0.226 0.277
Optdigits 5620 65 0.008 0.012 0.007 0.007 0.008 0.009 0.020 0.012 0.015 0.011 0.018
Orig 70000 784 0.021 0.028 0.021 - 0.034 0.051 0.054 0.060 0.085 - 0.056
Reut8 7670 500 0.072 0.103 0.076 - 0.066 0.062 0.085 0.131 0.239 0.500 0.231
Spambase 4601 58 0.072 0.070 0.063 0.072 0.064 0.070 0.085 0.067 0.070 0.096 0.085
UIUC 1 5499 1024 0.030 0.050 0.035 - 0.032 0.033 0.063 0.082 0.091 0.872 0.064
UIUC 2 5499 1536 0.148 0.220 0.143 - 0.212 0.164 0.246 0.308 - 0.872 0.258
UIUC 3 5499 1250 0.120 0.220 0.112 - 0.167 0.161 0.181 0.580 0.724 0.872 0.265
USPS 9298 256 0.025 0.026 0.024 - 0.028 0.024 0.035 0.033 0.355 0.050 0.033
VOC2009 1 5254 800 0.338 0.424 0.346 - 0.425 0.404 0.402 0.373 0.607 0.414 0.405
VOC2009 2 5254 1536 0.376 0.446 0.380 - - 0.385 0.432 0.462 0.656 0.645 0.438
VOC2009 3 5254 1250 0.344 0.416 0.344 - - 0.395 0.403 0.385 0.591 0.471 0.408
Waveform 5000 40 0.159 0.189 0.163 0.167 0.205 0.226 0.238 0.170 0.224 0.236 0.251

metric learner (Weinberger and Saul, 2009). On each data, we randomly split the data
into 3 parts, 40% for training, 30% as validation set and the remaining for test. Each
comparison method is tuned on the validation set and then tested using the selected best
parameters. Test errors on each data are listed in Table 3. The basic information of each
dataset is also listed in the table. N and D denote the number of instances and dimension
of each dataset respectively. From these datasets, Caltech (Fei-Fei et al., 2007) is object
classification dataset, and we use the 30 most frequent classes for test. On image datasets
Msrcorid 1, UIUC2 and VOC20093, we extract bag of words, fisher vector and SPM features.
We refer these three kinds of feature as index 1, 2, 3 respectively in Table 3.

Our experiments are performed on a cluster of 32 machines, each of which has four
6-core 2.53GHz CPUs and 48G RAM. From the results in Table 3, our Farm method can
achieve best results on 14/18 datasets. The ‘-’ notation in the table means the compared
method cannot get a result in 24 hours. In addition, the training time of each method on
each dataset is also recorded, and 8 of them are showed in Fig. 3. It should be noted that
Farmf , Farmw and Farmc are trained with different parameters, thus they cost different
time for training. From Fig. 3, our Farm method can be trained very fast on datasets that
have large number of instances and high dimensionality, which validates its efficiency.

1. http://research.microsoft.com/en-us/downloads/b94de342-60dc-45d0-830b-9f6eff91b301/
2. https://cogcomp.cs.illinois.edu/Data/Car/
3. http://host.robots.ox.ac.uk/pascal/VOC/voc2009/index.html

298



Learning Feature Aware Metric

(a) Aloi (b) Caltech30 (c) Msrcorid 2 (d) Optdigits

(e) Pendigits (f) Reut8 (g) USPS (h) VOC2009 2

Figure 3: Time comparison(in log2 scale) between Farm and other metric learning methods.

(a) autompg (b) fourclass (c) glass (d) hayes-roth

Figure 4: Changes of Farm objective value. X-axis is the number of iteration in our algorithm. In
each iteration, w or M will be updated. Y-axis is the value of the whole objective for Farm.

6.5. Convergence: An Empirical Analysis

Farm is solved in iterative optimization, i.e., alternatively optimizing the feature selection
weights w and full metric M in trails. The whole objective in Eq. 4 will be decreased once
w or M is updated. Due to the non-negative property of the whole loss function and the
objective decrease property of the solver for each sub-problem, the algorithm should be
converged. In order to analyze the converge performance of Farm, we record the change
of the objective function on the first run for each datasets. Four of them are listed in
Fig. 4. In each figure, the x-axis is the number of sub-iteration, i.e., we record the objective
value change once one variable (w or M) is updated. From the variation plots of objective
value, we can summarize two phenomena: first, the objective value will be decreased once
a variable is updated and it will be converged at last. This property facilitates the stop
criteria of the training process; second, the convergence rate of our algorithm is very fast.
On most datasets, it can be converged in less than 3 updates for both w and M . So in
practical implementation, we can get satisfied results in short time.
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7. Conclusion

Distance metric learning mainly focuses on learning an appropriate distance measurement
with feature relationships considered during distance calculation. Most existing distance
metric learning methods neglect to explicitly count on the feature importance. In this work,
a Feature AwaRe Metric learning (Farm) approach is proposed, which considers the feature
relationships as well as the feature importance via decoupling the metric to be learned into
a full metric and a sparse weights vector. One obvious advantage of metric decoupling lies in
the fact of flexibilities on regularizer designed for full metric as well as weighting/selection
on features with sparse ℓ1-norm penalty. It also figures out that the Farm approach can
be solved efficiently and it is scalable for large datasets due to the separation of full metric
and sparse weights vector. Empirical investigations against distance metric learners and
feature selection methods clearly indicate the ability of feature importance detection and
distance measuring with high-order feature correlation of Farm approach. Real datasets
assessments also validate the effectiveness and efficiency of Farm on classification tasks.
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