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Abstract

Research in oncology quality of care and health outcomes has been limited by the diffi-
culty of identifying cancer stage in health care claims data. Using linked cancer registry
and Medicare claims data, we develop a tool for classifying lung cancer patients receiving
chemotherapy into early vs. late stage cancer by (i) deploying ensemble machine learning
for prediction, (ii) establishing a set of classification rules for the predicted probabilities,
and (iii) considering an augmented set of administrative claims data. We find our ensemble
machine learning algorithm with a classification rule defined by the median substantially
outperforms an existing clinical decision tree for this problem, yielding full sample perfor-
mance of 93% sensitivity, 92% specificity, and 93% accuracy. This work has the potential
for broad applicability as provider organizations, payers, and policy makers seek to measure
quality and outcomes of cancer care and improve on risk adjustment methods.

1. Introduction

In the United States, it is estimated that 222,500 individuals will be diagnosed with lung
cancer in 2017, and 155,870 will die of lung cancer (Siegel et al., 2017). Stage at lung cancer
diagnosis is the most important factor associated with survival; the 5-year relative survival
is 55% for those with localized disease compared with 4% for those with metastases at the
time of diagnosis (Howlader et al., 2016). Historically, most lung cancers are diagnosed
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at late stages, when the chance for a cure is lower, although this may change with recent
recommendations for lung cancer screening among current or former smokers (Moyer, 2014).

Payers and other healthcare organizations are increasingly using administrative data to
measure quality of care and patient outcomes. Oncology care is one area that has posed
challenges to large-scale quality measurement due to the crucial importance of understand-
ing clinical stage in assessing outcomes and the quality of care delivered. Identifying cancer
stage from administrative data has numerous challenges, and studies that used claims-based
algorithms to identify metastatic cancers, recurrence, or progression have not produced
tools with consistently high sensitivity and specificity (Hassett et al., 2014; Chawla et al.,
2014; Warren and Yabroff, 2015; Nordstrom et al., 2016). While some of the best per-
forming algorithms have been decision trees that rely on secondary malignancy ICD9 codes
and chemotherapy agents (Whyte et al., 2015; Nordstrom et al., 2012), published research
in claims data has demonstrated an inability to achieve sensitivity and specificity in the
full sample above 80% simultaneously. Although administrative claims data have become a
commonly used source of “big data,” the absence of reliable claims-based classification algo-
rithms is a substantial barrier to conducting lung cancer outcomes research at a population
level.

A decision tree based on clinical guidelines for care (NCCN, 2017) has been developed
to predict early-stage lung cancer using cancer registry data linked with Medicare admin-
istrative data (Brooks et al., 2017). This clinical tree had poor performance in identifying
patients with early-stage cancer, particularly with respect to sensitivity. In this paper,
we aim to improve upon the clinical tree, and develop a tool for classifying lung cancer
severity by (i) deploying ensemble machine learning for prediction, (ii) establishing a set
of classification rules for the predicted probabilities, and (iii) using an augmented set of
administrative claims data.

2. Study Cohort

Our study cohort contains detailed information on Medicare beneficiaries with lung cancer,
combining data from the Surveillance, Epidemiology and End Results (SEER) cancer reg-
istry program and Medicare claims data (Potosky et al., 1993). SEER data provide a “gold
standard” for assessing algorithm performance for staging because these data are abstracted
from hospital medical records and contain reliable tumor morphology and staging informa-
tion at the time of diagnosis. Additionally, fee-for-service Medicare claims data provide a
rich set of variables for developing a classification algorithm and studying health outcomes.

2.1 Cohort Selection

Our data included cancers diagnosed in 2010-2011 linked with Medicare claims from 2009-
2012 who received at least one dose of infused or oral chemotherapy within six months
of diagnosis. We combined the SEER registry data with the Medical Provider Analysis
and Review (Part A short inpatient stay, long inpatient stay, and skilled nursing facility
bills with one record per admission), National Claims History (Part B claims for non-
institutional providers), Durable Medical Equipment (final action claims), outpatient claims
(Part B claims from institutional outpatient providers), and Part D (prescription drug
events) files. The National Claims History and Durable Medical Equipment files were



combined at the observation level, and the outpatient files at the claim level; Part D files
were included if there were any National Claims History or outpatient records 59 days
prior to the lung cancer diagnosis or including the lung cancer diagnosis. Additionally,
we combined our cohort file with information on patient comorbidities from the Medicare
Chronic Conditions Warehouse and on census tract-level variables from SEER-Medicare.
After identifying 74,630 patients with known month and year of diagnosis, we excluded
4,522 patients with unknown stage and 26,323 who were not continuously enrolled in Parts
A and B of fee-for-service Medicare during the month of diagnosis and following six months.
Of these 42,069, we identified 14,743 patients who were treated with chemotherapy within
six months of diagnosis, had a lung cancer diagnosis on the chemotherapy claim, and had
census tract-level information.

2.2 Feature Choices

To create our primary outcome variable, we grouped stages I-III into early stage and treated
stage IV as late stage. Given differences in health outcomes for stage IV patients, this is
often a preferred grouping. The clinical tree algorithm, developed in earlier work on a single
split sample, is a decision tree with seven nodes that map to the binary outcome, described
in Algorithm 1 (Brooks et al., 2017).

Algorithm 1: Clinical Tree.

? For each observation i§:
? if no lung cancer-specific chemotherapy, then early stage;

? else if advanced non-small cell lung cancer chemotherapy†

or stereotactic cranial radiation†, then late stage;
? else if lung resection surgery‡, then early stage;
? else if radiation‖, then early stage;
? else if small-cell chemotherapy agents and platinums only†, then late stage;
? else if targeted agents†, then late stage;
? else late stage.

§ who received any chemotherapy within 6 months of diagnosis
† within 3 months of initial lung cancer chemotherapy
‡ lobectomy, pneumonectomy, or segmental resection in 3 months before initial lung cancer chemotherapy
‖ 20 or more fractions beginning not more than 7 days before initial lung chemotherapy

Since the clinical tree algorithm is based on clinical guidelines for lung cancer care, it
relies only on a small targeted set of clinical variables. It is of interest to compare how this set
of limited variables – selected through investigator knowledge and national cancer treatment
guidelines – performs relative to a larger more comprehensive set of variables. Thus, to
augment the set of seven clinical variables in an effort to improve classification performance,
we included additional variables that are readily available to the Centers for Medicare and
Medicaid Services in administrative claims data. Specifically, we considered a broad set of
features categorized into seven groups: demographic (25), visits and hospitalizations (10),
chemotherapy drugs (30), surgery and procedures (4), radiation (19), comorbidities (14),
and lung cancer anatomic site codes and secondary malignancy diagnosis codes (13). This
last group of variables, ICD9 diagnosis codes for lung cancer anatomic site and secondary



malignancies, has been shown to be unreliable in previous population-based studies of lung
cancer (Cooper et al., 1999; Nordstrom et al., 2012; Chawla et al., 2014; Warren and Yabroff,
2015; Whyte et al., 2015). Thus, we will consider three sets of variables, clinical algorithm
only (7), clinical augmented with administrative claims except diagnoses codes (102), and
all (115). See Appendix A, Table 4 for a description of each variable. Select demographic
information is summarized in Table 1.

Table 1: Demographic Summary by Stage, n = 14, 743
Early Late

Age, mean years (sd) 72 (8) 72 (8)
Male, % 54 55
White, % 83 83
Census Tract Below Poverty, % 12 11
Census Tract Non-High School Graduate, % 21 20

3. Methods

The goal of this analysis is to improve upon the clinical tree algorithm for classifying lung
cancer patients into early and late stage based on SEER-Medicare data. Previous studies
implementing machine learning methods to predict or classify different types of cancers have
used neural nets, support vector machines (SVMs), decision trees, and logistic regression
with varying degrees of success (Konstantina et al., 2015). Thus, in this setting, it is
particularly unclear which single algorithm or set of variables will have optimal performance.
Therefore, we deploy the super learner ensemble framework to build our prediction function
(van der Laan et al., 2007) and consider multiple variable sets. The super learner yields an
optimal weighted combination of candidate algorithms according to a specified loss function.

3.1 Data, Model, and Parameter

We now introduce formal notation for this applied problem. Our data structure is defined
as O = (Y,C), where Y is our binary outcome for lung cancer severity, with Y = 1 indi-
cating early stage, and C our vector of covariates. This vector of covariates can be broken
into three mutually exclusive subsets C = (C1, C2, C3), with C1 including only the seven
clinical variables used by the clinical tree from Algorithm 1, C2 containing 95 demographic,
claims, treatment, and comorbidity variables, and the 13 lung cancer type and secondary
malignancy diagnosis codes comprising C3. We write C1 ∪C2 as C12 to represent the “clin-
ical augmented with administrative claims except diagnoses codes” set of variables and
C1 ∪ C2 ∪ C3 as C123 to represent the set of “all” variables, including the potentially unre-
liable ICD9 codes for lung cancer type and secondary malignancies. (Note that C123 = C,
but we use C123 in places to be explicit.) We also write C(·) when the set of covariates may
be any of C1, C12, C123, etc.

We consider a nonparametric model M that is the set of possible probability distribu-
tions, and describe the observational unit O as being drawn from true probability distribu-
tion P0, where subscript 0 indicates the unknown truth. Succinctly, O ∼ P0 and P0 ∈ M.



Our nonparametric model assumes that our data are i.i.d., but does not impose additional
functional form assumptions on the generation of Y , for example. Our parameter of in-
terest for the prediction problem is Ψ(P0) = P0(Y = 1 | C(·)), which can also be written
Ψ(P0) = arg minΨ(P )E0L(O,Ψ(P )), where E0L(O,Ψ(P )) is the expected loss. Given our
binary Y , both the squared error loss and negative log loss functions target the same param-
eter Ψ(P0) = P0(Y = 1 | C(·)). Thus, we use L(O,Ψ(P )) = (Y −Ψ̂(P ))2, where Ψ̂(P ) is any
estimator of Ψ(P0), and we seek to minimize the expected loss when building our prediction
function. We describe additional evaluation metrics for the overall tool in Section 3.4.

3.2 Estimation: Ensembling for Prediction

We describe the ensemble approach super learner (van der Laan et al., 2007) in Algorithm 2.

Algorithm 2: Super Learner.

? For each algorithm k:
? Perform V -fold cross validation, obtaining cross-validated predicted values Zk;
? Fit on full data O, obtaining Ψ̂(P )k;

? Index a proposed family of convex combinations of the k algorithms by α;
? Select α̂ to minimize E0L(O,Ψ(P )), which can be shown is solved by estimating:

logit(P̂ (Y = 1|Z)) = α1Z1 + ....+ αkZk;
? Save Ψ̂(P )SL, the final estimator of Ψ(P0) = P0(Y = 1 | C), constructed as:

Ψ̂(P )SL = α̂1Ψ̂(P )1 + . . .+ α̂KΨ̂(P )K .

Note: The entire super learner algorithm above is itself externally cross-validated to obtained cross-
validated performance metrics.

Our implementation of super learner considered eight algorithms three times, once for each
of the variable sets C1, C12, and C123, as well as the clinical tree in Algorithm 1, which,
by definition, only uses C1. Thus, we consider a convex combination of a total of K = 25
algorithms with our super learner forming a separate 26th algorithm. The eight algorithms
were: (a) random forest with a node size of 250 and 500 trees; (b) neural net with two
units in the hidden layer; (c) main terms logistic regression (GLM); (d) generalized additive
model; (e) lasso penalized regression with λ chosen via internal cross-validation; (f) ridge
regression with λ chosen via internal cross-validation; (g) balanced elastic net regression with
α = 0.5 and λ chosen via internal cross-validation; and (h) SVM with a cost parameter of
1 and a Gaussian kernel width γ parameter of 1/length(C(·)). This specific implementation
is also visualized in Figure 1. The analysis was performed using 10-fold cross-validation in
R version 3.3.2 on an Oracle Sun Server X4-4 with 60 cores and 1.5TB of RAM with Linux
software relying on the SuperLearner package (Polley et al., 2016).

3.3 Classification Rules

We establish two main thresholding rules for classifying probabilities into stage categories:
(I ) assignment based on the most likely class, and (II ) assignment based on the percentile
distribution of predicted probabilities. Within the first rule based on fixed probabilities,
we explore thresholds of 50% ± 10 percentage points. A rule based on the median may
provide better performance than a rule based on most likely class when the population
is approximately balanced between the two outcomes and the algorithm provides strong



Figure 1: Flowchart for Lung Cancer Severity Classification Tool

discrimination. In our sample, the outcome group sizes are well balanced (49% had early
stage cancer), but, in general, the proportion of patients with early stage cancer varies
by cancer type and population. In unbalanced samples, or in cases where the algorithm
has poor discrimination between the outcomes, a rule based on the empirical percentile
distribution may be biased, while a rule based on most likely stage may provide better
performance. To explore the potential for misclassification, we test five total percentile
based rules: 30th, 40th, 50th, 60th, and 70th. Our classification rules are implemented and
evaluated as part of the last step in our classification tool shown in Figure 1.

3.4 Evaluation Metrics

For prediction, we evaluate each of our 26 algorithms according to cross-validated mean
squared error (MSE = (Yi − Zk,i)

2), cross-validated R2 = 1 − (
∑

i(Yi − Zk,i)
2)/(

∑
i(Yi −

Ȳi)
2), and a cross-validated relative efficiency, RE = CV MSEk/CV MSESL. The best

prediction function is selected based on lowest cross-validated MSE, but we do evaluate
non-selected prediction functions in the next step for completeness. For classification, we
then consider sensitivity, specificity, accuracy (defined as the proportion of true positives
and true negatives), and area under the curve (AUC) for each rule specified. The published
literature for cancer staging almost exclusively evaluates sensitivity, specificity, accuracy,
and AUC in the full sample, and the goal of achieving sensitivity and specificity ≥ 80% is a
metric for the full data. However, cross-validated metrics may be preferable to assess issues
such as overfitting. Thus, we consider both full sample and cross-validated versions of these
metrics. We establish the best performing classification rule to be the one that obtains the
highest cross-validated AUC. Additionally, we plot the proportion of observed early stage
lung cancer observation by ordered final predicted probability for our selected algorithm.
Our metrics form the final component of the classification tool in Figure 1.



4. Results

The super learner prediction function contained five algorithms with nonzero weights:

Ψ̂(P )SL = 0.43Ψ̂(P )rfC123
+ 0.38Ψ̂(P )gamC123

+0.13Ψ̂(P )lassoC123
+ 0.03Ψ̂(P )svmC123

+ 0.03Ψ̂(P )rfC12
,

where rf is random forest, gam is the generalized additive model, lasso is the lasso regres-
sion, svm is the SVM, and C(·) subscripts indicate the variable set used. This super learner
algorithm for predicting early stage cancer improved substantially upon the clinical tree
algorithm with a cross-validated R2 of 0.405 and a cross-validated MSE of 0.149. The clin-
ical tree had a relative efficiency of only 0.30, and its negative cross-validated R2 indicates
that the mean probability performs better than the predicted probabilities generated by the
clinical tree. While the super learner had the overall best performance based on MSE, there
were several individual algorithms, all using variable set C123 that had relative efficiencies
of 94-98%. (See Table 2 for algorithm performance ranked by relative efficiency.)

Table 2: Ranked Algorithm Performance
Algorithm CV R2 CV MSE RE

Super Learner 0.405 0.149 1.00
GAM: C123 0.396 0.151 0.98
Lasso: C123 0.395 0.151 0.98
Ridge: C123 0.395 0.151 0.98
Elastic Net: C123 0.395 0.151 0.98
Random Forest: C123 0.393 0.152 0.98
GLM: C123 0.392 0.152 0.98
SVM: C123 0.369 0.158 0.94
Random Forest: C12 0.300 0.175 0.85
GAM: C12 0.299 0.175 0.85
Ridge: C12 0.298 0.175 0.85
Lasso: C12 0.298 0.175 0.85
Elastic Net: C12 0.298 0.175 0.85
GLM: C12 0.297 0.176 0.85
SVM: C12 0.259 0.185 0.80
Neural Net: C1 0.220 0.195 0.76
GLM: C1 0.219 0.195 0.76
GAM: C1 0.219 0.195 0.76
Ridge: C1 0.219 0.195 0.76
Elastic Net: C1 0.219 0.195 0.76
Lasso: C1 0.219 0.195 0.76
SVM: C1 0.082 0.229 0.65
Neural Net: C12 0.000 0.250 0.59
Neural Net: C123 0.000 0.250 0.59
Random Forest: C1 -0.035 0.259 0.57
Clinical Tree -1.006 0.501 0.30



When we apply the classification rules to the (cross-validated and final) predicted prob-
abilities from the super learner function, all rules outperform the clinical tree algorithm in
terms of improved sensitivity, accuracy, and AUC (Appendix B, Table 5). The 50% and
median rules perform very similarly because the median predicted probability in our sample
is 49%. The median rule performs the best with respect to cross-validated AUC and was
thereby the selected rule. Table 3 shows the substantial classification improvement of the
super learner with median rule over the clinical tree algorithm for the full sample. Figure 2
displays observed early stage by decile of predicted probability, showing the final super
learner predicted probabilities classified according to the median rule has perfect prediction
in the lower 30th and upper 30th of the probability distribution.

Super Clinical
Learner Tree

True Positives 6761 3865
False Negatives 490 3386
True Negatives 6881 6678
False Positives 611 814
Sensitivity 93 53
Specificity 92 89
Accuracy 93 72

Table 3: Full Sample Classification Results
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Figure 2: Stage by Predicted Probability

We plot cross-validated AUC by our variable sets C1, C12, and C123 for our algorithms
using the median classification rule, including the super learner in each plot for reference,
in Figure 3.

Figure 3: Cross-Validated AUC Plots by Variable Sets C(·)

Overall, the largest gains in algorithm performance are driven by the inclusion of addi-
tional claims variables, although even using only variable set C1 (containing only 7 clinical
variables) improved on the clinical tree in each of the eight individual algorithm for all



metrics, some by at least 2-fold. The addition of the potentially unreliable ICD9 codes for
lung cancer type and secondary malignancies (C3) in variable set C123 provided nontriv-
ial improvements over variable set C12. Examining the logistic and lasso regressions using
C123 provides some insight into the variables driving the stark improvement in sensitivity.
The largest coefficients from the logistic regression belong to variables based on the ICD9
malignancy codes, including an indicator for having any malignancy code in the secondary
malignancies series: 196 (lymph node sites), 197 (respiratory/digestive sites), or 198 (other
sites) or the 199.0 code (malignant neoplasm without specification of site). The lasso se-
lected 75 variables, including those related to resection, radiation, SEER registry region,
chemotherapy agents, race, comorbidities, all ICD9 codes except 162.8 (lung cancer at other
site), and sex. The largest coefficients from the lasso belong to variables indicating receipt
of lobectomy, pneumonectomy, any stereotactic cranial radiation within three months of
initial lung cancer chemotherapy, and any lung resection surgery in the three months prior
to initial lung cancer chemotherapy. Additionally, some of the best performing candidate
algorithms have not been previously used in the literature to stage lung cancer using ad-
ministrative claims data.

5. Discussion

The development of an algorithm to classify lung cancer stage is needed to allow researchers
to use administrative claims data for studying lung cancer patient quality of care and health
outcomes. Prior work has been unable to simultaneously achieve 80% sensitivity and speci-
ficity. Earlier work evaluating the performance of the clinical tree algorithm (Brooks et al.,
2017) echoed the suboptimal performance we confirm for it here. The overall conclusion
has been that it is not possible to rely on claims data to conduct rigorous health outcomes
research for lung cancer patients. Using an expanded set of variables and algorithms, we
demonstrate that ensemble machine learning methods can be used to classify lung cancer
patients receiving chemotherapy with 93% sensitivity, 92% specificity, and overall accuracy
of 93%.

While the super learner yielded the best performance in terms of cross-validated MSE,
several individual algorithms performed with a high degree of relative efficiency, includ-
ing regression-based techniques. An alternative approach would be to a priori define an
“improvement threshold” by which more complex algorithms must outperform in order to
be selected. That said, super learner classified 1,034 additional people as true positives
and 1,034 additional people as true negatives, resulting in a 14 percentage point improve-
ment in accuracy, compared to the next best performing algorithm based on cross-validated
MSE (GAM with C123). An improvement of this level is likely to be clinically meaningful,
although may depend on the context and setting the tool will be used.

Future directions for this work include exploring multi-level classification (i.e., stage
I/II, stage III, and stage IV) and reducing the number and complexity of features required
for accurate performance. This latter advance would maximize the practical utility of the
algorithm for health services researchers using claims data to study quality of care and
health outcomes. We will also build classification algorithms for other cancer types. These
tools will be published on the project website cancerclas.org as they are developed and
validated.
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Appendix A

Table 4: SEER-Medicare Data Features
Variable(s) Notes
Age (years) integer, 28–101
Sex binary
Census Tract Median Income integer, $7,104–200,000
Census Tract Non-HS Grad continuous, 0–79.91%
Census Tract Below Poverty continuous, 0–82.05%
Race indicators black, asian, hispanic, other ; reference white
SEER Registry Location 16 indicators
ICD9 162.0 Rate continuous; % lung cancer codes trachea site
ICD9 162.2 Rate continuous; % lung cancer codes main bronchus site
ICD9 162.3 Rate continuous; % lung cancer codes upper lobe site
ICD9 162.4 Rate continuous; % lung cancer codes middle lobe site
ICD9 162.5 Rate continuous; % lung cancer codes lower lobe site
ICD9 162.8 Rate continuous; % lung cancer codes other site
ICD9 162.9 Rate continuous; % lung cancer codes unspecified site
ICD9 Secondary Malignancy binary; any 196.xx, 197.xx, 198.xx, and 199.0 codes
ICD9 Secondary Malignancy Total integer, 0–93; total of 196.xx, 197.xx, 198.xx, 199.0 codes
ICD9 196.xx Rate continuous; % metastases codes lymph node sites
ICD 197.xx Rate continuous; % metastases codes respiratory/digestive sites
ICD9 198.xx Rate continuous; % metastases codes other sites
ICD9 199.0 Rate continuous; % metastases codes unspecified site
Claim Types 5 binary∗

Claim Type Counts 5 integers∗; total for each claim type
Lung Resection Surgery 4 binary∗∗

Diagnosis Code at 1st Radiation indicators lung cancer, secondary malignancy, other ;
reference no non-stereotactic radiation

Radiation Types 2 binary†

Radiation Code Totals 2 integers†; total for each radiation type
Radiation Fractions Type 4 binary‡

Radiation Fractions Totals 3 integers‡; total for first 3 fractions types
Radiation Before Surgery indicators 1st before surgery, 1st after surgery,

no surgery ; reference none within 3 months of chemo
Chemotherapy Type 17 binary§

Chemotherapy Drug Totals 13 integers; # treatment days for each chemotherapy drug§

Comorbidities 14 binary¶
∗# outpatient evaluation and management (E&M) claims; inpatient E&M claims; critical care claims;

hospital discharges; chemotherapy treatment dates. ∗∗Any resection surgery; lobectomy; penumonect-

omy; segmental. †Non-brain stereotactic radiation (77373, 77435); brain stereotactic radiation (77371,

77372, 77432). ‡Radiation fractions within 3 mo of 1st chemo; non-stereotactic fractions within 180 d

of 1st chemo; non-stereotactic fractions within 60 d of 1st radiation; ≥ 20 fractions starting ≤ 7 days

before 1st lung cancer chemo. §Cisplatin, carboplatin, paclitaxel, docetaxel, pemetrexed, gemcitabine,

vinorelbine, bevacizumab, etoposide, irinotecan, topotecan, trastuzumab, & unclassified drug. Add’l

chemo indicators include: no receipt of lung cancer chemo; advanced NSCLC chemo; small-cell chemo

agents & platinums only; targeted agents. ¶Dementia; acute myocardial infarction; ischemic heart

disease; stroke/TIA; atrial fibrillation; hip/pelvic fracture; heart failure; hypertension; hyperlipidemia;

diabetes; asthma; COPD; depression; chronic kidney disease.



Appendix B

Table 5: Super Learner and Clinical Tree Classification Performance
Fixed Percentile Clinical

40 50 60 30th 40th 50th 60th 70th Tree

Full Sample

Sensitivity 97 93 85 100 99 93 80 61 53
Specificity 85 92 97 59 78 92 99 100 89
Accuracy 91 92 91 79 88 93 90 81 72
AUC 91 92 91 80 89 93 90 80 71

Cross-Validated

Sensitivity 87 78 67 95 88 79 67 53 31
Specificity 67 78 87 54 67 78 87 93 69
Accuracy 77 78 77 74 77 78 77 73 50
AUC 77 78 77 74 77 78 77 73 50
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