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Abstract

We present a multiple kernel learning framework to learn similarity functions that compare
physiological state between patients. A powerful ensemble kernel is learned from many base
kernels evaluated on individual features. Our proposed framework captures two aspects of
patient similarity: that patient similarity should be dependent on clinical context and that
similarity should be modulated by the frequency and specificity of individual feature val-
ues. We validate our model on ICU data to predict hemodynamic instability and present
analyses on using the patient similarity function to construct personalized cohorts. Our
experiments show that the statistical properties learned by the kernels functions based on
feature population distributions are significantly more predictive than naive stationary ker-
nels (e.g. RBFs). Population-based kernels outperform RBF’s in identifying patient cohorts
based on abnormality of their vitals and lab measurements and at predicting mortality.

1. Introduction

The main question addressed in this paper is how to learn useful similarity functions that
compare physiological state between patients. This question, often referred to as “patient
similarity”, has received increased attention in the age of personalized medicine. Specifically,
patient similarity aims to identify cohorts based on a set of patient characteristics (like
demographics, vitals, labs, medical history, and treatments) to enable applications like case-
based comparisons for clinical decision support and to compare treatments across similar
cohorts. However, a notorious challenge of patient similarity is that it is not well-defined
– features characterizing patient state may be relevant or irrelevant to patient similarity
depending on the clinical context. For example, Creatinine may be hugely important in
characterizing kidney failure but largely irrelevant when considering traumatic brain injury.
Similarity should therefore be a function of the underlying clinical context of the patient.

A second aspect of patient similarity is that similarity should be value-dependent. In-
tuitively, for example, two patients with heart rates in the normal range of 70− 75 should
receive a lower similarity score than two patients with elevated heart rates in the range
120 − 125. This is an especially crucial concept in healthcare because the interesting and
most relevant aspects of patient state typically lie in the abnormal (tails of the distribution).
This is analogous to the notion of “term specificity” in information retrieval, in which the
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importance of query terms to search is inversely proportional to how frequently the term
occurs in a text corpus (inverse document frequency (IDF)).

We propose a novel patient similarity learning framework that attempts to combine both
of the above concepts – that patient similarity should be dependent on clinical context and
that similarity should be modulated by the frequency of the individual feature values. In
addressing the latter, we generalize the notion of “term specificity” to continuous-valued
features, which allows us to address similarity on ordinal features – e.g., how similar are two
patients with heart rates of 120 and 125? – as opposed to similarity scoring based solely
on the presence/absence of binary features. We achieve this by proposing novel kernel
functions that are based on the population distribution of the features. The kernels are
tuned to amplifying similarities in the tails of the population distribution. Here, population
may loosely refer to a certain clinical population – for example, patients in the ICU.

To address the underlying clinical context, we use the multiple kernel learning (MKL)
framework (Gonen and Alpaydin (2011)). Specifically, given a training dataset we learn
an ensemble kernel over the individual population feature kernels described above that is
capable of predicting one or more clinical contextual targets of interest. For example, the
kernel may be optimized to predict aspects of cardiovascular health or predict hemodynamic
deterioration. As a result, the ensemble kernel is comprised of many base kernels, each of
which is tuned to emphasize distribution tails, and ensemble weights assigned to the base
kernels are determined by how discriminative each is in predicting a clinical context.

From a clinical perspective, the learned ensemble kernel may be used both for providing a
predictive score of the clinical target variable that it was trained on as well as a ranked list of
most similar patients from a retrospective database. The list of similar patients may be used
to contextualize and explain the predictive score, as well as enable the clinician to perform
case-based reasoning by referring back to similar past cases. In addition, personalized
cohorts may be constructed to produce statistics and analytics on related clinical questions.
For example, to assist with therapy decision support at point-of-care, the clinician may
interrogate the interventions given to the patient’s personalized cohort.

The paper is organized as follows. In Section 2 we introduce the population-derived
kernel functions and derive an explicit feature map based on (Vedaldi and Zisserman (2012)).
This allows for an efficient multiple kernel learning algorithm, detailed in Section 2.4, that
tunes the ensemble kernel to a particular clinical context of interest. We then present
results of our algorithm in Section 3 on predicting hemodynamic instability in the ICU, and
present an exploratory analysis of the ensemble kernel in constructing personalized cohorts
and visualizing statistics on treatments and outcomes.

2. Methods

2.1 Notation

We use capital letters to denote random variables (X) and lowercase letters to denote
instances of the random variable (x). We use superscripts when it’s necessary to represent
multiple samples from a random variable (x(1), x(2), . . . ). When X (resp. x) denotes a
vector, we use subscripts Xj (resp. xj) to denote the jth element of X (resp. x).



2.2 Population-Derived Kernel Similarity Functions

Let X = (X1, X2, . . . , Xp) denote a set of random variables characterizing patient state.
These can be any combination of vital signs (Heart Rate, Systolic blood pressure), labo-
ratory values (Sodium, Lactate, Magnesium), comorbidities and demographics, etc. They
may also be features extracted from a latent variable model – e.g., features extracted from
a hidden layer in a deep neural network. A patient can then be represented by a realization
x from X. Additionally, patient state may be evaluated over a limited time window so
that a realization may represent a patient at a particular point in time, and a patient may
therefore exhibit multiple patient state vectors over time.

Our proposed kernel between patient state vectors is based on a very literal interpre-
tation of the meaning of patient similarity: given two patients, their similarity is inversely
related to the expected number of patients that lie between them. Since the base kernels
are evaluated on individual features Xj , this amounts to calculating the expected number of
patients that lie in an interval. For example, denote xj and zj as the corresponding feature
values for two patients with state vectors x and z. Then the expected number of patients
between them is given by the area under the population distribution, P (Xj), for Xj in that
interval. We therefore propose the following kernel on feature Xj :

kj,c(x, z) = (1− P (min(xj , zj) ≤ Xj ≤ max(xj , zj)))
c (1)

where c ≥ 1 is an exponent that controls the speed of decay in similarity. In Section 2.3 we
show that the above is a valid kernel and derive an explicit feature map Ψj,c(x) such that
kj,c(x, z) ≈ 〈Ψj,c(x),Ψj,c(z)〉.

Figure 1 illustrates examples of the proposed kernel on three features: Hematocrit,
Lactic Acid, and Patient age. Figures 1(a)-1(c) show the empirical population cumulative
distribution functions (evaluated on ICU patients) for each of the three features, and Figures
1(d)-1(f) show the resulting kernel function from (1) with c = 5, plotted as a 2-dimensional
heatmap. The population distribution for Hematocrit is fairly symmetric and mono-modal,
whereas Lactic Acid and Patient Age both exhibit skew. Patient age is biased towards older
patients because the population under consideration is adult ICU patients. In all cases, the
kernel is tuned to the tails of the distribution: similarity is augmented if both patients lie
in corresponding low-density regions of the distribution.

For continuous random variables Xj , P (a ≤ Xj ≤ b) = P (a < Xj ≤ b), and so (1) can be
simplified to kj,c(x, z) = (1− |Fj(zj)− Fj(xj)|)c, where Fj(·) is the cumulative distribution
function of Xj . In this case, the kernel reduces to a stationary kernel after converting
inputs to quantiles through Fj . We found, however, that many measurements in healthcare
are either discrete or measured on a heavily quantized scale (e.g., heart rate and blood
pressure are usually charted as integers). As a result, even many of the continuously-valued
measurements portray a discrete distribution. This distinction is important; otherwise two
patients with matching heart rates of 70 (normal range) would receive the same similarity
score as two patients with matching heart rates of 120 (abnormally elevated).

It’s instructive to note that the kernel can be readily applied to binary or nominal dis-
crete features. For example, Xj may be a Bernoulli random variable characterizing whether
or not the patient exhibits a symptom or presents with a rare condition or comorbidity. In



this case, (1) simplifies to:

kj,c(x, z) =


(1− P (Xj = 1))c , xj = zj = 1
(1− P (Xj = 0))c , xj = zj = 0

0 , xj 6= zj

Thus, the similarity between patients x and z is inversely related to the prevalence (absence)
of the clinical condition if both patients have (don’t have) the condition, and no similarity
if they differ in condition status. The kernel may also be applied to nominal variables on c
categories by one-hot encoding, which converts it to c Bernoulli random variables.

(a) (b) (c)

(d) Kernel on Hematocrit (e) Kernel on Lactic Acid (f) Kernel on Patient Age

Figure 1: Examples of the kernel kj,c(x, z) in (1) with c = 5 on three features evaluated on
adult ICU population: Hematocrit, Lactic Acid, and Patient Age

2.3 Explicit Feature Map

In this section we show that the proposed kernel can be expressed as a sum of intersection
kernels in a transformed input space. With this representation, we are able to derive an ex-
plicit feature map for the kernel following the work in (Vedaldi and Zisserman (2012)). The
explicit feature map is data-independent and, unlike Nystrom’s method, does not require
estimating eigenvalues/eigenvectors of an empirical Gram matrix. We will first consider the
c = 1 case in (1) and then generalize to c > 1.

For each kernel kj,c, define a 2D transformation x→ (Fj(x), Rj(x)) defined by:

Fj(x) = P (Xj < xj) , Rj(x) = P (Xj > xj) (2)

where, with a slight abuse of notation, Fj is the (strictly less-than) cumulative distribution
function of Xj , and Rj is the reliability (complementary cumulative) function of Xj .



Given this transformation, the kernel in (1) for c = 1 can be equivalently expressed as:

kj,1(x, z) = min(Fj(x), Fj(z)) + min(Rj(x), Rj(z)) (3)

Thus, kj,1(x, z) is a sum of two intersection kernels applied in a two-dimensional space
x→ (Fj(x), Rj(x)). The equivalence is shown visually in Figure 2.

(a) x → (Fj(x), Rj(x)) (b) z → (Fj(z), Rj(z)) (c) kj,1(x, z)

Figure 2: Expressing kj,1(x, z) on Xj as a sum of intersection kernels in a transformed space.

For c ≥ 1, we can use the fact that kj,c(x, z) = kj,1(x, z)
c and apply the binomial

expansion on (3) to obtain:

kj,c(x, z) =
c∑

i=0

(
c
i

)
min(Fj(x), Fj(z))

i min(Rj(x), Rj(z))
(c−i) (4)

An explicit feature map for (4), denoted Ψj,c(x) can be derived from explicit feature
maps Ψ̃i(x) for kernels min(x, z)i, i = 0, 1, . . . , c, which are given in the Appendix. Then
by the additive/multiplicative combination of kernels (Vedaldi and Zisserman (2012)), the
explicit feature map for kj,c(x, z) is given by:

Ψj,c(x) =

c⊕
i=0

(
c
i

)[
Ψ̃i(Fj(x))⊗ Ψ̃c−i(Rj(x))

]
(5)

where ⊕ is the direct sum of feature spaces and ⊗ is the Kronecker product.

There are two important points to note about the above explicit feature maps. The
first is that the transformation x → (Fj(x), Rj(x)) only depends on the distribution of Xj

through cumulative and (complementary cumulative) distribution functions and not on the
probability mass function. As a result, we can calculate the transformation via empirical
estimates of the cumulative distributions directly, which bypasses binning problems inherent
to pmf estimation. Specifically, let x(1), x(2), . . . , x(n) denote a sample of patient state vec-

tors. Then Fj(x) (resp. Rj(x)) can be estimated via
∑

i I(x
(i)
j < xj) (resp.

∑
i I(x

(i)
j > xj)).

The second point to note is that the dimensionality of the explicit feature map may far
exceed the number of distinct values, denoted m, that a feature can take on. For example,
Xj is Bernoulli (m = 2) or an ordinal discrete random variable taking on one of m values.
In these cases, we can project the feature map into an m-dimensional space spanned by
the feature maps for the m distinct values. This results in an m-dimensional feature space
regardless of the original dimensionality of Ψj,c.

2.4 Training Algorithm - Multiple Kernel Learning

Up to this point, we have specified the family of base kernels using the population distri-
butions for each input feature. In this section, we seek to learn a powerful ensemble kernel



that is guided by a supervised learning problem to predict a clinical variable of interest
from the patient state vector. For example, the clinical variable of interest may be one or
more variables characterizing a diagnosis or some measure of organ health. To achieve this
we use the multiple kernel learning framework (Gonen and Alpaydin (2011)).

Let (x(1), y(1)), . . . , (x(n), y(n)) denote a training sample with x(i) ∈ Rp the input features
(patient state vector) and y(i) a clinical variable of interest to be predicted. The techniques
from Section 2.3 may first be applied in an unsupervised manner on each of the input features
j = 1, . . . , p to obtain base kernels kj,c(·, ·) and their explicit feature map approximations
Ψj,c(·) so that kj,c(x, z) ≈ 〈Ψj,c(x),Ψj,c(z)〉. Via the kernel trick, kernelized predictive
models in the input space are equivalent to linear predictive models in the explicit feature
space. Therefore, we seek to train a generalized additive model of the form:

E(y|x) = g−1
(∑p

j=1 fj(x)
)

(6)

where E(y|x) is the conditional mean of the target y given the data x, g is a link function
and each fj(x) is a linear transformation in the feature space for the jth kernel – i.e.,
fj(x) = 〈wj ,Ψj,c(x)〉, which is a nonlinear function of xj .

As outlined above, we allow the patient state vectors to be incomplete due to missing
feature values. To account for this, we assign a neutral similarity value kj,c(x, z) = 0 if xj
or zj is missing so that each base kernel “abstains” from ascribing a similarity score if its
dependent feature is missing. In terms of the explicit feature map, this amounts to mapping
missing feature values to the origin (Ψj,c(x) = 0 if xj is missing). To capture information in
the measurement patterns, we augment the patient state vector with missingness features
for each of the original patient state features. When deriving the base kernels on the
missingness features, they are each treated as Bernoulli random variables.

The dimensionality of the predictive model is the sum of the dimensionalities of the
individual base kernel’s feature maps, which can be quite high. We therefore regularize
the weights using a ridge penalty:

∑
j ||wj ||2, which results in a convex problem, and we

optimize using stochastic average gradient (Schmidt et al. (2013)). We note that techniques
from (Lu et al. (2014)) can be used to further speed up training.

After training the predictive model, we seek to infer the ensemble kernel from the learned
feature space weight vectors w1, . . . , wp. There are a number of ways to do this. One pos-
sibility is to construct an ensemble kernel k(x, z) =

∑
j αjkj,c(x, z) with a static weighting

where αj = ||wj ||2/
∑

j ||wj ||2. In this way, a base kernel’s contribution to the ensemble is
based on the relative energy of the predictive model weights in its feature space.

Alternatively, a dynamic ensemble can be constructed in which the ensemble weights
depend on one (or both) of the kernel input arguments. For example, given a query patient
state vector x, k(x, ·) may be used as a ranking function to retrieve similar patients from a
large retrospective database. In this case, it may be more useful to construct an ensemble
that is tuned to the query patient. For example, k(x, z) =

∑
j αj(x)kj,c(x, z), where αj(x)

depends on the query patient x. This results in an asymmetric kernel function (k(x, z) 6=
k(z, x)), in which the first argument is treated as the query patient and the second argument
is a candidate similar patient from a database of patients.

For similar patient retrieval, we propose to use the following ensemble weighting:

αj(x) = |fj(x)| (7)



in which case the ensemble weights characterize the strength of the prediction made by each
base kernel’s feature space on the query patient x.

A block diagram of the entire learning framework is presented in Figure 3.

Figure 3: Learning framework block diagram. (A) For each feature, a cumulative distribu-
tion function (CDF) is estimated via training data; (B) The CDF for each feature
induces a CDF kernel (Section 2.2); (C) Each feature is then transformed into a
higher-dimensional space via its kernels explicit feature map (Section 2.3). These
explicit maps are concatenated to form the high-dimensional feature space used
by the multiple kernel learning algorithm (Section 2.4).

3. Results

3.1 Data Cohort

Patient data were obtained from the eResearch Institute (McShea et al. (2010)); the data
included records from 40,883 patients from across 25 hospitals. Episodes of hemodynamic
instability were identified based on a set of charted clinical interventions that was developed
from a strong consensus among of group of experienced intensive care physicians. This
included the administration of inotropic or vasopressor medications, administration of at
least 2.4L of fluid (colloid or crystalloid) over 8 hours, and administration of packed red
blood cells (PRBC’s). For further details, see the work of (Conroy et al. (2016)).

For purposes of training and validation, the patients ICU stays were divided into 6 h
segments, and these segments were labeled as either stable or unstable. Unstable segments
were the 6 h period prior to any intervention described above. Stable segments were chosen
from patients who had none of the above interventions or who ended their ICU stay with
at least 18 h without an intervention. A 6 h segment was chosen at random from these
stable periods for the stable segments. This criteria resulted in 49,256 labeled segments
(44,019 stable; 5,237 unstable). For each segment, we extracted a total of 61 features that
comprised vital signs, lab values, and demographic information about the patient. For each
segment, the data extracted 1 h prior to intervention was used for training.

3.2 Performance of Kernelized Predictive Model

We first evaluated the quality of the explicit feature map in approximating the kernel func-
tions. Supplementary Figure 1 plots the mean absolute error, mean(|kj,c(x, z)−〈Ψj,c(x),Ψj,c(z)〉|),
as a function of the dimensionality of the feature map for the kernels defined on heart rate



with c ∈ {1, 2, 5, 10}. Larger values of the kernel parameter c, which acts to speed the decay
in similarity, require higher dimensionality to achieve the same approximation error.

We then trained the generalized additive model (6) to predict hemodynamic status (0
= stable, 1 = unstable). Model performance was tested using 10-fold cross-validation, and
the folds were generated to avoid splitting segments of a patient across training and test
sets. For each feature, the kernel parameter c = 5 was chosen. Based on Supplementary
Figure 1, we selected the dimension of the feature map to be 500, which achieves an error of
less than 0.02. The model achieved a cross-validated AUC = 0.881 ± 0.004, which slightly
outperforms the best model in (Conroy et al. (2016)) (AUC = 0.8772), which uses boosting.

We can also examine what was learned by the model by visualizing the nonlinear fea-
tures, fj(x), of the generalized additive model in (6). These nonlinear features have two
interpretations: first, they model the log-odds of hemodynamic instability and therefore
serve as instability risk functions (positive values indicates higher risk); and second, they
serve as the kernel weights in the asymmetric ensemble kernel in (7). Supplementary Figure
2 plots the nonlinear features learned for Noninvasive Systolic Blood Pressure, Hematocrit,
and Shock Index, which were identified as the three most important features (as measured
by ||wj ||). Both systolic blood pressure and hematocrit resemble smoothed step functions,
in which risk for hemodynamic instability increases below a critical threshold (approxi-
mately 100 for systolic blood pressure and 30% for Hematocrit). Both of these thresholds
make sense clinically and agree with previous analyses (Conroy et al. (2016)). Shock index
exhibits a more complicated sinusoidal risk pattern, with lower risk transitioning to higher
risk above 0.7 and peaking at 0.9.

3.3 Patient Similarity for Cohort Building and Exploration

We next explored the use of the patient similarity function learned by the asymmetric
ensemble kernel in Section 2.4 to addressing secondary, but related questions to the task
of hemodynamic instability prediction. To do this, we construct a personalized cohort for
a given query patient, which we define as the 200 most similar patients, as ranked by the
ensemble kernel. Future work will examine fine-tuning the cohort size based on the ordered
similarity scores themselves. We can then evaluate relevance by comparing interventions
and outcomes of the personalized cohort to the true intervention/outcome of the query
patient. In the following, we refer to the population-based kernel as “CDF kernel”.

We contrast the results against developing an ensemble kernel based on a standard
stationary kernel – the RBF kernel on individual features kj(x, z) = exp(−γ(xj−zj)2). The
RBF kernel was also trained to predict hemodynamic status in the exact same manner as was
described in Section 3.2. The kernel hyperparameter γ was tuned locally around the default
value γ = 1 to achieve similar predictive performance (cross-validated AUC = 0.874±0.007).
The explicit feature map used for the RBF kernel was based on the random Fourier features
given in (Rahimi and Recht (2007, 2008)).

We first explore the “term specificity” property of the population-based kernel functions
– retrieval of similar patients based on abnormality of feature values (Figure 4). To achieve
this, we first grouped hemodynamically unstable patients by the intervention they even-
tually received (PRBC, fluid, inotrope, or pressor). For each group, we then compare the
population distribution (black) of feature values to the distribution returned by the per-



sonalized cohort for each patient in the group (red: CDF kernel, green: RBF kernel). The
top row in Figure 4 visualizes the distribution of Shock Index, Systolic Blood Pressure, and
Hematocrit for patients that received pressors or PRBC. Patients that need pressors are
more likely to have abnormal shock index and systolic blood pressure (blue), similarly pa-
tients needing PRBC transfusions have abnormal hematocrit levels (blue) compared to the
whole population (black). The personalized cohort retrieved by the CDF kernel (red) better
reflects the clinical evidence by retrieving patients with abnormal feature values that better
reflects the intervention group distribution (blue), compared to the RBF kernel (green). We
quantified the difference in kernel distributions from the population distribution using the
KL divergence, and the bottom row of Figure 4 plots the results for the PRBC and Pressor
groups. The proposed CDF kernel achieves higher divergence than the RBF kernel for both
groups, indicating the cohort returned by the RBF kernel is more similar to the population
distribution than the CDF kernel – which better approximates abnormal feature values seen
in the intervention group distribution.

Population

CDF kernel

RBF kernel

A

B

Figure 4: Term-specificity property of the population-based kernel functions. A) Compar-
ing distributions of Shock Index, Systolic Blood Pressure, and Hematocrit for
Pressor and PRBC intervention groups. Population distribution (black) versus
the intervention group distribution (blue) and the distributions retrieved by the
personalized cohorts for the CDF (red) and RBF (green) kernels. The CDF
kernel retrieves patients with feature values that are most similar to the inter-
vention group (red and blue). B) KL divergence between population distribution
of feature values and the distribution returned by the the personalized cohorts.
The CDF kernel has a higher divergence from the population indicating a larger
difference in the feature values of the retrieved patients.

We next explored the relevance of the personalized cohorts in retrieving similar inter-
ventions and outcomes to the query patient. For each intervention group, we compare the



population distribution of outcome/intervention type to the distribution returned by the
personalized cohorts of each patient in the intervention group. Figure 5a plots the mortality
rate of personalized cohorts for each intervention group compared to the true mortality rate
of that intervention group. The RBF-based similar patient cohort does not resemble the
entire intervention group in terms of mortality rate. The CDF-based personalized cohorts
have mortality rates that are closer to the intervention group’s true mortality rate.

We also compared each query patient’s intervention given to the distribution of interven-
tions given to its personalized cohort. These are aggregated by query patient intervention
and shown in Figure 5b. For patients in the PRBC group (Figure 5b,A), the dominant
intervention given to similar patients was PRBC, followed by Pressor. For Pressor pa-
tients(Figure 5b,C), the personalized cohort was dominated by Pressor patients, followed
by Inotrope patients. In both cases, the effect was more strongly reflected using the CDF
kernel rather than the RBF kernel. The CDF and RBF kernels both have difficulty in
discerning the fluids and inotrope patient groups (Figure 5b,B,D), which may be due to a
limitation of the available feature data – an area for future work.

(a) (b)

Figure 5: (a) Mortality rate of personalized cohort for each intervention group. Compared
to RBF (green), CDF-based cohorts (red) have mortality rates that are closer to
the true mortality rate observed in a given intervention group. (b) Interventions
given to personalized cohort, grouped by intervention.

4. Conclusion

We presented a multiple kernel learning framework to learn similarity functions that com-
pare physiological state between patients. The learning procedure is based on two desirable
properties: (1) that the similarity can be tuned to a particular clinical context; and (2)
that the similarity reflects a generalized notion of “term specificity” – that shared abnor-
mal feature values should receive an amplified similarity score. We validated our model
on real ICU data to predict hemodynamic instability and explored the relevance of the
patient similarity function for crafting personalized cohorts and presenting statistics. A
natural extension of our approach is to allow the features characterizing patient state to
be learned simultaneously; e.g., the hidden layers of a deep learning network which are up-
dated by back-propagation during training. This can be used to learn interactions between
dependent features that strongly influence the population distributions.
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Supplementary Material for “Patient Similarity Using
Population Statistics and Multiple Kernel Learning”

Appendix A.

Explicit Feature Map Kernels

The explicit feature map (6) depends on explicit feature maps for the kernels min(x, z)i,
i = 0, 1, . . . , c, which we derive here using results from (Vedaldi and Zisserman (2012)).
Since min(x, z)i = min(xi, yi), we can express the feature map Ψ̃i(x) in terms of the feature
map Ψ̃(x) of the intersection kernel min(x, z) as:

Ψ̃i(x) = Ψ̃(xi)

The explicit feature map for the intersection kernel, Ψ̃(x) is given in (Vedaldi and Zisserman
(2012)).

Supplementary Figures

Figure 1: Kernel Approximation Error: Comparison of true kernel function kj,c(x, z) for
heart rate and its explicit feature map approximation 〈Ψj,c(x),Ψj,c(z)〉. Mean
absolute error, mean (|kj,c(x, z)− 〈Ψj,c(x),Ψj,c(z)〉|), is plotted against the di-
mensionality of the feature map Ψj,c for kernel parameter c ∈ [1, 2, 5, 10]. Larger
values of c require higher dimensionality.
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(a) (b) (c)

Figure 2: Nonlinear features learned in generalized additive model.
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