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Abstract

Wearable technologies can benefit from compressive sensing (CS) as an efficient signal trans-
formation, compression, and reconstruction technique. Among such technologies, in-shoe
pressure monitoring systems are designed to continuously record plantar pressure distri-
bution for various applications ranging from medical research to product development in
sports and healthcare. To gather adequate information from plantar area, a high resolution
spatial pressure reading is required. However, to achieve a practical wearable monitoring
system with long battery life at a reasonable price, the number of sensors in the shoe must be
very limited. In this paper, we employed CS principles to reconstruct spatially-continuous
plantar pressure distribution from a small number of sensors (i.e. K < 10) based on a super-
vised dictionary learning approach. The learned dictionary transforms the high-resolution
pressure distribution to a sparse representation which is accurately reconstructable using
either orthogonal matching pursuit (OMP) or least absolute shrinkage and selection opera-
tor (LASSO) algorithm. Using plantar pressure data from 5 participants, we demonstrated
that our method outperforms grid-based and non-gridded interpolation techniques even
at K = 4 sensors such that the best interpolation needs more than K = 170 sensors to
give the same reconstruction accuracy. With K = 4 sensors, we achieved a root mean
squares (RMS) reconstruction error of 6.7 kPa per sensing cell while the error remained
below 16 kPa for pressure values up to 160 kPa. Our algorithm is also shown to be robust
in presence of measurement error and limited training data, therefore efficiently addresses
the challenges encountered in production of commercial in-shoe monitoring systems.

1. Introduction

Compressive Sensing (CS) is an l1-norm minimization-based signal transformation, com-
pression, and reconstruction approach that provides a sparse representation of the informa-
tion presented in the original signal. CS yields a more efficient representation of the original
signal with a relatively smaller number of projected components for information reconstruc-
tion compared to classical techniques. This feature allows for a lower sampling rate than
the Nyquist without losing information in the original signals (Candès and Wakin, 2008).
Previous studies have shown the practical value of CS as a power efficient signal reconstruc-
tion technique particularly for body sensor networks and wearable monitoring technologies
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(Craven et al., 2015; Liu et al., 2014; Williamson et al., 2015; Xu et al., 2012; Zhang and
Sawchuk, 2013). One wearable technology that could benefit from CS compression and re-
construction efficiency is in-shoe plantar pressure monitoring which has various applications
ranging from medical research to product development in sports and healthcare.

1.1 Plantar Pressure Monitoring Applications

Plantar pressure monitoring systems have been used by researchers in gait analysis to en-
hance footwear or therapeutic orthotics designs (Abdul Razak et al., 2012). It provides
valuable insight for professional athletes who seek to maximize their performance or prevent
injuries with appropriate feedback about incorrect foot position or warns of exhaustion and
overload. It is also used to coach patients in walking rehabilitation exercises through provi-
sion of distribution measurement in the form of visual feedback (Wada et al., 2010). Plantar
pressure distribution provides key insights into foot function to help identify pathologies,
as well as aiding in prevention and treatment of wounds caused by high foot pressure spe-
cially for diabetic patients. A vast majority of diabetic patients suffer from foot problems
like degenerative foot disorder and complications due to neuropathy. An inability to feel
pain due to prolonged high pressure being placed upon the feet creates the conditions for
serious foot problems, mainly ulcers. Diabetic foot ulcers are responsible for more hos-
pitalizations than any other complication of diabetes (Rice et al., 2014). Therefore, an
assistive technology able to automatically measure the force applied to the foot through-
out the day would be a significant asset to the foot ulcer prevention field. By embedding
advanced miniaturized force sensors in shoe insoles, plantar pressure distribution can be
collected wirelessly in realtime. These recorded pressure data could be used for diabetic
and neuropathic patients’ feet screening, orthotics and prosthetics efficacy profiling, pre-
and post-surgical comparative analysis, and degenerative foot disorder monitoring.

1.2 Current Technologies

Several plantar pressure mapping systems are commercially available, among which are the
Go-tec (SPI) and F-Scan (TEK). Such systems cost thousands of dollars per unit and are
mostly aimed for in-lab applications. There are also a number of sensor-insole products in
which a limited number of sensors are integrated into footwear at few regions of plantar area.
PPS pressure sensing booties employ 25 sensing elements and were originally designed for
research in surf science (PPS). OpenGo insole from Moticon consists of 13 relatively large
pressure sensors with 50% coverage throughout the footprint and targets skiers as users for
realtime audio coaching during their run (MOT). InsoleX from Sennotech, although having
only 48 wireless sensors embedded in footwear costs around several thousands (SEN). In
addition to their expensive price, such technologies suffer from poor spatial resolution and
underestimation of peak pressures. In fact, except for a few exact points under the sensors,
pressure distribution information on other parts of the plantar area is completely lost.

A practical in-shoe pressure monitoring technology needs to satisfy both wearability and
accuracy requirements. The number of sensors embedded in shoe is a deciding factor in
design which directly influences power consumption (i.e. battery size and weight), plantar
area coverage (i.e. measurement accuracy), and also the final product price. Therefore, an
affordable in-shoe monitoring system is expected to consist of limited numbers of sensors
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(e.g. 10 or less), carefully placed in the locations that a high resolution pressure image
can be estimated from their readings. There have been only a few attempts to address
the reconstruction of plantar pressure from sparse number of sensors. In a previous work,
authors investigated possibility of finding an optimum sparse sensor placement to minimize
reconstruction error (Ostadabbas et al., 2012a,b). In a followup study, they proposed a
knowledge-based Gaussian mixture model approach accompanied with a PCA-based model
order reduction for image reconstruction from sparse number of sensors and obtained rea-
sonable reconstruction accuracy by using only 10 sensors (Ostadabbas et al., 2014).

2. Spatially-Continuous Plantar Pressure Reconstruction

In order to achieve a practically useful wearable plantar pressure monitoring system with
high spatial resolution, long battery life between charges, and at a reasonable price point,
the number of sensors in the shoe should be very limited. We employed a compressive
sensing technique to reconstruct a spatially-continuous plantar pressure distribution using
data collected from a limited set of pressure sensors embedded in the shoe.

2.1 Problem Formulation

A spatially-continuous plantar pressure distribution, Qi at a given time instance, ti, needs
to be reconstructed from a sparse set of K location-known pressure sensor readings, pj for
j ∈ {1, . . . ,K}. Let’s assume each Q has been evenly discretized to an n1 × n2 grid-based
pressure image, in which column-stacking of pixels results in an N = n1×n2 vector, X . The
problem of reconstructing vector X from K sensor readings, P = [p1, p2, . . . , pK ]T , when
K << N is reduced to solving the following under-determined linear equations:

P = AX (1)

where A is a binary K × N selection matrix with non-zero elements only on predefined
sensor locations. It is worth noting that the under-determined system of Equation (1) has
many possible solutions since the number of observations (sensor values) is less than the
number of unknowns. However, we may search for a sparse solution by assuming sparsity
of X in the original or a transformed domain. We denote X̂ to be the sparse representation
of X such that X = ΨX̂ , and re-write Equation (1) as:

P = AΨX̂ (2)

where Ψ is an N × N ′ basis or dictionary matrix (K << N ′) and X̂ is a vector of length
N ′ which has at most S number of non-zero elements. AΨ is called mixing matrix. At this
point, Equation (2) can be solved for X̂ and once we have X̂ , we can find X = ΨX̂ . Based
on the type of dictionary, N ′ can be equal, smaller or greater than N . In our experiment,
we chose transformations which result in N ′ ≤ N .

2.2 Finding A Sparse Solution

The sparsest solution to the under-determined Equation (2) is achieved through solving the
following constrained optimization problem:

minimize
X̂

‖X̂ ‖0, subject to P = AΨX̂ (3)
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where norm ‖.‖0 counts the number of non-zero entries. Equation (3) is not a convex
optimization problem and may not have a unique solution. Theoretically, if there is a
feasible solution that satisfies ‖X̂ ‖0 < (1 + µ−1(AΨ))/2, then X̂ is the unique sparsest
solution to Equation (3) and its l1 relaxation (Donoho and Elad, 2003). Here, µ(.) is
the mutual coherence of a matrix, which is the largest absolute normalized inner product
(correlation coefficient) among all pairs of matrix columns.

It is often challenging to find a concise underlying sparse representation for sensor data
especially when a complex dynamics such as human motion is the source of the data.
Assuming that the transformed data X̂ has most (but not necessarily all) of its energy con-
centrated in a relatively small number of coordinates in the new basis Ψ, we can generalize
sparsity to a wider class of signals and still recover data with a high accuracy. By enforcing
the desired level of sparsity, S, and allowing the equality in Equation (2) to deviate with
respect to some error, the optimization problem in Equation (3) turns into:

minimize
X̂

‖P − AΨX̂ ‖22, subject to ‖X̂ ‖0 ≤ S (4)

This formulation is also valid for K ≥ N ′ when some level of error is accepted for the
sake of a sparse solution. This optimization problem has non-deterministic polynomial-
time complexity (NP-hard) and thus it is computationally intensive to find an valid sparse
solution even for relatively short length vectors.

Several methods have been proposed in the CS literature for solving the problem of
l0-norm sparse recovery using approximation techniques to the algorithms with polynomial
complexity (Candès and Wakin, 2008). For our application, we implemented the stage-wise
orthogonal matching pursuit (OMP) algorithm (Donoho et al., 2012), which is among the
most efficient classical approaches for finding sparse solutions. This non-convex problem can
also be formulated as a regularized l1-norm optimization problem and solved using the well-
established least absolute shrinkage and selection operator (LASSO) algorithm (Tibshirani,
1996). Researchers have proven that when sparsity level is not too big, solutions of l1-norm
minimizer coincide with that of the l0-norm minimizer (Donoho and Elad, 2003).

2.3 Dictionary Learning and Reconstruction

The main question arising at this point is the optimal choice of a basis matrix or dictio-
nary Ψ, in which our data can be approximated with a sparse representation. One idea
is choosing a pre-designed dictionary such as discrete cosine transform (DCT) or discrete
wavelet transform (DWT), which have shown promising results in colored image compres-
sion. However, such transformations are not fine-tuned for specific types of data and are
not satisfactory especially when an extremely sparse representation is desired. Elad et al.
proposed an effective singular value decomposition (SVD)-based method of training dictio-
naries for data-specific sparse representation (Aharon et al., 2006). The K-SVD algorithm
is an iterative learning method that refines an initial dictionary to better fit the data with
respect to a desired sparsity level. K-SVD uses sparse coding of the high resolution training
samples to solve the following optimization problem:

minimize
X̂,Ψ

‖X−ΨX̂‖22, subject to ‖X̂i‖0 ≤ S ∀i = 1, . . . ,M (5)
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where X = [X1, . . . ,XM ] contains M high resolution training data and X̂ = [X̂1, . . . , X̂M ]
represents their corresponding sparse representation with respect to Ψ = [ψ1, . . . , ψN ′ ]. The
algorithm starts with an existing dictionary Ψ0 (that can be formed by random selection
from training data) and then finds/updates X̂ and Ψ consecutively in a two-step process at
each iteration as shown in Algorithm. 1.

Data: X (training data), Ψ0 (initial dictionary), N ′ (# of dictionary columns), S (desired
sparsity level), I (# of iterations)

Result: Ψ (dictionary)
initialization: Ψ = Ψ0, i = 0;
while i < I do

1 Sparse Coding: Fix Ψ and find S-sparse solutions, X̂, to Equation (5) using OMP

algorithm;
2 Dictionary Update: j = 1;

while j ≤ N ′ do

3 Find column indexes in X̂ that have non-zero coefficients for dictionary column, ψj ,
and denote them by {t};

4 Set ψj (column j in Ψ) to zero;

5 UΣV T = SVD(X{t} −ΨX̂{t}); let σ1 be the largest singular value and u1, v1 its
corresponding singular vectors;

6 Update ψj = u1 and its corresponding coefficients in X̂ with σ1v1;
7 j = j + 1;

end
8 i = i+ 1

end
Algorithm 1: K-SVD Algorithm

We propose a slight modification in the classical K-SVD algorithm to include the effect
of the selection matrix, A, in the learning phase. Our modified K-SVD algorithm finds S-
sparse OMP solutions, X̂, that minimize ‖AX−AΨX̂‖2 for a fixed dictionary in the ‘Sparse
Coding’ step, but still keeps the ‘Dictionary Update’ step as before. This modification is
intelligible since this setting follows the sparse reconstruction formulation of Equation (4)
and generally there is no guarantee that OMP solutions with all sensor values (as in classical
K-SVD) coincide with those obtained using sparse number of sensors. After learning the
dictionary, Ψ, on a training set, Equation (4) is solved for a test image to obtain X̂ , and
once we have X̂ , X = ΨX̂ is calculated. A block diagram of dictionary learning and image
reconstruction procedure is shown in Figure 1.

Figure 1: Block diagram of dictionary learning and image reconstruction.

5



3. Experimental Investigation

3.1 Experimental Setting

In order to investigate the performance of the proposed algorithm, we utilized experimental
plantar pressure data collected at the University of Texas at Dallas from 5 healthy partici-
pants (2 females and 3 males) with details provided in (Ostadabbas et al., 2014). The high
resolution pressure data was obtained using a pressure measurement platform with the area
of 435.9×368.8 mm2 manufactured by Tekscan (TEK). This floor mat consists of evenly
spaced resistive force sensors of sensing area equals to 8.4×8.4 mm2, which can measure up
to 862kPa. Participants (19-51 years old) were asked to walk normally across the pressure
mat for two minutes and pressure data was sampled at 50Hz.

3.2 Preprocessing

We used the same preprocessing procedure provided in (Ostadabbas et al., 2014) to prepare
the pressure data for our analysis pipeline. Please note that the preprocessing phase is not
required if the high resolution data is collected from an in-shoe pressure insole.

Stage 1: Step Splitting – In the first stage, we separate individual steps and label them
as right or left step for each participant. Each individual step includes a series of frames in
tandem during a gait cycle. An individual step image is obtained by selecting the maximum
pressure value for each pixel among all frames in a given step.

Stage 2: Image Registration – In this stage, we align pressure images of individual steps
for each person. All step images of a participant’s left or right foot are registered to the
first image in the set of step images through rotational and translational alignment.

Finally, for each participant, we randomly marked 70% of the steps as training data for
data-driven model extraction and the rest as test data to evaluate the performance of our
proposed reconstruction algorithms. After preprocessing, the image frames of size 20 × 37
pressure-pixels were built with details provided in Table 1 for each participant.

3.3 Sensor Location Selection

Human plantar area can be divided into four key regions which are known to experience high
pressures during a complete gait cycle: big toe, heel, first metatarsal head and fourth/fifth
metatarsal heads. They are also medically important due to their vulnerability in developing
foot ulcers especially in neuropathic patients (Lavery et al., 2008). It is reasonable to have at

Table 1: Collected pressure data from each participant

Participant Foot No. of Gait Cycles No. of Training Frames No. of Test Frames
Left 71 2485 867

#1 Right 70 2513 836

Left 70 2512 797
#2 Right 70 2505 853

Left 44 2431 808
#3 Right 44 2397 797

Left 56 2436 809
#4 Right 55 2431 836

Left 34 2463 787
#5 Right 34 2246 839
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least one sensor reading from each of these regions. These regions were manually determined
by a medical technician for each participant based on visual inspection of the pressure data
and were included in the dataset. In our experiments, for each participant’s foot, in each of
the four plantar regions, we selected a sensor location that experienced peak values among
all training step images and then chose the remaining sensor locations randomly.

3.4 Reconstruction Error Measurement

In this study, we used root mean squares (RMS) error as the measure of the deviation of
the reconstructed pressure image from its ground truth. For each participant’s foot, we
calculated RMS error along all nonzero pixels within the step images of all gait cycles in
the test set. We evaluated RMS error at each K (number of sensors) for 10 random sets
of sensors selected as described in Section 3.3. To report the overall RMS error among all
participants’ foot pressure data in Section 3.5, we chose the sensor sets with median RMS
error at each K and then evaluated error along reconstructed images from all participants.

3.5 Experimental Results

The main objective of this study is to achieve accurate reconstruction of high resolution
plantar pressure images from K < 10 number of pressure sensor readings. To make this
possible, the sparsity level S in the transformed domain, X̂ , should be less than the num-
ber of sensors, i.e., S < K. Our experimental analysis is performed by: (1) picking only
K ≥ 4 sensor locations from a high resolution test pressure image, (2) selecting or learn-
ing dictionary Ψ, (3) reconstruction using proposed algorithms, and finally (4) calculating
reconstruction error with respect to the high resolution ground-truth test pressure image.

3.5.1 Reconstruction using DCT dictionary

Figure 2 shows reconstruction error versus number of sensors using a complete 2-dimensional
DCT dictionary of size 740 × 740. OMP algorithm with S = 4 and LASSO were used in
the reconstruction phase. Due to LASSO algorithm increasing computational cost, only the
results for up to 24 sensors are shown. Although LASSO surpassed OMP in reconstruction
accuracy, neither of the algorithms was truly successful since the pressure images are not
indeed sparse enough in the DCT domain. To make it clear, on average, more than 35% of
the image energy is lost when only 24 largest coefficients in the DCT domain are considered
and thus it highlights the importance of learning a proper dictionary.
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Figure 2: Reconstruction error using 740× 740 DCT dictionary.
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Figure 3: Reconstruction error using 740× 740 learned dictionaries.

3.5.2 Reconstruction using K-SVD learned dictionary

The results of using 740× 740 dictionaries learned by classical and modified K-SVD (mK-
SVD) algorithms with S = 2, 4 are shown in Figure 3. In the mK-SVD (which sensor
locations are considered in the learning phase), we used learned dictionaries with K = 4
for all cases. In the reconstruction phase, we enforced the same sparsity level used in the
learning phase for OMP. The best results were obtained for dictionaries learned with S = 2
and when OMP was used for reconstruction. The results for S = 2 are better than S = 4
for smaller number of sensors (K < 46). This is consistent with the theoretical finding that
the algorithms perform better when S is smaller, in which sparse reconstruction constraints
are more likely to be satisfied (Donoho and Elad, 2003).

The reconstruction error for LASSO reduces significantly from K = 4 to K = 5 sensors.
To further explore the reason, we computed pairwise correlations between columns of each
dictionary Ψ and noticed that, on average, about 20% of the columns have correlation more
than 0.9. This percentage drops significantly from 38% in mixing matrix, AΨ, with K = 4
to 25% with K = 5, which is apparently much closer to its value in complete dictionary.
Note that the more correlated the columns of AΨ, the less chance we have to reconstruct
images using LASSO (see mutual coherence in Section 2.2). As shown in Figure 3, OMP
and LASSO perform better using the dictionaries learned by mK-SVD, but the margin is
insignificant for OMP with S = 2. This is mainly because its dictionary columns are highly
correlated (rank of dictionaries is less than 400). This fact results in reducing the dictionary
columns which in turn drastically decreases computational cost in the reconstruction phase.
We learned dictionaries with only 50 columns (size of 740×50) using classical and modified
K-SVD with S = 2. We also confined the analysis to OMP due to its simple implementation
and low computational cost, which is critical for realtime applications. The results are
shown in Figure 4(a). This dimensionality reduction has trivial effect on reconstruction
error when using dictionaries learned by classical K-SVD (gives almost the same results as
for complete dictionaries especially for K ≤ 14 sensors). However, the mK-SVD algorithm
clearly outperformed the classical version at this dimension.

3.5.3 Reconstruction using different sensor sizes

For this part of experiment, we employed high resolution pressure data with small gridded
sensors for the learning phase, but instead utilized larger insole sensors for reconstruction,
since larger force sensors are usually manufactured with lower cost. We implemented this
configuration in reconstruction by collecting the average pressure value around a sensor
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Figure 4: Reconstruction error using 740× 50 dictionaries learned by classical K-SVD and mK-SVD.

location, instead of reading pressure value at the sensor itself, through modifying the se-
lection matrix A. In this way, we included information from adjacent locations and have
a better conditioned mixing matrix AΨ while preserving the same number of sensors. We
used mK-SVD with S = 2 and applied non-overlapping 3 × 3 averaging windows (9 times
larger sensors) centered on each selected location. The result in Figure 4(b) shows clear
improvement in reconstruction accuracy (solid line). To address the sensitivity issue of the
system due to the use of different sensor types in learning and reconstruction, we added
random errors up to ±5% to the average values and then reconstructed images. The result
in Figure 4(b) (dotted line) shows that we still have a better reconstruction accuracy.
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Figure 5: Error as a function of (a) distance to nearest sensor, and (b) real pressure for K = 4, 740 × 50
dictionaries, mK-SVD with S = 2 and OMP.

3.5.4 Error as a function of distance & real pressure

Figure 5(a) shows error as a function of distance from the nearest sensor for K = 4. The
error has a low rise at close distances because the model attempts to fit on the known
values and then starts dropping at 20mm because the farther away from sensor locations,
regions are more likely to experience lower pressures. We obtained this graph by sorting
and dividing distances into 20 bins with nearly equal data points and then reported the
RMS error and average distance for each bin. Figure 5(b) shows RMS error as a function
of real pressure value for K = 4 and determines the contribution of overestimation and un-
derestimation to the error. The error is more affected by underestimation at high pressures
and overestimation at low values. However, it remains between 13 − 16 kPa as pressure
increases from 50 kPa to 160 kPa. To obtain Figure 5(b), we sorted and divided pressure
values into 50 bins, then reported the RMS error and average pressure for each bin.
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Figure 6: (a) Error comparison between our method and interpolation techniques. We used 740×50 dictio-
naries, mK-SVD with S = 2 and both normal (small) and large sensors for our method.(b) Reconstruction
error for 740×50 dictionaries learned with 30% of data. We used mK-SVD with S = 2 and OMP algorithm.

3.5.5 Comparison with interpolation techniques

We compared the performance of our data-driven approach with various interpolation meth-
ods commonly used in medical image processing: Laplace, Natural Neighbour, Linear, and
Nearest Neighbour (Lehmann et al., 1999). We also applied the GMM-PCA based ap-
proach proposed in (Ostadabbas et al., 2014) to our dataset with its recommended settings
using sensor locations at Gaussian centers (GC) as well as our sensor selection method.
The results of the comparison in Figure 6(a) shows superiority of our approach over other
techniques which clearly break down for small number of sensors.

3.5.6 Dictionary learning with limited training data

Finally, we examined the capability of our approach to work with limited training data. We
used 30% of the data for training and the rest for test. The result is shown in Figure 6(b)
using the mK-SVD with S = 2, OMP algorithm and large sensors. The error has increased
at most by 0.7 kPa for K = 4 sensors, confirming that our approach still works well.

4. Conclusion

In this work, we proposed a spatially-continuous plantar pressure reconstruction technique
specifically for K < 10 number of sensors based on CS principles. The key point in solving
such highly under-determined system is to find a sparse representation for the underlying
model. Our method takes advantage of high resolution training data to learn a dictionary
in which pressure images are sparse, and then uses CS techniques to reconstruct images
from sparsely placed, even much larger sensors. The proposed approach outperformed
blind interpolation techniques such that the best method we tested, needed more than 170
sensors to give the same reconstruction accuracy we obtained with only 4 sensors. We
also showed that our algorithm is robust in presences of measurement error and limited
training data. In the reconstruction phase, we used classic OMP algorithm which can
be efficiently implemented for realtime applications. Our method addresses both cost and
energy constraints for practical in-shoe monitoring systems by providing high reconstruction
accuracy using very small number of sensors with flexible size, and therefore ultimately can
improve the quality of life of many individuals suffering from foot problems.
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