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Abstract

The goal of this work is to better convey the evidence for or against clinically significant
di↵erences in patient outcomes induced by di↵erent treatment policies. In pursuit of this
goal, we present a framework for computing and presenting prediction regions and tolerance
regions for the outcomes of a treatment policy operating within a multi-objective Markov
decision process (MOMDP). Our framework draws on two bodies of existing work, one in
computer science for learning in MOMDPs, and one in statistics for uncertainty quantifi-
cation. We review the relevant methods from each body of work, present our framework,
and illustrate its use using data from the Clinical Antipsychotic Trials of Intervention Ef-
fectiveness (Schizophrenia). Finally, we discuss potential future directions of this work for
supporting sequential decision-making.

1. Introduction

In its broadest sense, clinical significance describes the degree to which a treatment will
make a meaningful impact on a patient’s health outcomes. In contrast, statistical signifi-
cance measures the degree to which an observed average di↵erence in outcome, estimated
using a group of patients, could have arisen by chance alone (Porta, 2014). These two are
not necessarily aligned; one can observe a statistically significant average di↵erence—even
if that di↵erence is very small—so long as the dataset under consideration is big enough. As
dataset sizes have grown, both from a push toward large pragmatic clinical trials and from
the increased availability of large observational datasets, there is a much greater opportunity
than before to observe statistical significance without clinical significance.

Consider the simplified analysis of CATIE, the Clinical Antipsychotic Trials of Inter-
vention E↵ectiveness, shown in Table 1. The table shows regression analyses of symptom
(Positive and Negative Syndrome Score—PANSS) and side-e↵ect (Body Mass Index—BMI)
scores at the end of the study, adjusting for baseline covariates, and comparing two first-line
treatments, ziprasidone and olanzapine pn “ 364q. In the analyses, the impact of ziprasi-
done versus olanzapine is statistically significant; on average, patients on ziprasidone had a
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Table 1: Olanzapine versus ziprasidone as first-line treatment
PANSS Model Estimate p-value

(Intercept) 19.07516 † 0.0001
Baseline.PANSS 0.66216 † 0.0001

Ziprasidone 4.46974 0.0127

BMI Model Estimate p-value
(Intercept) 2.2243 0.0024

Baseline.BMI 0.9663 † 0.0001
Ziprasidone -0.9598 0.0054

higher (worse) PANSS score, and a lower (better) BMI than patients on olanzapine, after
adjusting for baseline levels. However, as Figure 1 illustrates, the actual observed outcomes
are highly variable, and there is a great deal of overlap between the two treatment groups.
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Figure 1: Observed changes in outcomes

Our work aims to convey visually what
outcomes are likely for a given individ-
ual under di↵erent candidate treatment
policies. Our visualization can take into
account multiple outcomes of interest si-
multaneously, and applies to sequential
decision-making problems formalized as a
Markov Decision Processes (MDP) (Bert-
sekas, 2007). (Although the CATIE study
involved sequences of treatments, Figure 1
considers only the first-line treatment and
averages over future treatments rather than
optimizing.) MDPs are useful concep-
tual tools for reasoning about sequential
decision-making under uncertainty. Much
of the computer science research on planning and learning in MDPs has focused on con-
structing an autonomous agent that acts in a given environment over an extended period of
time, choosing actions according to a particular policy in order to achieve a high expected
sum of rewards (Sutton and Barto, 1998). Other research, particularly in statistics, uses
MDPs to frame the development of evidence-based decision support for sequential decision-
making problems (Laber et al., 2014). In the field of statistics, policies are often called
Dynamic Treatment Regimes (DTRs), and there is a substantial literature studying their
development and application in the field of health care decision-making (Orellana et al.,
2010; Shortreed et al., 2011). As in computer science, much of the literature is devoted
to the estimation of regimes that optimize the expected sum of rewards, as well as to un-
certainty quantification for the parameters and the average performance of such regimes
(Laber et al., 2014; Lizotte and Tahmasebi, 2017).

Most DTR literature focuses on the use of batch data to understand how treatments
can be selected with the goal of achieving long-term success for a population of patients.
Thus, the deployment of DTRs in statistics was always assumed to be “multi-agent” in the
sense that the DTR would be used to aid the decisions of many di↵erent patient-clinician
pairs where each patient would experience only one “episode” of the regime. Thus, there
is a fundamental disconnect between the average performance of a regime (“How will a
population respond?”) and the individual performance of a regime (“How will an individual
respond?”). In a computer science framework with a single agent over a long horizon,



this di↵erence matters much less; in decision support, however, recognizing the variability
in performance achieved over individual episodes and communicating that variability to
human decision-makers is crucial. The di↵erence, as discussed previously, can be viewed as
one of statistical versus clinical significance—with enough data, we may become extremely
confident that one action a↵ords higher expected return than another in a given state.
However, if the variance of the returns is large, the question of which action will perform
better in a particular episode may nearly come down to a fair coin flip.

Our goal is to capture and convey information about the distribution of returns, rather
than only the mean return, of a learned policy. We also wish to accommodate multiple
reward signals; rather than formulate an MDP using a single, one-size-fits-all reward, we
use a Multi-Objective Markov Decision Process (MOMDP) to enable the end user to con-
sider several rewards that may be important (e.g. symptom relief, side e↵ects, cost) before
making their next decision. To accomplish this goal, we extend and combine ideas from re-
cent work on uncertainty quantification in MDPs and on Q-learning for MOMDPs. Lizotte
and Tahmasebi (2017) present methods for constructing prediction intervals and tolerance
intervals for the returns of a policy. Their method conveys, given a state and action, what
returns are likely to be observed, but is restricted to the single-reward setting. Lizotte
and Laber (2016) describe a methodological and computational framework for computing
optimal policies of MOMDPs under di↵erent solution concepts using linear function approx-
imation over a finite time horizon. Their approach, an extension of Q-learning, provides
point estimates for the mean vector-valued returns achievable from a given state, but does
not give information about the distribution of vector-valued returns.

Our main technical contribution is a framework for computing tolerance regions in the
multiple-reward setting by augmenting both the tolerance interval algorithm from Lizotte
and Tahmasebi (2017) and the policy learning algorithm from Lizotte and Laber (2016). The
output of our algorithm is the region of the space of returns that is most likely to contain
a return achieved by following a non-dominated policy. We present a framework rather
than a particular algorithm, because di↵erent applications are likely to warrant di↵erent
components for the Q-function approximation, solution concept, and region construction.
We give a clinical example to demonstrate how the framework functions, but we also identify
where components could be interchanged to suit di↵erent tasks.

An important secondary goal of our work is simply to illustrate how the methodology
of prediction and tolerance regions can be used to explore clinical significance and aid
decision-making. These methods can be directly applied in simpler settings, such as two-
arm randomized clinical trials or observational studies, to summarize the experiences of the
patients without requiring some of the more complicated methodology we describe here.

2. Cohort and Outcomes

Our work was motivated by our experience in analyzing large pragmatic clinical trials with
multiple stages of randomization and multiple outcomes. We illustrate the output of non-
deterministic fitted-Q using data from the Clinical Antipsychotic Trials of Intervention
E↵ectiveness (CATIE) study. The CATIE study was designed to compare sequences of
antipsychotic drug treatments for the care of schizophrenia patients. It was designed as a
pragmatic trial that was intended to mimic clinical practice as closely as possible; hence,



the inclusion criteria were made as broad as was feasible, and the recruitment was large
(n “ 1460). The full study design is quite complex (Stroup and al, 2003; Swartz et al.,
2003); we use a simplified subset of the CATIE data in order to more clearly illustrate
the proposed methodology. Briefly, participants were randomized to one of a collection of
antipsychotics on entry to the study, and were monitored over time. If, during the study,
the participant and their physician decided that the current treatment was not acceptable,
either due to a lack of e�cacy (i.e. symptom reduction) or tolerability (i.e. side e↵ects), they
were randomized to a di↵erent treatment and were monitored until the end of the study.1

A more complete description of the protocol is provided in Appendix A, but for a full
description we refer the reader to the design published by Stroup and al (2003). To simplify
our analysis, we focus only on pn “ 356q patients who were randomized to olanzapine or
ziprasidone at the first phase of the study. These two atypical antipsychotics o↵er a tradeo↵
between symptoms and side-e↵ects: as noted in the simplified analysis above, in our dataset
olanzapine on average appears to be superior in terms of symptom reduction but inferior
in terms of weight gain.

In previous work, the goal of analyzing CATIE has been to develop a two phase policy
that consists of a rule for choosing the intial treatment and then a rule for choosing a follow-
up treatment if desired. Such work has examined the problem of finding optimal policies
in terms of expected outcome over patients, both in the single-outcome (Shortreed et al.,
2011) and the multiple-outcome (Lizotte and Laber, 2016) settings. We will address the
multiple outcome setting, focussing on PANSS, which measures schizophrenic symptoms,
and BMI, which attempts to measure whether a person is of a healthy weight. Weight gain
is one of the most significant side-e↵ects of antipsychotic medications (Leucht et al., 2013).
Rather than producing a treatment policy, our goal is to provide a decision aid to help guide
the choice of first-line treatment in a way that acknowledges the potential e↵ects of future
treatment choices.

3. Background

In the following, we review background for Multi-Objective Markov Decision Processes and
Q-learning in that context. We then review prediction regions and tolerance regions.

3.1 Multi-Objective Markov Decision Processes and Q-learning

This section follows the development in previous work by Lizotte and Laber (2016). Clinical
decision-making is often driven by multiple competing objectives; for example, a medical
decision will be based not only on the e↵ectiveness of a treatment, but also on its potential
side-e↵ects, cost, and other considerations. Because the relative importance of these objec-
tives varies from individual to individual, the quality of a policy may not be well captured
by a universal single scalar “reward” or “value.” Multi-Objective Markov Decision Pro-
cesses (MOMDPs) accommodate this by allowing vector-valued rewards Lizotte and Laber
(2016); Roijers et al. (2013) and using an application-dependent solution concept to define
the performance of a policy. A solution concept is essentially a partial order on policies; the

1. These represent complete cases, which simplifies our presentation in the paper. We conducted a multiple-

imputation-based version of our simplified analyses in Table 1 and found minimal di↵erences in point

estimates and significance levels as compared with the complete case analysis.



set of policies that are maximal according to the partial order are considered “optimal” and
are indistinguishable under that solution concept – for example, using Pareto optimality as
the solution concept leads to an equivalence class of all policies that lead to a value on the
Pareto frontier. A collection of policies may be represented by a non-deterministic policy
(NDP) Milani Fard and Pineau (2011). Given an MDP with state space S and an action
set A, an NDP ⇧ is a map from the state space to the set 2AztHu. Like previous work
Lizotte and Laber (2016); Roijers et al. (2013), we focus on the setting where the definition
of an MDP is augmented by assuming a D-dimensional reward vector Rpst, atq is observed
at each time step. We define a MOMDP with finite time horizon T as a tuple of state
spaces St, action spaces At, state transition functions Pt : St ˆAt Ñ PpSt`1q where PpSt`1q
is the space of probability measures on St`1, and reward functions Rt : St ˆ At Ñ RD for
t P t1, ..., T u. In keeping with the Markov assumption, both Rt and Pt depend only on the
current state and action. We assume finite action sets, but we do not assume that state
spaces are finite. The value of a policy ⇡ is given by V⇡psq “ E⇡r∞T

t“1R
tpst, atq|s1 “ ss,

the expected sum of (vector-valued) rewards we achieve by following ⇡.
Consider a batch of n trajectories si1, a
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1, ..., n. At time T , (the final time point) we define the approximate Q-function for reward
dimension d as the least squares fit

Q̂T rdspsT , aT q “ �T psT , aT q|ŵT rds, ŵT rds “ argmin
w

ÿ

i

´
�T psiT , aiT q|w ´ riT rds

¯2
(1)

giving the estimated vector-valued expected reward function, which we denote Q̂T psT , aT q “
pQ̂T r1spsT , aT q, ..., Q̂T rDspsT , aT qq|. Here, �T psT , aT q is a feature vector of state and action.

Having obtained the Q̂T from (1), we construct an NDP ⇧T that gives, for each state, the
actions one might take at the last time point. For each state sT at the last time point,
each action aT is associated with a unique vector-valued estimated expected reward given
by Q̂T psT , aT q. Thus, we decide which among these vectors is a desirable outcome using
our solution concept, and include their associated actions in ⇧T psT q.

For t † T , it is only possible to define the expected return of taking an action in a
given state by also deciding which particular policy will be followed to choose future ac-
tions. In standard fitted-Q, for example, one assumes that the future policy is given by
⇡jpsq “ argmaxa Q̂jps, aq for all j ° t. In the non-deterministic setting, we may know
that the future policy belongs to some set of possible policies derived from ⇧j for j ° t,
but in general we do not know which among that set will be chosen; therefore, we explic-
itly include the dependence of Q̂t on the choice of future policies ⇡j , t † j § T by set-

ting Q̂tpst, at;⇡t`1, ...,⇡T q “ rQ̂tr1spst, at;⇡t`1, ...,⇡T q, ..., Q̂trDspst, at;⇡t`1, ...,⇡T qs| where

for d “ 1, . . . , D, Q̂trdspst, at;⇡t`1, ...,⇡T q “ �tpst, atq|ŵtrds⇡t`1,...,⇡T
, and ŵtrds⇡t`1,...,⇡T

“
argminw

∞n
i“1r�tpsit, aitq|w ´ tritrds ` Q̂t`1rdspsit`1,⇡t`1psit`1q;⇡t`2, ...,⇡T qus2.

We use Qt to denote the Q-pool, a set of partially-evaluated Q-functions; each member
of Qt is a function of st and at only and assumes a particular fixed sequence ⇡t`1, ...,⇡T
of future policies. Each one gives the estimated expected return for the given state-action
pair and future sequence of policies. Our goal in this work is to augment each one with
information about the distribution of those returns, because this represents the distribution
of outcomes we would expect patients to experience if they follow the given policy.



3.2 Prediction Regions and Tolerance Regions

A prediction region R↵ pY1, . . . , Ynq for a data generating process traps the next observation
Yn`1 with probability 1 ´ ↵:

Pr pYn`1 P R↵ pY1, . . . , Ynqq “ 1 ´ ↵. (2)

Conformal prediction (CP) is a methodology for constructing nonparametric prediction re-
gions under mild assumptions Shafer and Vovk (2008). CP methods produce valid prediction
regions under any distribution using a given nonconformity measure. A nonconformity mea-
sure takes a data sample and produces nonconformity scores �i that measure the “novelty”
of each observation with respect to the whole set. For example, we may define nonconfor-
mity in terms of regression predictions as �i “ |yi ´ pyi| where pyi “ X p� is the ith fitted
value. Let F be the data generating distribution for Y1, . . . , Yn. Once the nonconformity
scores are obtained for all i “ 1 . . . n, the nonconformity �n`1 of a hypothetical additional
observation Yn`1 can be compared to the observed data to obtain a p-value for the null
hypothesis H0 : Yn`1 „ F by ppYn`1;Y1, . . . , Ynq “ pn ` 1q´1 ∞n`1

i“1 1 t�i • �n`1u . By def-
inition, if Yn`1 „ F , PrpppYn`1;Y1, . . . , Ynq § ↵q “ ↵. Therefore, the region described by
R↵

CP “ tY : ppY ;Y1, . . . , Ynq ° ↵u traps Yn`1 with probability 1´↵, and is a 1´↵ prediction
region. Conformal prediction guarantees the produced prediction is valid under any given
nonconformity measure–parametric or nonparametric– even in finite samples. However, the
nonconformity measure does influence the size of the region and therefore its usefulness
in practice. Lei et al. (2013) propose the use of a kernel density estimate to produce the
nonconformity score. We use their approach in our example below and in our subsequent
analysis of CATIE.

A p1 ´ ↵q, �-content tolerance region R↵,� pY1, . . . , Ynq has the property

PrpPF rR↵,� pY1, . . . , Ynqs • �q “ 1 ´ ↵. (3)

Note that this is a much stronger probability statement than (2): it says that each interval
we construct, with high probability, captures at least � of the probability mass of the data
generating distribution. Several parametric and non-parametric methods are known for one-
dimensional tolerance intervals, and Lizotte and Tahmasebi (2017) demonstrate their use for
constructing one-dimensional tolerance for the returns of estimated DTRs. Li and Liu (2008)
propose a nonparametric method based on order statistics derived from data depth, which
is a quantity very similar in spirit to a nonconformity measure. Tolerance intervals are then
computed by applying one-dimensional techniques to data depth. Although this method
produces tolerance regions, which make a stronger probability statement than prediction
regions, (3) is shown to hold only asymptotically. Nonetheless, Li and Liu demonstrate that
they can achieve good performance in some finite sample settings (i.e. with hundreds of
data points and two dimensions).

4. Methods

We present a modular framework for constructing tolerance regions for multiple objectives.
The set of optimal policies are found using methods from Lizotte and Laber (2016), and the
regions are constructed using methods from Lizotte and Tahmasebi (2017). Algorithm 1
lays out the major steps for constructing regions from policies learned by these methods.



Algorithm 1 Regions for MOMDPs

Inputs: Set of n trajectories; region function R; state action pair of interest pst, atq
Output: Region or regions describing the likely observed returns when starting from st
and taking action at

Compute Q-pool for timestep t (Lizotte and Laber, 2016)
by identifying all non-dominated policies
for each function in the pool and associated policy do

Collect all trajectories beginning with at
For those whose future actions follow the associated policy, retain their observed out-
comes
if there are few such outcomes and we are willing to generalize from trajectories where
the policy was not followed then
Create additional return samples using trajectories that did not follow the policy
using residual borrowing (Lizotte and Tahmasebi, 2017)

else if trajectories were collected using a state-dependent exploration policy then
Re-weight the empirical distribution of the samples (Lizotte and Tahmasebi, 2017)

end if
Adjust the (possibly weighted) returns by regressing them on state and centering the
resulting residuals at Qpst, atq
Construct a region by applying R to the resulting set of adjusted returns

end for
return The regions

The methods in Lizotte and Laber (2016) produce a pool ofQ-functions at each timestep,
as described above. For a given at, each Q-function in the time t pool produces a di↵erent
expected return, and its associated future policies produce a di↵erent distribution over
returns. To construct a region (prediction or tolerance) for a particular Q-function from
the pool, we identify the trajectories that start with at and whose actions are consistent
with that Q-function’s assumed future policies. We then use the empirical distribution
of their returns to construct whichever type of region is desired. Since in general we do
not know which future policy will be followed, we propose to construct regions for all Q
functions in the pool and examine their union, their intersection, and the di↵erence of the
two. However, other summaries of the regions may also be useful.

Lizotte and Tahmasebi note that if the exploration policy is allowed to depend on state,
then the distribution of matched trajectories will not in general match the distribution of
returns we would obtain by following the future policies under consideration (Lizotte and
Tahmasebi, 2017). Hence, constructing regions näıvely using the matched trajectories will
yield incorrect results. They characterize this dependence and present an inverse probability
weighting procedure for correcting the distribution before constructing regions. We propose
to use the same strategy in the MOMDP setting when necessary. They also propose residual
borrowing, which uses the residuals between the estimated Q values and the returns among
the matched trajectories to infer what the distribution of returns would have been among
the unmatched trajectories by combining them with the estimated Q-values. (For further
detail please see reference Lizotte and Tahmasebi (2017).) This methodology increases the



amount of trajectories we can use, and can also be used within our framework; it relies
on two key assumptions. First, it assumes that di↵erences in expected return are fully
captured by the current state (the standard MDP assumption.) Second, it assumes that
the residual distribution of returns around the expected value is correctly captured by the
regression method used. For linear regression, this implies an assumption that the residual
distribution is the same across the state space. If there is concern that this is not the case,
the correct residual distribution could be estimated by more flexible regression methods,
for example heteroscedastic Gaussian process regression (Lzaro-Gredilla and Titsias, 2011).

Lizotte and Tahmasebi assume a discrete state space at the time point of interest. In
this work, we accommodate continuous state spaces with function approximation at the
first timepoint by extending the residual borrowing idea. Once we we have a return sample
for every trajectory that begins with at, whether it came from following the policy of
interest or was created using residual borrowing, we adjust the values of those returns by
regressing them on the current state and re-centering them at the Q-value for the state of
interest. Again, this requires an assumption that the regression procedure correctly captures
the residual distribution independent of state, as discussed previously. If there is reason
to believe this variance is similar across state, however, then this approach allows us to
generalize across states at the first timepoint.

Our framework can accommodate any multivariate region method (prediction or toler-
ance) and any reweighting procedure (based on generalized additive models, density ratio
estimation, etc.). In our opinion the most promising methods are the Lei-Robins-Wasserman
conformal prediction method (2013) and the Li-Liu tolerance region method (2008).

5. Results

Below, we review our goals and present results of applying our method to the CATIE data.

5.1 Evaluation Goals

Figure 2: Conformal prediction region for
outcomes with ↵ “ 0.2, assuming
exploration policy at second stage

Our goal is to illustrate the e↵ect that se-
quential decision-making, in the form of dif-
ferent choices of future policy, can have on
the likely outcomes associated with di↵er-
ent immediate actions. Thus, rather than
comparing a numerical measure of success,
we will demonstrate visually the additional
structure that we are able to extract from
the data to aid decision-making. Note
that previous work (Lizotte and Tahmasebi,
2017) has investigated the statistical prop-
erties of these methods, in terms of width
and coverage; this was done using synthetic
data. For this work, since we do not have
a ground truth generative model, we have
chosen the methods that are most conser-
vative from those investigated by Lizotte and Tahmasebi (2017).



Figure 2 illustrates what is possible using o↵-the-shelf conformal prediction method of
Lei et al. (2013). It show two prediction regions with level ↵ “ 0.2, one for ziprasidone and
one for olanzapine, for a participant with a baseline PANSS of 75 and a BMI of 27.2, which
is near the median of the population. These regions are constructed using the observed
outcomes from the study. Hence, these are the regions that would be expected to trap
one additional outcome if a patient followed the policy used to collect the data, that is, if
the patient followed a random policy at the second stage. We can see that the region for
olanzapine is a bit higher in the BMI direction, reflecting its propensity to induce weight
gain. It is also shifted somewhat to the left also extends a bit further to the left and right
on the PANSS axis, reflecting that although olanzapine appears to produce lower PANSS
on average, in the study outcomes were more variable than they were among patients who
started with ziprasidone.

Figure 3: Two example regions for olanzapine and ziprasidone, conditioned on an initial
state of PANSS = 75 and BMI = 27.2, and conditioned on specific (deterministic)
future policies.

5.2 Prediction Regions With Sequential Decision-Making

Using the methods of Lizotte and Laber (2016), we computed over 29,000 possible future
policies for the second stage of CATIE for each of olanzapine and ziprasidone. Each of
these policies were non-dominated, using an indi↵erence region of 15 points of PANSS and
1.5 points of BMI. For each of these policies, we computed a conformal prediction region.
Figure 3 shows two randomly selected regions for each of olanzapine and ziprasidone at the
first stage. The di↵erent shapes of the regions for the same action reflects the ability to
influence how outcomes are distributed through the phase 2 policy.

To summarize these tens of thousands of regions, we present three plots shown in Fig-
ure 4. The leftmost plot shows the intersection of all of the regions. These show outcomes
that are contained in the 80% prediction region regardless of what future policy is chosen.
These represent likely outcomes that are in a sense unavoidable. The centre plot shows the
union of all the regions. These show that are in the 80% prediction region for at least one



Figure 4: Summaries of all prediction regions for olanzapine and ziprasidone, conditioned
on initial state of of PANSS = 75 and BMI = 27.2. Left: intersection of all
regions. Centre: union of all regions. Right: union minus intersection.

future policy. The rightmost plot shows the di↵erence between the union and the intersec-
tion. Each point here is excluded from the 80% prediction region by at least one policy,
and is included in the 80% prediction region by at least once policy. Hence, this “ring” of
points represents the area of outcome space that we have some control over after choosing
the first action.

6. Discussion

Our results show how one might present and use the information from the regions: by
overlaying the regions corresponding to di↵erent actions, we can compare their likely out-
comes as an aid for decision-making. We expect that the best choices for the details of
this framework (e.g. approximation method, region type, presentation style) will di↵er from
task to task, and it is therefore our hope that this work provides a foundation for both
novel research and useful application. We envision our method forming the underpinnings
of an interactive piece of software that allows the user to explore the interaction between
choice of future policy and likely outcomes. For example, we could allow a user to click on
a point in the di↵erence plot (rightmost plot of Figure 4) to identify the policies that either
include or exclude that point. More generally, we could have the user “paint” regions of the
outcome space to include or exclude, in order to help identify the most appropriate future
policies according to their preferences.

There are two main methodological limitations of the current work that we feel are
most important to address going forward. First, we note that the regions, for example in
Figure 3, tend to be larger than those constructed for the exploration policy. This may
seem counterintuitive, but consider that when constructing a region for a learned policy,
we actually have less data that exactly follow that policy than there are trajectories in the
entire dataset. We attempt to mitigate this with residual borrowing, but it may be that
our estimates of the residual distribution are wider than they need to be. This is a focus
in our ongoing work. Second, although in this illustrative example we used a complete-
case analysis, going forward it will be important to incorporate uncertainty information,
for example from multiple imputations, to avoid bias from study dropout. This may lead
to Bayesian formulations of the region problem as a whole that could provide for better
incorporation of prior information.



References

D. B. Allison, J. L. Mentore, M. Heo, L. P. Chandler, J. C. Cappelleri, M. C. Infante, and
P. J. Weiden. Antipsychotic-induced weight gain: A comprehensive research synthesis.
American Journal of Psychiatry, 156:1686–1696, November 1999.

D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II. Athena Scientific,
3rd edition, 2007. ISBN 1886529302, 9781886529304.

S. R. Kay, A. Fiszbein, and L. A. Opfer. The Positive and Negative Syndrome Scale
(PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2):261–276, 1987.

E. B. Laber, D. J. Lizotte, M. Qian, W. E. Pelham, and S. A. Murphy. Dynamic treatment
regimes: technical challenges and applications. Electronic Journal of Statistics, 8(1):
1225–1272, 2014.

Jing Lei, James Robins, and Larry Wasserman. Distribution-free prediction sets. Journal
of the American Statistical Association, 108(501):278–287, 2013.

Stefan Leucht, Andrea Cipriani, Loukia Spineli, Dimitris Mavridis, Deniz Örey, Franziska
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Appendix A.

CATIE was an 18-month study of n “ 1460 patients that was divided into two main phases
of treatment. Upon entry, most patients began “Phase 1,” and were randomized to one of
five treatments with equal probability: olanzapineû, risperidone§, quetiapineú, ziprasidoneù,
or perphenazine‚. As time passed, patients were given the opportunity to discontinue
their Phase 1 treatment and begin “Phase 2” on a new treatment. The possible Phase
2 treatments depended on the reason for discontinuing Phase 1 treatment. If the Phase 1
treatment was ine↵ective at reducing symptoms, then patients entered the “E�cacy” arm of
Phase 2, and their Phase 2 treatment was chosen randomly as: {clozapine˛} with probability
1{2, or uniformly randomly from the set {olanzapineû, risperidone§, quetiapineú} with
probability 1{2. Because relatively few patients entered this arm, and because of the uneven
action probabilities, it is reasonable to combine {olanzapineû, risperidone§, quetiapineú}
into one “not-clozapine” action, and we will do so here. If the Phase 1 treatment produced
unacceptable side-e↵ects, they entered the “Tolerability” arm of Phase 2, and their Phase
2 treatment was chosen uniformly randomly from {olanzapineû, risperidone§, quetiapineú,
ziprasidoneù}.

Basis Rewards

We use ordinary least squares to learn Q functions for two basis rewards. For our first basis
reward, we use the Positive and Negative Syndrome Scale (PANSS) which is a numerical
representation of the severity of psychotic symptoms experienced by a patient (Kay et al.,
1987). PANSS has been used in previous work on the CATIE study (Shortreed et al., 2011;
Lizotte et al., 2012; Swartz et al., 2003), and is measured for each patient at the beginning
of the study and at several times over the course of the study. Larger PANSS scores are
worse, so we minimize rather than maximize when learning policies.

For our second basis reward, we use Body Mass Index (BMI), a measure of obesity.
Weight gain is an important and problematic side-e↵ect of many antipsychotic drugs (Allison
et al., 1999), and has been studied in the multiple-reward context (Lizotte et al., 2012).
Because having a larger BMI is worse in this population, again we minimize rather than
maximize when learning policies.

State Space

For our state space, we use the patient’s most recently recorded PANSS score, which experts
consider for decision making (Shortreed et al., 2011). We also include their most recent BMI,
and several baseline characteristics.

Because the patients who entered Phase 2 had di↵erent possible action sets based on
whether they entered the Tolerability or E�cacy arm, we learn separate Q-functions for
these two cases. The feature vectors we use for Stage 2 E�cacy patients are given by

�EFFps2, a2q “ r1, 1TD, 1EX, 1ST1, 1ST2, 1ST3, 1ST4, s2:P, s2:B,

1a2“˛, s2:P ¨ 1a2“˛, s2:B ¨ 1a2“˛s|.
Here, s2:P and s2:B are the PANSS and BMI percentiles at entry to Phase 2, respectively.
Feature 1a2“˛ indicates that the action at the second stage was clozapine˛ and not one



of the other treatments. We also have other features that do not influence the optimal
action choice but that are chosen by experts to reduce variance in the value estimates.2

1TD indicates whether the patient has had tardive dyskinesia (a motor-control side-e↵ect),
1EX indicates whether the patient has been recently hospitalized, and 1ST1 through 1ST4

indicate the “site type,” which is the type of facility at which the patient is being treated
(e.g. hospital, specialist clinic, etc.)

For Phase 2 patients in the Tolerability arm, the possible actions are ATOL
2 “ tû, ú, §, ùu,

and the feature vectors we use are given by

�TOLps2, a2q “ r1, 1TD, 1EX, 1ST1, 1ST2, 1ST3, 1ST4, s2:P, s2:B,

1a2“û, s2:P ¨ 1a2“û, s2:B ¨ 1a2“û, 1a2“ú, s2:P ¨ 1a2“ú, s2:B ¨ 1a2“ú,

1a2“§, s2:P ¨ 1a2“§, s2:B ¨ 1a2“§s|.
Here we have three indicator features for di↵erent treatments at Phase 2, 1a2“û, 1a2“§,
1a2“ú, with ziprasidone represented by turning all of these indicators o↵. Again we include
the product of each of these indicators with the PANSS percentile s2. The remainder of the
features are the same as for the Phase 2 E�cacy patients.

For Phase 1 patients, the possible actions are A1 “ tû, ‚, ú, §, ùu, and the feature vectors
we use are given by

�EFFps2, a2q “ r1, 1TD, 1EX, 1ST1, 1ST2, 1ST3, 1ST4, s1:P, s1:B,

1a2“û, s1:P ¨ 1a2“û, s1:B ¨ 1a2“û, 1a2“‚, s1:P ¨ 1a2“‚, s1:B ¨ 1a2“‚,

1a2“ú, s1:P ¨ 1a2“ú, s1:B ¨ 1a2“ú, 1a2“§, s1:P ¨ 1a2“§, s1:B ¨ 1a2“§s|.
We have four indicator features for di↵erent treatments at Phase 2, 1a1“û, 1a1“‚, 1a1“ú, and
1a1“§, with ziprasidone represented by turning all of these indicators o↵. We include the
product of each of these indicators with the PANSS percentile s1 at entry to the study, and
the remainder of the features are the same as for the Phase 2 feature vectors. (These are
collected before the study begins and are therefore available at Phase 1 as well.)

2. See Section 4.2 of the paper by Shortreed et al. (2011) for an explanation of these kinds of features.


