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Abstract

Mortality prediction of intensive care unit (ICU) patients facilitates hospital benchmarking
and has the opportunity to provide caregivers with useful summaries of patient health at
the bedside. The development of novel models for mortality prediction is a popular task
in machine learning, with researchers typically seeking to maximize measures such as the
area under the receiver operator characteristic curve (AUROC). The number of ’researcher
degrees of freedom’ that contribute to the performance of a model, however, presents a
challenge when seeking to compare reported performance of such models.

In this study, we review publications that have reported performance of mortality
prediction models based on the Medical Information Mart for Intensive Care (MIMIC)
database and attempt to reproduce the cohorts used in their studies. We then compare
the performance reported in the studies against gradient boosting and logistic regression
models using a simple set of features extracted from MIMIC. We demonstrate the large
heterogeneity in studies that purport to conduct the single task of ’mortality prediction’,
highlighting the need for improvements in the way that prediction tasks are reported to
enable fairer comparison between models.

We reproduced datasets for 38 experiments corresponding to 28 published studies using
MIMIC. In half of the experiments, the sample size we acquired was 25% greater or smaller
than the sample size reported. The highest discrepancy was 11,767 patients. While accurate
reproduction of each study cannot be guaranteed, we believe that these results highlight the
need for more consistent reporting of model design and methodology to allow performance
improvements to be compared. We discuss the challenges in reproducing the cohorts used in
the studies, highlighting the importance of clearly reported methods (e.g. data cleansing,
variable selection, cohort selection) and the need for open code and publicly available
benchmarks.

c©2017.



1. Introduction

Intensive care units (ICUs) provides support to the most severely ill patients in a hospital,
offering radical life saving treatments. Patients are monitored closely within the ICU to
assist in the early detection and correction of deterioration before it becomes fatal, an
approach has been demonstrated to improve outcomes (Kane et al., 2007). Quantifying
patient health and predicting future outcomes is an important area of critical care research.
One of the most immediately relevant outcomes to the ICU is patient mortality, leading
many studies toward development of mortality prediction models. Typically researchers
seek to improve on previously published measures of performance such as sensitivity and
specificity, but other goals may include improved model interpretability and novel feature
extraction.

Recent advances in both machine learning and hospital networking have facilitated bet-
ter prediction models using more detailed granular data. Interpreting studies that report
advances in mortality prediction performance, however, is often a challenge, because like-
for-like comparison is prevented by the high degree of heterogeneity amongst studies. For
example, approaches may differ in areas such as exclusion criteria, data cleaning, creation
of training and test sets, and so on, making it unclear where performance improvements
have been gained.

In many areas of machine learning, datasets such as ImageNet (Deng et al., 2009) have
facilitated benchmarking and comparison between studies. Key to these datasets is that they
are publicly available to researchers, allowing code and data to be shared together to create
reproducible studies. Barriers to data sharing in healthcare have limited the accessibility
of highly granular clinical data and largely prevented publication of reproducible studies,
but with freely-available datasets such as the Medical Information Mart for Intensive Care
(MIMIC-III) end-to-end reproducible studies are attainable (Johnson et al., 2016). The
use of mortality prediction models to evaluate ICUs as a whole has found great success,
both for identifying useful policies and comparing patient populations. In order to focus
contributions to the state of the art in mortality prediction, however, it should be clear
where performance is being gained and further gains might be achieved.

In this study, we review publications that have reported performance of mortality predic-
tion models based on the Medical Information Mart for Intensive Care (MIMIC) database
and attempt to reproduce their studies. We then compare the performance reported in the
studies against gradient boosting and logistic regression models using features extracted
from MIMIC. The goal of this exercise is twofold: the primary hypothesis is that textual
description of patient selection criteria are insufficient to reproduce studies; the secondary
hypothesis is that data extraction using domain knowledge remains an often overlooked but
useful tool to improve model performance.

2. Methods

2.1 Data

We use the MIMIC-III (v1.4) database (Johnson et al., 2016). MIMIC-III is a large, publicly
available dataset of ICU admissions at the Beth Israel Deaconess Medical Center in Boston,
MA. MIMIC-III has over 50,000 patient admissions and is the source of data for all studies



evaluated here. MIMIC-II is a prior version of the database and a subset of MIMIC-III:
patients in MIMIC-II are also contained in MIMIC-III and can be identified in the dataset.

2.2 Study selection

We reviewed all publications between January 2015 and March 2017 which referenced the
papers describing MIMIC-II and MIMIC-III. Of these, we identified all studies which pre-
sented results on a mortality prediction task. We examined these studies and added any
references which also presented results on a mortality prediction task. Finally, we excluded
studies if (i) they incorporated waveform data, (ii) they did not report on the AUROC,
or (iii) their exclusion criteria could not be reproduced without obtaining additional infor-
mation from the author. As our study is not intended to be an exhaustive review of the
literature, we did not attempt to include every recent study on mortality prediction.

2.3 Cohort Selection

Each study assessed here presented distinct patient inclusion criteria. Our process for
replicating this was as follows: we first defined a base set of four *exclusion* criteria,
which we deemed fundamental for all studies. First, we removed non-adults, specifically
those aged at ICU admission ¡ 15 years old 1. Neonatal patients were not the focus of
this study (or any of those assessed). Second, we removed invalid admissions defined as:
no charted observations, no measurements of heart rate, or an incomplete administrative
recording of ICU admission and discharge. Many of these stays correspond to clerical errors.
Third, we removed organ donor accounts, which are often recorded as ”readmissions” for
administrative purposes. Lastly, we removed stays less than 4 hours. These stays correspond
to situations for which an ICU mortality prediction system would be of little value (e.g.
surgical preparation).

We reviewed each study and identified all respective inclusion criteria. After extracting
cohorts, we compared the sample size we extracted and that reported in the original study.
In some cases, we inferred that additional inclusion criteria were implied but not stated
(most frequently this was a minimum amount of time in the ICU). While some studies were
originally performed in MIMIC-II, all extractions were done in MIMIC-III as it is a superset
of MIMIC-II.

2.4 Data Extraction

We extracted the same features for all possible windows, which varied from study to study.
For example, the baseline cohort window began at ICU admission and ended up to 24 hours
after ICU admission. For vital sign measurements (heart rate, blood pressure, respiratory
rate, oxygen saturation), we extracted the first, last, minimum, and maximum value across
the window. For laboratory measurements, we extended the window backwards by 24 hours
and extracted the first and last measurement2. We extended the window in order to improve

1. Note that MIMIC-III v1.4 does not contain pediatric patients.
2. Since laboratory values are available outside the ICU in MIMIC-III, it is possible to extend windows

before ICU admission



data completion as laboratory measurements are infrequently sampled. More detail on the
features can be found in the Appendix (Table 5).

2.5 Evaluation

We built mortality prediction models using gradient boosting (GB) as implemented in
xgboost v0.6 (Chen and Guestrin, 2016) and logistic regression (LR) as implemented in
scikit-learn v0.18 (Pedregosa et al., 2011). The target for prediction was defined by the
study, and was one of the following: in-hospital mortality, 30-day post ICU admission
mortality, 48-hour post ICU discharge mortality, 30-day post ICU discharge mortality, 30-
day post hospital discharge mortality, 6-month post hospital discharge mortality, 1-year post
hospital discharge mortality, and 2 year post hospital discharge mortality. We use 5-fold
cross-validation to obtain estimates of model performance. When a patient had multiple
stays in the dataset, we ensured that stays were grouped in the same fold. We did not
attempt to optimize hyperparameters.

All comparisons use the area under the receiver operator characteristic curve (AUROC).
We evaluate the AUROC of classifiers trained using replication datasets for each study, and
compare this AUROC to that reported by each study. We also compare sample size and
frequency of outcome. To ensure reproducibility of our analysis, we have made all the code
openly available3 (Johnson, 2017).

3. Results

3.1 Study selection

We identified 328 studies which used the MIMIC dataset, of which 27 reported on the
development of a mortality prediction model. An additional nine studies were identified from
references. We excluded six studies that used waveforms or that did not report AUROC.
Finally, we removed two studies which had complex exclusion criteria that could not be
reproduced 4. Our final selection included 28 published studies. Inclusion criteria for the
studies which used in-hospital mortality as the outcome of interest are shown in Table 1.
Inclusion criteria for the studies with outcomes of interest other than in-hospital mortality
are shown in Table 2. Together, these studies reported on a total of 38 distinct experiments
which varied the time window, outcome definition, or inclusion criteria. All studies extracted
data from a fixed window centered on ICU admission unless otherwise noted. A brief
description of the inclusion criteria is also noted: for further detail the reader is referred to
the original publication.

3.2 Comparison to other studies

Table 3 compares the sample size, mortality rate, and the AUROCs presented by original
studies with our reproduction for experiments where the outcome was in-hospital mortality.
Table 4 shows the results comparison for other outcomes.

3. https://github.com/alistairewj/reproducibility-mimic
4. For example, one study required identification of patients with acute hypoxemic respiratory failure

(AHRF), a diagnosis which would require free-text processing, specifically identifying chest radiograph
reports for mention of bilateral infiltrates (Khemani et al., 2009; Purushotham et al., 2017).



Table 1: Inclusion criteria for each study that used in-hospital mortality as the outcome of
interest.
*Window start time defined as 17 hours before ICU discharge or death. The
PhysioNet 2012 Challenge dataset is a subset of MIMIC-II (Silva et al., 2012).

Study Window,
W (hours)

Inclusion criteria

Caballero Barajas and
Akella (2015)

24 Age>18, Random fixed size subsample

Caballero Barajas and
Akella (2015)

48 Age>18, Random fixed size subsample

Caballero Barajas and
Akella (2015)

72 Age>18, Random fixed size subsample

Calvert et al. (2016b) 5* Age>18, In MICU, >1 obs. for all fea-
tures, LOS ≥ 17hr, ICD-9 codes indicat-
ing alcohol withdrawal

Calvert et al. (2016a) 5* Age>18, In MICU, >1 obs. for all fea-
tures, 500hr ≥ LOS ≥ 17hr

Celi et al. (2012) 72 ICD-9 code 584.9
Celi et al. (2012) 24 ICD-9 code 430 or 852
Che et al. (2016) (b) 48 PhysioNet 2012 Challenge dataset
Ding et al. (2016) 48 PhysioNet 2012 Challenge dataset
Ghassemi et al. (2014) 12 Age>18, >100 words across all notes
Ghassemi et al. (2014) 24 Age>18, >100 words across all notes
Ghassemi et al. (2015) 24 Age>18, >100 words across all notes, >6

notes
Grnarova et al. (2016) Entire stay Age>18, stays with only one hospital ad-

mission
Harutyunyan et al. (2017) 48 Age>18, only one ICU stay during the

hospital admission
Hoogendoorn et al. (2016) 24 >18, 1 obs. for BUN/Hct/GCS/HR/IV

medication, LOS ≥ 24hr
Johnson et al. (2012) 48 PhysioNet 2012 Challenge dataset
Johnson et al. (2014) 48 PhysioNet 2012 Challenge dataset
Joshi and Szolovits (2012) 24 As in Hug and Szolovits (2009)
Lee and Maslove (2017) 24 Not missing data
Lehman et al. (2012) 24 Have SAPS-I, LOS ≥ 24hr, first ICU stay

only
Pirracchio et al. (2015) 24 Age>15
Ripoll et al. (2014) 24 No missing data, only septic patients



Table 2: Inclusion criteria for studies with outcomes of interest other than in-hospital mor-
tality. * Window start time defined as 12 hours after ICU admission. 1−2 Post ICU
discharge mortality: 1 48-hour, 2 30-day. 3−7 Post hospital discharge mortality: 3

30-day, 4 6-month, 5 1-year, 6 2-year.

Study Window,
W (hours)

Inclusion criteria

Che et al. (2016)1 (a) 48 None described
Hug and Szolovits (2009)2 24 >1 obs. for HR/GCS/Hct/BUN, Not

NSICU/CSICU, first ICU stay, full code,
no eventual brain death

Joshi et al. (2016)2 LOS ≥ 48hr
Luo et al. (2016)2 12** As in Hug and Szolovits (2009)
Luo and Rumshisky (2016)2 Entire stay Have a discharge summary, have SAPS-II
Ghassemi et al. (2014)3 12 Age>18, >100 words across all notes
Grnarova et al. (2016)3 Entire stay Age>18, stays with only one hospital ad-

mission
Lee et al. (2015)3 24 Only ICU stays with complete SAPS data
Lee and Maslove (2017)3 24 Only ICU stays with complete SAPS data
Lee (2017)3 24 Only ICU stays with complete SAPS data
Wojtusiak et al. (2017)3 Entire stay Age ≥ 65, Alive at hospital discharge
Luo and Rumshisky (2016)4 Entire stay Have a discharge summary, have SAPS-II
Ghassemi et al. (2014)5 12 Age>18, >100 words across all notes
Ghassemi et al. (2015)5 24 Age>18, >100 words across all notes, >6

notes
Grnarova et al. (2016)5 Entire stay Age>18, stays with only one hospital ad-

mission
Lee and Maslove (2017)6 24 Only ICU stays with complete SAPS data
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4. Discussion

We attempted to reproduce the datasets for 38 experiments from 28 published studies that
used MIMIC-II or MIMIC-III for mortality prediction. Due to the limited detail provided
in the majority of papers, the heterogeneity in reporting style, and the lack of code sharing,
this task was a challenge. As summarized in Tables 3 and 4, many of the datasets reported
in the original papers differed in sample size from our reproduced datasets: our extraction
usually resulted in a larger cohort. Similarly, also reported in Tables 3 and 4, we found
the proportion of patients who died to vary widely between the reported and reproduced
datasets. Given that we attempted to reproduce the original dataset using the same source
of data, this wide variation should not occur. The exact reason for differences are difficult to
establish without in-depth analysis or engaging with each of the study authors. However, we
have noted a few cases where differences are clear. Studies on 1-year mortality by (Grnarova
et al., 2016; Ghassemi et al., 2014; Luo and Rumshisky, 2016) all report hospital mortalities
at least 10% lower than found in the reproduction datasets; likely explained by an exclusion
of patients who die during their hospital admission. While this criteria was not explicitly
stated to our knowledge, it may be “obvious” and would explain the mismatch in mortality
rates.

Many of the studies reviewed omitted details necessary to fully reproduce the work: the
minimum length of stay required for a patient to be included, which age to use for identifying
adults, or whether readmissions to the ICU should be excluded. Most publications limit
space in some way and, as a result, methodology is often forced to be described sparingly.
One of the most faithfully reproduced cohorts was that of Hug and Szolovits (2009) (10,066
vs. 10,696 reproduced) as the cohort is described in a PhD thesis (Hug, 2009). In lieu
of a thesis with full detail, studies should at a minimum describe any constraints on the
population (age restrictions, length of stay restrictions), data completeness requirements,
and how multiple stays for a single subject are treated. Furthermore, explicit technical
description of a criteria was extremely useful in reproducing that criteria. For example,
instead of stating “excluded patients missing data”, stating “included patients with at least
1 heart rate observation” was much more useful. Other examples are more subtle: while
some studies stated they only included medical ICU patients, it is unclear whether this was
defined using the physical location of the patient or the service the patient was admitted
under. This distinction exists as a subset of patients were physically located in a unit
which is not associated with the service of care they received. Examples such as this one
are numerous when working with medical data. As a result, even with extremely detailed
exclusion criteria, exact reproduction of a study may still be difficult. This difficulty may be
further exasperated by discrepancies between the implementation of the exclusion criteria
and the stated criteria due to a number of reasons such as technical error, sparse wording,
or imprecise terminology. We would argue that openly available code is the simplest and
most effective manner of ensuring exact reproduction of a study. It is worth noting that
only 3 of the 28 papers included in this study had code openly available.

Tables 3 and 4 also display wide inter-study heterogeneity in cohort sizes, model perfor-
mance, and outcome frequency. To some degree this is expected: certain studies focused on
specific patient groups (Celi et al., 2012; Calvert et al., 2016b), while others required clinical
notes (Ghassemi et al., 2014, 2015; Lehman et al., 2012). However, in Tables 1 and 2, it is



evident that large discrepancies in sample size exist even among studies of a similar cohort.
Hoogendoorn et al. (2016) and Calvert et al. (2016a) both have similar inclusion criteria
(age over 18, minimum stay of 17-24 hours), but the small differences in criteria result in a
sample size difference of almost 4,000 (a difference which was smaller, but still significant, in
our reproduction). This highlights a unique challenge in retrospective analysis of databases
such as MIMIC-III. While controlled clinical trials require prior specification of measured
parameters in great detail, research using observational data necessitates a data extraction
step, and this step has marked effect on the resulting analysis and interpretation. When we
compared the performance of a logistic regression with the best model performance reported
for each individual study, we found logistic regression was equivalent or better in 64% of
cases. Similarly, gradient boosting was equivalent or better in 82% of cases. While direct
comparison is confounded by the difficulty of reproduction discussed earlier, we believe this
highlights the importance of the data abstraction step which is often overshadowed by a
description of modeling methodology. The establishment of benchmark datasets, such as
those proposed by Silva et al. (2012) and Harutyunyan et al. (2017), or the use of a common
set of open source abstractions, such as those described by Johnson et al. (2017), are key
steps to addressing this issue.

Our study has limitations. First, there are slight differences in the data contained in
MIMIC-II and the data we used in our study (MIMIC-III), which while minor, prohibit
exact reproduction of MIMIC-II studies using MIMIC-III (see Appendix C). Second, the
aim of many of the studies presented here was not mortality prediction. Many studies
attempted to create patient phenotypes or summarize patient state in meaningful way, and
only used mortality prediction as a ”sanity check” on the model. While this does not
impact our comments regarding reproducibility, it does limit the extent to which we can
claim data abstraction is critical for model performance. Finally, we did not attempt to
contact any authors of the publications. While certainly this would have improved our
ability to reproduce their study, our aim was to demonstrate the difficulty in reproducing
these studies from the publication alone.

5. Conclusion

We attempted to reproduce the patient cohorts for 28 studies that predicted mortality
using the freely-available MIMIC-III database. Our results demonstrate that, in spite of
best efforts, reproducing cohorts using textual descriptions of patient selection criteria is
difficult. Detailed technical description of data abstraction is crucial to contextualize prior
work. More than this, we believe that the public dissemination of open source code is
central to facilitating iterative improvement in the field.
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Appendix A. - Study Flow diagram

Figure 1 shows a flow diagram of the literature review.

Figure 1: Study identification and exclusion flow diagram.



Appendix B

Table 5 lists all variables and features extracted. These features were chosen to capture
patient physiology and exclude explicit treatment data, though it is worth noting that some
measurements will act as surrogates for treatment (e.g. the partial pressure of oxygen
to fraction of inspired oxygen ratio is usually present only if the patient is treated with
mechanical ventilation).

Table 5: Features extracted during the window examined. ti,w represents the end of the
window w for each patient i. W represents the length of the window. The window
is extended backward by 24 hours for laboratory and blood gas measurements.
Some variables are repeated as the source of measurement differs (e.g. fingerstick
glucose vs. laboratory obtained glucose). *All these features are extracted from
arterial blood gases.

Time window Feature extracted Variables

[ti,w −W, ti,w] Minimum, Maxi-
mum, First, Last

Heart rate, Systolic/Diastolic/Mean blood pressure, Respi-
ratory rate, Temperature, Peripheral Oxygen Saturation,
Glucose

[ti,w −W, ti,w] Minimum Glasgow coma scale
[ti,w −W, ti,w] Last Glasgow coma scale, Glasgow coma scale components (mo-

tor, verbal, eyes), unable to collect verbal score
[ti,w −W − 24, ti,w] First, last Oxygen saturation, Partial pressure of oxygen, Partial pres-

sure of carbon dioxide, Arterial-alveolar gradient, Ratio of
partial pressure of oxygen to fraction of oxygen inspired,
pH, Base excess, Bicarbonate, Total carbon dioxide con-
centration, Hematocrit, Hemoglobin, Carboxyhemoglobin,
Methemoglobin, Chloride, Calcium, Temperature, Potas-
sium, Sodium, Lactate, Glucose

[ti,w −W − 24, ti,w] First, last Anion gap, Albumin, Immature band forms, Bicarbon-
ate, Bilirubin, Creatinine, Chloride, Glucose, Hematocrit,
Hemoglobin, Lactate, Platelet, Potassium, Partial thrombo-
plastin time, International Normalized Ratio, Prothrombin
time, Sodium, Blood urea nitrogen, White blood cell count

[ti,w −W − 24, ti,w] Sum Urine output



Appendix C - MIMIC-II vs. MIMIC-III

MIMIC-II was contains data for all critical care admissions between 2001-2008 at the Beth
Israel Deaconess Medical Center (BIDMC) in Boston, MA, USA. MIMIC-III is an exten-
sion of MIMIC-II, containing admissions from an additional four years (2008-2012). As
the BIDMC changed their clinical information system across their ICUs during 2008, it
is relatively straightforward to identify patients in MIMIC-III who comprise MIMIC-II by
isolating to the database source ”carevue”. Nevertheless, there are two major differences
between MIMIC-II and MIMIC-III which may cause discrepancies when comparing cohorts
extracted from the two systems.

First, MIMIC-III defined ICU admissions based on a hospital administrative database,
whereas MIMIC-II utilized the ICU database. The hospital administrative database tracks
patients hospital wide, and as a result the use of this database expands the scope of patient
tracking from ICU specific to all floors in the hospital. However, this hospital wide database
is not linked to the ICU clinical information system, and as such patients are tracked
independently in the two systems. For the most part, this means that patient admission
and discharge times slightly differ between MIMIC-II and MIMIC-III by no more than a few
hours, but larger differences do occur. These differences can manifest via exclusion criteria
which utilize length of stay.

Second, severity of illness scores (such as SAPS-I) were derived by the laboratory releas-
ing the data and distributed with MIMIC-II. These scores were not similarly distributed in
MIMIC-III. While code for deriving these scores is publicly available Johnson et al. (2017),
this code was written separately to that written for MIMIC-II. As a result, the use of missing
severity scores as an exclusion criteria may result in distinct patients being excluded.
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