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Abstract

Death from trauma is most often the result of uncontrollable bleeding as a result of Acute
Traumatic Coagulopathy (ATC), a disease that manifests itself differently in different sub-
cohorts of trauma patients. Understanding the mechanisms of ATC and how existing
patient tests can inform us about these mechanisms is key to treating the disease. We
introduce a hierarchical Canonical Correlation Analysis (CCA) model that captures a lower
dimensional representation of the coagulation system based on blood protein and other
tests. The hierarchial nature of the model is ideal in the setting where multiple sub-cohorts
are present, but statistical strength can reasonably be borrowed from similar groups. We
illustrate how the model may be useful in understanding and treating ATC.

1. Introduction

Trauma is the leading cause of death between the ages of 1 and 44 (Hoyert and Xu, 2012).
Major trauma often induces a coagulopathic state known as Acute Traumatic Coagulopathy
(ATC) that manifests in increased bleeding and resultant mortality (Brohi et al., 2003).
Despite the coagulation cascade being a well-studied field in biochemistry, the causes and
mechanisms behind ATC are still uncertain (Hess et al., 2008).
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One of the primary difficulties in treating ATC is information scarcity. During trauma
care, the state of the coagulation system is often assessed by thromboelastography (TEG).
This assay allows for quick assessment of the patient’s clotting potential using the vis-
coelastic properties of the patient’s blood such as time to clot formation, clotting rate, clot
strength, and rate of clot lysis. Unfortunately, TEG does not provide much insight on
specific clotting factor levels which can highlight the abnormalities causing ATC. Assays
that test for plasma protein levels can take much longer than TEG or may not be available.
Thus, treatment decisions must be made with limited information. If we can use historical
data and other patient data to ascertain the relationship between plasma protein levels and
TEG, decision making can be improved at the point of care.

While some protein data has been collected and analyzed (Kutcher et al., 2013), a
consensus mechanism for ATC remains to be found. One possible reason for this is that there
may not a single mechanism behind ATC. Currently, ATC is characterized primarily by clot
times, but assuming a single mechanism can obfuscate the more likely heterogeneous nature
of the disease that has been alluded to previously in the literature (Kutcher et al., 2013).
The coagulation system is a complex network of reactions with many positive and negative
feedback mechanisms (Gonzalez et al., 2014). Because of this, there are many possible
mechanisms that can cause the system to fail. Distilling these mechanisms into a small
collection of easily-interpretable variables would go a long way towards better understanding
of ATC. This could potentially enable recognition of phenotypes using limited information
such as TEG results, in order to inform decision making in practice.

Further complicating the issue is the inherent heterogeneity in patients and injury types.
Coagulopathy is not relegated to any particular form of trauma or injury mechanism, e.g.
car accidents or gunshot wounds. A-priori, we would expect that patients with different
types of injury might have different coagulopathic phenotypes and cannot be grouped to-
gether in an analysis.

We propose a probabilistic graphical model that extends canonical correlation analysis
(CCA) to distill the complex network of interactions in trauma-induced coagulopathy into
a small set of easy-to-understand variables. The model extends CCA in such a way as to
allow different sub-cohorts (based on injury mechanism) to be represented by different latent
variables, i.e. subspaces. At the same time, the model is able to “borrow” information
between similar sub-cohorts when data in a particular sub-cohort is sparse. This latter
feature is accomplished by placing a hierarchical prior over the orthornormal matrices of
weights used in CCA, via the recently introduced Givens transform (Pourzanjani et al.,
in preparation). To our knowledge this is the first application of hierarchical modeling
(in the Bayesian sense) to CCA, PCA, or any kind of model with orthornormal matrix
parameters, as this task was previously intractable for even small problems without a change
of representation that the Givens transform provides.

We show how, when applied to blood protein assays and TEG measurements, our model
can find different low dimensional descriptions of the coagulation system for different sub-
cohorts of injured patients, and how the model can share information across sub-cohorts
using hierarchical modeling. We then illustrate how the shared subspace properties of CCA
may be used in a clinical setting to phenotype patients and guide treatment using TEG
measurements (i.e. without expensive and time-consuming protein assays).



2. Cohort

Our dataset consists of whole blood collected from 174 patients upon arrival to the
emergency department of a Level I trauma center between 2005 to 2015 as part of an
ongoing study.

2.1 Cohort and Sub-Cohort Selection

To remove any bias arising from age and differing injury severity we selected patients
below the age of 45 and with an injury severity score greater than or equal to 25, a common
threshold used to mark severe injury in past studies. We examined patients suffering from
gun shot wounds (GSW), motor vehicle collisions (MVC), stab wounds (SW) and assault,
representing a diverse set of possible injury mechanisms. These divisions are also repre-
sentative of groups with larger sample sizes (GSW) and smaller sample sizes (assault) to
illustrate the inferential power of our hierarchical model. A summary of our sub-cohorts is
summarized in table 2.

2.2 Feature Choices

For each patient, we examined the TEG and blood protein assays. These consist of values
of R, K, MA, and Ly30 for TEG and Factorll, FactorX, Protein C, D-Dimer, Fibrinogen,
and Platelets for blood protein. The values are collectively referred to as xeg and xprot for
the remainder of this work. Table 3 in the appendix summarizes the number of missing
entries for these values amongst the 174 total patients. We describe in the methods section
how we account for these missing values.

3. Methods

We start with a description of how we handle missing values in our analysis and give a
short introduction into Canonical Correlation Analysis. Next, we provide a description of
how we conduct full Bayesian posterior inference over the orthornormal matrix parameters
present in CCA using the Givens transform and Stan (Carpenter et al., 2016). Finally we
describe our novel extension to CCA that takes into account the heterogeneity between
sub-cohorts present in our dataset via Bayesian hierarchical modeling.

3.1 Missing Values

We use multiple imputation as described in (Van Buuren, 2012) to conduct inference
while properly accounting for the extra uncertainty that arises from missing data. Specif-
ically, we draw five imputed datasets, conduct Hamiltonian Monte Carlo (HMC) inference
in Stan separately on these imputed datasets, and then combine all posterior samples (after
sampling is complete) in to a single pool of samples. In this way our posterior samples
represent a mixture of posteriors under various imputation possibilities. For actual impu-
tation we use a nonparametric random imputation method based on CART described in
(Van Buuren, 2012).



3.2 CCA and Probabilistic CCA (PCCA)

Canonical correlation analysis (CCA) is an extension of PCA used to extract cross-
covariance information about a pair of related datasets, or views, that are tied to a common
set of samples (Murphy, 2012). The classical formulation of CCA finds a pair of linear pro-
jections that maximize the shared variance between the two views. Inspecting the obtained
projections allows one to observe the level of commonality across views.

The probabilistic formulation of CCA (PCCA), (Bach and Jordan, 2005), posits a gen-
erative process for the same task. Formally, if we have two sets of different data types, or
Views, Tprot € RPprot and Tteg € RPtes we can define for each view a set of orthonormal
loading matrices W and B and corresponding diagonal matrices, A and I', that describe
the variance explained by each latent dimension. Then for each sample i € (1,...N), we
can define three lower-dimensional latent variables; one for each view, zl(;)ot € REerot and
zt(?g € RlItes and a shared latent variable that connects both views, 2" € REs. We de-
fine z(¥ := (z}(fr)ot, zégg, zéz)). A single data point for sample ¢ is generated according to the
following specification:

20 N0, I )N (D10, I )N (00, 1) (1)
xggot N N(xi,?ot’ erwzg{,ﬁwpmtzxpmtzg) + tprots 2ot IDrer) (2)
wéé’g ~ N (SCE?g\ByFteth(Qg + WiegMteg 2t + fiteg: 0tog IDicy) (3)

The maximum likelihood estimate (MLE) for this model converges to the solution of
classical CCA up to an invariant rotation of the axis as shown in (Bach and Jordan, 2005).
The intuition under this generative process is that by introducing a shared latent variable
Zs, the learned W matrices capture information that is shared between the two views while
the B matrices capture information that is not contained in the other view. A graphical
model of this is shown in Figure 1.

3.2.1 AUTOMATIC DIMENSIONALITY SELECTION

We note that the diagonal matrices A and I' serve as importance weights, in the sense
that they describe the weight given to each latent dimension in predicting the higher di-
mensional data. When these weights are close to zero, they indicate that a latent dimension
has no predictive relationship to the data. Thus, examining these weights can yield insight
into the inherent dimensionality of the data. Specifically, using full posterior draws of A
and I allows us to make probabilistic statements about the inherent dimensionality of our
data, e.g. if posterior draws show that a weight is below some value with high probability
we can conclude that the latent dimension is unnecessary. We use this type of analysis for
selection of the latent dimension in our results. We place Cauchy priors over importance
weight as well as matrix coefficients to induces sparsity as described in the appendix.

3.3 Hierarchical Modeling and Hierarchical CCA

Treating dissimilar patients, such as patients with different types of injuries, as a single
homogeneous group will lead to statistical bias in any inference. On the other hand, a
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Figure 1: Graphical Model of a Non-Hierarchical CCA for our dataset. We attach various
zero-centered Cauchy priors on the angles of the orthonormal matrices under the Givens
parameterization to induce sparsity in our solutions.

full model where separate parameters are allocated and estimated for each of a multitude
of sub-cohorts can lead to large models with many parameters that usually result in high
uncertainty estimates in the fully Bayesian case, and overfit estimates in the maximum
likelihood case (lest we provide an inordinate amount of data). Even in the age of big data,
this can be an issue, as once we have appropriately sub-cohorted by all relevant features,
e.g. injury type, sex, race, age, weight, etc. we are left with small sample sizes within each
sub-cohort. Furthermore, certain sub-cohorts are prone to having less data, e.g. severely
injured patients usually have fewer test values available because there was no time to collect
data for those patients!

Hierarchical models are well known in Bayesian data analysis as an elegant solution to
this conundrum. It proceeds by treating sub-cohorts as separate entities with their own
respective parameters, but additionally modeling the dependence between the groups with
a common prior distribution over the parameters (Gelman et al., 2014). Hierarchical models
are very flexible because intuitively they can “adapt” to data by “shrinking” the value of
similar groups to a common value when data in a group is sparse, but they allow parameter
estimates to approach the value given by the data as more data is made available. The
hierarchical model includes as a special case the “full” model where each group gets their
own parameter that is estimated separately and a “null” model where each group is treated
as one big homogeneous group. Hierarchical models allow us to have a model somewhere
between these two extremes.



3.3.1 HIiErRARcHICAL CCA

In our probabilistic graphical model, we desire separate CCA parameters for each sub-
cohort of injured patients. This calls for separate orthonormal matrices for each sub-cohort,
and thus for hierarchical modeling, a prior distribution over orthornormal matrices. At
least two distributions over orthornormal matrices exist in the statistics literature (Muir-
head, 2009). One such distribution is the Matrix Langevin distribution. Incorporating
these distributions into a probabilistic graphical model and conducting inference is difficult
however, because evaluating their density functions involves computing the hypergeometric
function of a matrix argument, a problem shown to be difficult even for small matrices
(Koev and Edelman, 2006). We detail in the following section how we use the recently
introduced Givens transform to build a hierarchical CCA model and perform joint analysis
of the sub-cohorts.

3.4 Givens Transform for Graphical Models

Training of the model was done in Stan using Hamiltonian Monte Carlo (HMC) sampling
of posteriors for all latent variables and unknown parameters. We provide a link to our Stan
model file on Github.

In order to conduct full Bayesian inference on weight matrices and set hierarchical pri-
ors on such matrices, we require a way to sample on the space of orthonormal matrices,
preferably using a robust sampling method like HMC, a difficult problem in general due
to the constraint the samples of matrices must satisfy (Byrne and Girolami, 2013). While
methods exist for HMC sampling of posteriors of general constrained parameters (Brubaker
et al., 2012; Byrne and Girolami, 2013), these methods treat constrained and unconstrained
parameters separately and require separate numerical integrators for each type of param-
eter, making them difficult to implement in larger probabilistic graphical models, with
complicated priors, such as the model in described in the preceeding section.

In order to sample posteriors of orthonormal matrices, we instead appeal to the re-
cently introduced Givens transform (Pourzanjani et al., ”In preparation”). Rather than
modifying the core HMC algorithm, the Givens transform represents an n,p orthonormal
matrix by a product of np — p(p + 1)/2 rotation matrices, allowing us to use existing HMC
implementations by sampling on the unconstrained space of angles. Making use of the
Givens transform provides us with two distinct benefits over existing sampling methods on
orthonormal matrices:

e Straightforward implementation in a probabilstic programming language such as Stan
(Carpenter et al., 2016), allowing for simple expansion to large models.

e Placing complicated priors (e.g. hierarchical priors) over orthonormal matrices.

Because the Givens transform represents orthornormal matrices as angles, we can place
hierarchical priors over orthornormal matrices in a straight-forward manner by simply plac-
ing priors over the angles. In our model we do just that, placing truncated normal priors
over the respective angles of each group of injured patients. Our full probabilistic graphical
model is the model described in Figure 1, but with the number of parameters multiplied
by four, for the four different sub-cohorts described earlier, and the truncated normal prior
that acts as a hierarchical prior over the orthornormal matrices.



4. Results

In the first sub-section we apply our model to plasma protein assays and TEG measure-
ments to find low dimensional descriptions of the coagulation system for each respective
sub-cohort of injured patients. We illustrate how in a probabilistic framework, we can as-
sess with confidence the differences in sub-cohorts, as well as assess how much information
our model captures, using posterior information. We then briefly describe the affect of our
hierarchical inference.

In the second subsection we explain how the shared subspace properties of CCA may
be used in a clinical setting to phenotype patients and guide treatment using TEG mea-
surements, without protein assays.

4.1 Finding Distinct Phenotypes of Coagulopathy

Table 1 shows point estimates of the orthornormal matrices of weights, Wyt and Wieg,
that relate the common latent variable, zs, to measured data, Zpror and Zieg, for both
the gun shot wound (GSW) and motor vehicle collision (MVC) sub-cohorts. Both groups
of patients share commonalities in their latent variables. For example, their first latent
variables correspond to high Factorll, FactorX, and platelets, but also to low TEG K
(speed of clot formation). On the other hand, the model captures differences between
the different groups, e.g. FactorX is a smaller component of the first latent variable in the
GSW sub-cohort, than in the MVC sub-cohort. Full posterior inference provided by Stan
and the Givens transform allows us to compare these relationships probabilistically using
full posteriors rather than relying on point estimates (see Figure 2 for an example). From
full posterior draws we can simply count the number of posterior draws where the FactorX
weight parameter is higher in the GSW sub-cohort than the MVC sub-cohort, giving us
a posterior probability of 0.6, in this case of the statement being true, given the data we
observed.

Other differences between the two sub-cohorts are apparent in the point estimate of the
weight matrix. The model reveals that the second latent variable in the GSW sub-cohort is
tied strongly to low D-Dimer and low Ly30, while in the MVC sub-cohort the second latent
variable is actually tied to high D-Dimer and low Ly30. Figure 3 visually illustrates this
sub-cohort specific relationship our model was able to find.

In Figure 4 we compare posterior distributions of the “importance” parameters A and
I" of each of the latent dimensions. The plot can be suggestive of different inherent dimen-
sionalities across the different subcohorts. For example the assault group has a posterior
for the weight of the second shared dimension that is closer to zero while the GSW group’s
weight for that same weight is concentrated more around a smaller positive value, possibly
indicating that of the GSW victims there is an extra dimension to be kept track of in their
shared latent space.

Lastly, we make note of the shrinkage properties of the hierarchical prior. We conducted
separate, non-hierarchical inferences (not shown here) for the GSW group and MVC groups
and found that the posterior distributions of their parameters, in particular the Wp,o; and
Wieg matrices, were left relatively unchanged from the overall hierarchical estimates shown
here. These groups had 85 and 52 patients in them respectively. On the other hand,
we found much wider posteriors on parameters when estimating the assault group, which



Table 1: Point estimates for the orthornormal matrix of weights relating the common
(between the protein and TEG data) latent variable to data for each respective sub-cohort.
Point estimates were obtained by taking the sample with the largest log probability amongst
all 20,000 posterior samples. Cells are colored by intensity of estimated values. Red indicates
a strong positive correlation, light red a weak positive correlation, blue a strong negative
correlation, and light blue a weak negative correlation.

| | GSW_ | [ MVC | |
] Proteins H Latent 1 ‘ Latent 2 H Latent 1 \ Latent 2 ‘
Factorll 0.47 -0.22 0.46 -0.38
FactorX 0.56 -0.09 0.82 0.05
ATIII 0.13 0.06 -0.02 0.57
D-Dimer [ -0.15  [FS0:95°01 -0.05 0.51
Fibrinogen || 0.10 0.17 0.22 0.30
Platelets 0.64 -0.02 0.26 0.41
TEG | | | |
R 0.06 0.00 -0.03
K -0.07 0.14
MA 0.51 0.14 0.53 0.21
Ly30 -0.06 0.98 0.01 0.97

consisted of only 16 patients, where as the hierarchical estimate yields narrower posteriors
that are closer to the estimates of the other sub-cohorts.

4.2 Using TEG and Injury Data to Predict Phenotypes

Intuitively, the hierarchical CCA model distills the information available in protein and
TEG data into shared latent components and ties together the relationship between proteins
and TEG by specifying how much of the information carried in these measurements can be
ascertained simply by knowing the values of the latent variables. For example, in Table 1
we see that latent variable 1 of the GSW sub-cohort is tied to high Factorll and FactorX
levels in the protein category, and low R, low K, and high MA in the TEG category. Thus
intuitively, given values from a TEG test of a patient and their injury type, we should be
able to back out a posterior distribution of the underlying protein values of that patient.
In the case of a GSW victim with low R, low K, and high MA, the CCA model suggests
that there is a good chance that this patient could have high Factorll and FactorX levels.
This information on possible values of the underlying protein levels could serve as valuable
information in a real life trauma setting where interventions are guided based on the state
of the coagulation system. For example, plasma transfusions are administered when it is
thought that a patient’s Factor levels are low. Figure 5 shows posterior draws of what a
GSW patient’s Factorll will look like given a TEG reading with low R, low K, and high
MA.

The diagonal weight matrix A can also roughly tell us how much coagulation protein
information we can extract using TEG readings. High posterior values for the weights
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Figure 2: Densities estimated from posterior samples of the FactorX weight in the matrix
Whrot, in the GSW and MVC sub-cohorts respectively. These posterior results indicate the
MVC sub-cohort are represented by a latent dimension that places more weigh on FactorX.

connecting the shared latent variable to the protein data signify that variance in the protein
data can be readily explained by information that is shared between both the protein and
TEG views. Low values of those weights or high values of the I' weights, connecting the
latent protein variables to the protein data, would signify that there is information in the
protein data that cannot be captured by the shared latent variable and thus can not be
captured by TEG.

5. Discussion and Related Work

Our results show how trauma data can be distilled into low dimensional latent compo-
nents in such a way as to respect the inherent difference in sub-cohorts of trauma patients.
We show how differences in different groups can manifest themselves in different models,
and how Bayesian posterior analysis of latent variable “weights” can be used to assess the
inherent dimensionality of data in different groups. We then showed the benefits of hierar-
chical modeling as it pertained to our analysis, and why hierarchical modeling is an essential
tool when sub-cohorting. We ended with a possible use case of how understanding the un-
derlying relationship of coagulation proteins and TEG measurements via latent variables
can help our understanding and the treatment of trauma. While we acknowledge that sub-
cohorting by injury type may not be the optimal sub-cohort strategy, our method can be
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Figure 3: Relationship between D-Dimer and TEG Ly30 for different sub-cohorts of patients.
For gun shot wounds victims and stab wound victims (both penetrating injuries) the two
variables have a negative correlation where as for assault and motor vehicle collisions (both
blunt injuries) the relationship is slightly positive.

used in more general settings and especially in medicine where sub-cohorting is important
to analysis.
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dimension 1 and latent dimnension 2, using samples from their posterior distributions.
These weights describe the exploratory power the latent variables have in describing our
data (see methods section). The row of shared facets represent importance weights for the
latent variable that is shared between the protein and TEG views while the row of TEG
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Figure 5: Posterior samples of estimated FactorlIl levels for a patient given their TEG values.
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Table of Patient Demographics

Table 2: Brief sub-cohort description including number of samples in each sub-cohort (N),
percentage of the sub-cohort that is male, average and standard deviation of age, percent
of patients with traumatic brain injury, and median blood units recieved in the sub-cohort.

’ Injury Mech. H N ‘ % Male ‘ Mean Age ‘ Std. Age ‘ % TBI ‘ Med. Blood Units ‘

GSW 85 | 90 27 8 40 5.0
MVC 52 1 90 27 7 75 0.5
SW 21 | 71 29 8 14 3.0
Assault 16 | 100 27 7 94 0.0

Table of Missing Values

Table 3: Number of missing values for each measurement type.

’ Measurement H Number of Missing Value (out of 174) ‘

’ Proteins H ‘
Factorll 49
FactorX 50
Protein C 44
D-Dimer 54
Fibrinogen 123
Platelets 8

| TEG I
R 135
K 135
MA 133
Ly30 133

Use of Cauchy Priors for Sparsity

We also note that we place Cauchy priors over A and " which induce a sparsity property
over latent dimensionality, forcing A and I" to go to zero unless the signal in the data is
sufficiently strong. Similarly we place Cauchy priors on the entries of the weight matrices W
and B to induce sparsity in the matrix entries for interpretability purposes. These Cauchy
priors serve a purpose that is akin to Laplace priors (or the L1 regularization in frequentist
analysis), because just like the Laplace prior, the Cauchy prior places most of its mass
near zero, with large mass in the tails of the distribution, allowing for appropriately large
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values when statistical signal is strong enough. However, we prefer the Cauchy prior, as its
continuity property makes more sense in the context of our analysis (see (Gelman et al.,
2014) for a discussion on using Cauchy priors over Laplace priors). Finally, we mention that
the hyper-parameter values of the Cauchy priors are chosen by leaving them as an unknown
in our Stan model and conducting full Bayesian inference to sample from their posterior
distribution.
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