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Abstract

Logged events occur both regularly and irregularly over time. In electronic health records, these
events represent mixtures of scheduled and urgent or emergent encounters. Whereas most survival
models use baseline events to estimate the rate function for an outcome, e.g., Cox processes us-
ing the proportional-hazards assumption, our framework uses logged events over time to predict
survival outcomes with piecewise approximations of arbitrary hazard functions. We develop a pro-
cedure to learn forests as combinations of piecewise-constant and parameterized distributions to
compactly model survival distributions from data. Under this construction, the model provides
a “now-time” risk that incorporates irregularly-repeated data and for health outcomes serves as a
surrogate for patient disposition. We illustrate the advantages of our method in simulations and in
longitudinal, intensive care unit data of individuals with diabetes admitted for ketoacidosis.

1. Introduction

Electronic health records (EHRs) have become the primary tool for storing and using patient en-
counter data with over 80 percent adoption across hospitals and clinics in the United States. Lever-
aging the EHR for clinical insight remains a challenge, with existing systems running into adoption
challenges, such as clinical decision support alert fatigue, documentation overload, and diminished
quality of patient-physician interactions. The machine learning community has identified the EHR
as a potential resource for improving care through evidence generation, with applications ranging
from risk scores and risk factor quantification and imaging classification. Despite these advances,
the temporal nature of EHR data remains a substantial challenge.

Recognition of non-ignorable patient heterogeneity has led to research moving beyond classical
frameworks of logistic regression and the temporal analogue Cox proportional hazards model. The
presence of heterogeneity has thwarted treatment advancements, e.g., leading sepsis to be consid-
ered “the graveyard for pharmaceutical companies” (Riedemann et al., 2003; Prescott et al., 2016).
Advancements in heterogeneity detection and modeling while also considering the time-to-event
formulation of survival analysis are of substantial interest for medical practitioners.

Our work addresses heterogeneity over time by using machine learning to learn the hazard
used in survival analysis without adopting common assumptions including proportional hazards or
accelerated failure times. Instead, we build upon the continuous-time point process framework,
which models rates of event occurrences in event networks. One leading approach is the use of
forests to model a piecewise-constant hazard (Weiss and Page, 2013). In principle, these forests
enable learning approximations to arbitrary hazard functions. In practice, however, they can require
large amounts of data to learn relatively simple survival distributions. This work develops a flexible
framework to introduce parametric distributions into forest learning, exemplified by the integration
of the log logistic distribution commonly used to capture both the timing of event occurrences and
the uncertainty of said timing.
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The learning procedure is outlined as fol-
lows. Given an initial piecewise-constant haz-
ard function, a new hazard is proposed, given
by the product of the piecewise-constant haz-
ard and a parameter-estimated log logistic haz-
ard. If the new hazard is able to better model
the time-to-event distribution, subject to a com-
plexity penalty, the new hazard is adopted.
Then, after each log logistic parameter estima-
tion step, the learned distribution is folded into
the piecewise-constant approximation, so that
the next iteration of learning has the same form.
The procedure is illustrated in Figure 1. We il-
lustrate the model’s flexibility in both identify-
ing regular and random time-to-event patterns
in simulations and compare its performance in
EHR data.

The medical task we address is the predic-
tion of discharge of patients with diabetic ke-
toacidosis (DKA) from the intensive care unit.
Ketoacidosis is a life-threatening state, usu-
ally occurring in patients with diabetes, where
ketones build up in the blood with concomi-
tant glucose and electrolyte abnormalities sec-
ondary to endocrine dysregulation or impair-
ment. Treatment of diabetic ketoacidosis in-
volves an intensive policy of monitoring and
therapy including electrolyte management and
intravenous insulin. A physician conducting
chart review typically can identify resolution of
the ketoacidotic state, which suggests that the
EHR contains many of the indicators for reso-
lution.

05
hsd
< 04 . .
N Piecewise
< 03
N — Hazard
£ 02 )
g Time to event
o 0.1
o L
0.0
0.0 25 5.0 75 10.0
B
© 0.3 -
_r:';,‘ Log logistic
-~ 0.2 — Hazard
2 ]
2] Time to event
S 0.1
[
[a)]
0.0
0.0 25 5.0 75 10.0
5 Lo Combined model
§ Approximate hazard
T 05 — Hazard
0.0
0.0 2.5 5.0 75 10.0
0.3
= Combined model
@ 02
) Time to event
B 01
0.0
0.0 2.5 5.0 75 10.0
Time

Figure 1: A piecewise-constant hazard distribu-
tion (first panel) characterizes the time-to-event
distribution. A proposed, height-parameterized
log logistic distribution (second panel) is pro-
posed for multiplicative introduction into the
model, resulting in a combined hazard which
is approximated to produce a piecewise-constant
hazard (third panel). The resulting time-to-event
distribution is shown (fourth panel).

Nevertheless, there is substantial uncertainty in the resolution of ketoacidosis, illustrated by the

distribution in intensive care unit length of stay—one measurable surrogate of resolution time. We
posit there is substantial heterogeneity in resolution due to underlying factors and use point pro-
cesses to examine intermediate indicators of resolution. Like sepsis, the treatment policy for DKA
is one-size-fits-all. Therefore, better characterization of DKA resolution could lead to characteriza-
tion of individuals who are high risk, high cost, or who might benefit from targeted therapy.

Regarding algorithm interpretability, point processes enable “now-time” risk prediction from
medical histories, which for prediction of discharge is a strong surrogate of “is the patient ready for
discharge”? Alternatively, like Cox processes, they can be learned from baseline variables or using
a gap time 7 to provide a forecast of when the patient will be discharged.

We demonstrate point processes in this framework. In Section 2 we review point processes in
the survival analysis framework. In Section 3 we demonstrate the process of parametric piecewise-



approximation. In Section 4 we describe the medical task and experimental setup. In Section 5 we
demonstrate the advantages of point process parametric approximation, and illustrate the method in
simulations and in characterization of the length of ICU stay in patients with diabetic ketoacidosis.

1.1 Related work

There has been extensive work developed on survival analysis in health care. Generally this work
builds on frameworks reviewed in Kalbfleisch and Prentice (2011) and Aalen et al. (2008) for us-
ing time as a key factor in characterizing variable relationships for attribution and prediction. The
leading model has been the Cox regression model, which uses a separation of time modeling and
covariate modeling useful for risk attribution questions, but requires making the proportional haz-
ards assumption. With this framework, time-varying Cox models account for updated or changing
baseline covariates, e.g., as in Therneau et al. (2017). However, even with time-varying coeffi-
cients or repeated variable measurements, the proportionality assumption is often inappropriate in
the presence of heterogeneity. Furthermore, the separation of the nuisance function from covariate
adjustments limits modeling of predictable time-to-events.

Related work in point processes networks has used Gaussian process priors (Lian et al., 2015;
Lasko, 2014; Saul et al., 2016), piecewise constant forests (Weiss et al., 2012; Weiss and Page,
2013), and Gaussian mixture models (Goulding et al., 2016) to learn point process rates. The first
two approaches are limited in their ability to efficiently model parametric survival distributions often
observed in data, with the first requiring matrix inversion or variational compression and the second
requiring large data sizes to capture smooth curves. The third set of methods require assumptions
about the granularity of time and positioning of the mixture components. Random survival forests
(RSFs) (Ishwaran et al., 2008) also adopt a forest framework where the focus is to address esti-
mate the cumulative hazard function through bootstrapping of the samples. However RSFs neither
integrate parametric models of time-to-event distributions nor utilize data beyond baseline. Other
related work includes Poisson generalized additive models, e.g., Tutz and Binder (2006); Lawless
(1987), which model counts within time windows using a linear combination of underlying func-
tions. These models focus on the count distribution rather than modeling the events over time.

Within machine learning, popular frameworks for time include Gaussian processes and deep
learning frameworks, e.g., Ghassemi et al. (2015); Lipton et al. (2015); Razavian et al. (2016).
Gaussian processes use time as a dimension but, without extension, do not consider interarrival
times nor rate forecasting in its formulation. Meanwhile, deep learning frameworks, e.g. recurrent
neural networks and long short-term memory networks, formulate the model as time series with
fixed bins and often introduce an artificial missing data problem.

2. Background

We first state the time-to-event distribution, survival distribution, and hazard function relationships.
Let time ¢ represent the time to an event and f(t) the distribution of the time to event. Let F'(t) be
the cumulative distribution function of f(t),i.e. F(t) = [ foo f(7)dr. Then the survival distribution
is given by S(t) = 1 — F(t). The hazard function \(¢) is defined as the time distribution conditional
on the event having not yet occurred: A(t) = limy_,o+ p(t < T < t+h|T >t)/h = f(t)/S(t).
Next we define the data and model representation. Given a finite set of event types | € L, an
instance is an event sequence or trajectory x specified by an ordered set of {time, event} pairs (¢;, [;)
for ¢ = 1 to n. A history h; is the subset of x whose times are less than ¢;. Let [y denote the null



event type, and append the null event pairs (lg, o) and (I, tenq) to the beginning and end of . Let
O represent the model providing the specification of the hazard function for each event type [; then
the likelihood of the instance is:

p(m|@) X H H )\[(ti’hi)n(l:li)e_ S M(rlhy)dr

leLi=1

Piecewise-constant intensity models (PCIMs) assume that the hazard functions are constant over
intervals. Let S be a discrete set of states S = {S; |l € L}. Let A = {Ai5 |l € L, s € S;} be the set
of mappings from event and state to rate parameters for each event [ and state s. Let ¥ = {X; | [ €
L} be the set of functions that map from a time and history to s € S: X = {¥; | ¥; : (¢t,h) — S}.
Then, the model is specified by © = {S, A, ¥}. Under this construction, the piecewise-constant
assumption is invoked: A\;(¢;|h;) = A;s. The PCIM likelihood simplifies to:

p(2]©) o [T T At e, (1)

leL s€S,;

where M;,(x) is the count of events of type [ while s is active in trajectory x, and Tjs(x) is the total
duration that s, for event type [, is active.

2.1 Specification of Y. and A with multiplicative hazard regression forests

Previous work on PCIMs uses trees and forests to define the mapping. Following Gunawardana
et al. (2011), we can specify >; and A; represent a regression tree of the form A; o 3J;: 3; maps the
history and time to s € Sj; then A; maps s to hazard )\;;. To specify the form of 3J;, let 5; be the
set of basis state functions f(¢,z) that maps to a basis state set S ¢. As in Weiss et al. (2012), the
basis functions can be viewed as set partitions of the space over S = S;, x Sp, X ... Sl‘ o Each
interior node in the regression tree is specified by a basis function f. Each leaf holds a non-negative
real value: the hazard. Thus one path p through the regression tree for event type ! corresponds to
a recursive subpartition resulting in a set S,, and every (I, s) € S, corresponds to leaf hazard \;,,
ie., we set \jg = Ay,

Forest point processes multiply leaf hazards from multiple trees. Given that each tree represents
a partition, the intersection of trees, i.e. a forest, forms a finer partition. Then, a subpartition is given
by the intersection S, = ﬂ;‘f’:l S, ; the intersection of sets of active paths through trees 1 to k. The
hazard ), is given by the product of leaf hazards. For constant leaf hazards, maximum likelihood
(or MAP) estimates for a split on p; can be learned and are given by the number of observed events
divided by the predicted number of events: M pi / Ml pj (Weiss et al., 2012).

3. Piecewise parametric survival distributions

Consider the situation where are interested in the likelihood function for one target event [ € £ and
we can remove outside product from Equation 1 and the subscripts /. Our intention is to modify
the existing piecewise-constant hazard A to As\,,, where A, is given by the log logistic distribution
with scale o and shape 3 parameters:

(Bla)t/o)" ™t oL e O (Bla)(t/a)
A+t GO A = Ty A EH)
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Under a multiplicative hazard assumption, we combine the piecewise-constant and log logistic haz-
ard functions, s and \,,. Note the convenience of the multiplicative hazard assumption because of
the mapping into valid hazard space {R*,R"} — R*. The log likelihood becomes:

n t

log p(z]©) o< (n(z = 1;) log A(ti|hy) —/ )\(T|hi)dr>
i=1 —o°
= (]l(l = li)(log As + log )\p(tz|hz)) — A /ti )\p(T|hi)dT> )
i=1 —o©

From Equation 2 we observe that, for fixed \s, the likelihood optimization is the same as log lo-
gistic distribution optimization with the survival component weighted by A;. To allow for further
flexibility when introducing the log logistic hazard, we provide a third parameter -y, a height scaling
factor, such that A(t|h) = yAsAp(t|h). We can use standard gradient methods to optimize either
formulation; we use L-BFGS-B with bounds described in Section 4.

3.1 Approximation of log logistic distribution

Once we have learned the parameters for the y-scaled log logistic distribution, we piecewise ap-
proximate the learned log logistic distribution, shift it into the piecewise components, and learn
another log logistic factor. Figure 1 demonstrates one iteration of this procedure. Iteratively fixing
the log logistic parameters creates a simple forest building process, though joint optimization over
the product of log logistic distributions with fixed piecewise-constant multipliers is also possible.
We select the simpler approach in our experiments.

We adopt near-quantile, survival-matched, quantized, piecewise-constant approximations. The
near-quantile property prevents creation of unnecessary piecewise approximations where the hazard
is insignificant. Survival matching means that each near-quantile hazard approximation has the
property that, for all near-quantile time ¢, the survival function to the right of ¢ is unaffected by the
approximation left of ¢. Quantization shifts the quantile approach to a near-quantile approach by
selecting the nearest time on a fine grid. Requiring the piecewise approximation times to be on a
grid sets an upper limit on the number of pieces created by the distribution approximations. We
believe quantization is not too bad, for example, using a grid of 1 minute when the clinical events
occur at the scale of hours to years. Note that just the piecewise approximations of the hazard occur
on the grid; the events need not.

4. Experimental setup

We conduct simulations on periodic and aperiodic signals, and apply our method on the MIMIC
III data set, version 1.4 (Johnson et al., 2016) for determination of length of stay in the ICU for
individuals admitted with diabetic ketoacidosis.

4.1 Log logistic forest learning

The forest is learned from an initialization of a single root node with fixed hazard of 1. The model
is run for d iterations with proposal to modify the forest, with equal probability of generating (1) a
split based on time randomly sampled from the empirical distribution of time to events times uni-
form random noise times two, or (2) using a log logistic distribution who parameters are learned
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Figure 2: Histograms of key laboratory measures in patients with diabetic ketoacidosis. Indicators
of resolution of ketoacidosis include (1) return to normal to mildly elevated glucose levels to below
200 (top left) and (2) closure of the anion gap to 12 (top center). Physicians also monitor potassium
whose aberrant levels cause cardiac arrhythmia (top right), pH indicative of the acidotic state (bot-
tom left), and sodium with concerns for altered mental status from fluid correction (bottom center).
There is variation in the length of stay in the ICU in days captured by the log logistic distribution
(bottom right).

using L-BFGS-B. The bounds are placed on the log logistic parameters: (loga) € [—5,23],8 €
[0.01,00),7 € [—100,5]. The lower bound on shape parameter (3 prevents creating a spike log
logistic function to limit the gain in the likelihood for exactly predicting the event time in a com-
pletely periodic signal. See Simulation 1 and Figure 3 for an illustrative example. The bounds on
scale parameter « helps prevent double overflow and underflow, and values outside the range are
not meaningful. The multiplicative hazard parameter v bounds help prevent underflow and spike
behaviors respectively. The location of each proposal is uniformly random over all existing nodes
with additional weight of e? (we choose § = 3) for the blank node corresponding to creation of a
new tree in the forest. Each proposal is evaluated in terms of change in training set log likelihood
and is accepted if the proposal passes AIC criterion.

Once a proposal is accepted, the tree is modified to contain the split or to contain the distribution
and its parameterizations. When considering the next proposal, the piecewise approximation must
take into account the splits and log logistic distributions already learned. Thus the intervals in
the data are split into smaller intervals on the grid where piecewise-constant approximations are
specified. We use a quantile size of 0.01 and a grid step g = 0.01 days ~ 14 minutes.

4.2 Simulations

We conduct two simulations for recurrent events of interest to examine the algorithms ability to
model both regular and irregular timing of events. The first is the task of learning an entirely
regular signal occurring at intervals of 10 time units apart. Data were generated as time {k, k +



10,...,k+100} for kin {1, ..., 10}. The second simulation task was learning an entirely irregular
signal having fixed rate of 0.1, so that, on average, an events occurs at 10 time units, i.e., events
are drawn from a homogeneous Poisson with rate A = 0.1. Ten samples of length 110 time units
were generated to match the time length of the periodic case in Simulation 1. Note that these tasks
are different from the standard survival analysis task: the task continues after each failure. For the
simulations we set the number of iterations to d = 10.

4.3 Diabetic ketoacidosis in MIMIC III

The MIMIC III population includes over 58,000 individuals admitted to intensive care units at Beth
Israel Deaconess Center between 2001 and 2012 (Johnson et al., 2016). We identified the set of
admissions to intensive care units as those whose primary coded diagnosis contained the word

“ketoacidosis”. This cohort criterion resulted in a population of 355 individuals.
Seventy individuals had multiple visits to the
ICU; visits beyond the first were included. Table 1: Baseline patient characteristics, reported

Features included in the study comprised ~ with median [2.5%,97.5%] and n (fraction).
demographics: age, gender, ethnicity, insurance

type, and marital status; admissions data: ad- FEATURE n=355
mission type and location; lab values: blood AGE 42 20, 79]
counts, electrolytes, anion gap, and pH; intra- GENDER
venous or oral medications: insulin, potassium, MALE 162 (0.46)
magnesium and bicarbonate; monitor data of FEMALE 193 (0.54)
, ] e ETHNICITY
mean arterial blood pressure; and comorbidities
. . .. CAUCASIAN 206 (0.57)
recorded in the coded diagnosis list. Real val- AFRICAN AMERICAN 91 (0.26)
ued data were binned into septiles. The result- HISPANIC OR LATINO 25 (0.07)
ing process produced 416 features measured ASIAN 5(0.01)
over time. MIMIC III contains features mea- OTHER 28 (0.08)
sured throughout the hospital encounter and WBC 12.2[5.1,30.3]
these data were also used. The period of likeli- LACTATE 261 (0.74)
hood calculation was over the time spent in the 2.310.9,8.1]
ICU, defined by the timestamps of ICU entry CO-SEPSIS 111(0.03)
’ DEATHS 4(0.01)

and ICU exit.

Table 1 provides descriptive characteristics of the study population. Figure 2 shows the distribu-
tion across several key variables measured during the resolution process of DKA, with the bottom
right showing the distribution of ICU length of stay. Note its distribution is nicely modeled by the
log logistic, where as commonly used exponential and gamma distributions would not as effectively
capture the distribution of time-to-event.

We compare the piecewise-constant log logistic learning algorithm (LL forest) against forest
learning alone (MFPPs) and the Cox proportional hazards model. To ensure that the ICU entry is
included in the model, we initialize the LL forest with a log logistic distribution initiated by ICU
entry. We set the number of proposal iterations to d = 200. For Cox regression, we specify the
nuisance function as log logistic estimated by gradient descent on negative log likelihood and use
glmnet to select a sparse subset of features with parameter s = 0.1 (Friedman et al., 2009). To
compare performance, we use paired t-tests between the LL forest method and the other method
across patients.
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Figure 3: Periodic simulated data with average rate of 0.1. The LL forest learning algorithm identi-
fies the periodicity maintaining a very low hazard rate until near the next periodic event.
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Figure 4: Homogeneous Poisson simulated data with hazard rate A = 0.1; logA = —2.30. LL

forests overfit yet approximate the hazard.

For forest learning, random proposals were generated with events uniformly randomly sampled
and with time-to-events sampled according to the training data event distribution, subject to the
time being valid for the particular experimental design. Proposals included leaf node splits and leaf
modifications converting a rate factor leaf to a log logistic-parameterized leaf. To encourage forest
growth, after each root modification, a blank root node is added to the forest with increased odds of
being chosen for modification: § = 3, i.e., €3 : 1 odds compared to each modified node.

The patients are randomly split into training and test sets in a 4:1 ratio for 5-fold cross validation.
Our primary evaluation endpoint is the test set average log likelihood. We additionally develop
visualizations to compare and interpret the models overlaid with patient events.

5. Results

Figure 3 demonstrates the ability of the joint forest and log logistic learning algorithm to learn a pe-
riodic signal. Without the bound imposed on the shape parameter 3 in L-BFGS-B, the spikes would
be sharper and the wells lower. However, practically speaking, this solution effectively captures the
periodicity and would be robust to minor shifts in test set data time-stamps.

Figure 4 shows the joint model mildly overfitting Poisson data. The ground truth solution is a
horizontal line at log 0.1 ~ —2.30. While constructing an overly complicated model, the learning
algorithm does not appear to memorize the data. As the training set size increases, the overfitting is
reduced substantially (not shown).

Table 2 highlights the performance of LL forests in prediction of timing of discharge for ke-
toacidosis ICU admissions. We observe that LL forest outperforms the forest learning algorithm
(MFPPs) and the log logistic Cox regression model. Because the LL forest algorithm has access
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Figure 5: Patient timeline with estimated log hazard function for the joint model and the log logistic
Cox regression. The large red dot indicates discharge from the ICU and jittered black dots indicate
measurements of features included in the model. A higher hazard (or log hazard) is the model’s
suggestion that the event is more likely to occur.

to data beyond the baseline, the algorithm was rerun on baseline data only and compared to the
log logistic Cox regression model. The results suggest that again the LL forest model significantly
outperforms the log logistic Cox model. While the LL forest model had lower average negative low
likelihood than the LL forest using only baseline features, the result was not significant.

The forest method without log logistic leaves (MFPPs) has notable high variability in its pre-
dictions, making some apt predictions and some costly mistakes. Nonetheless, the paired t-test
suggests that the LL forest model significantly outperforms both MFPPs and log logistic Cox re-
gression. Figure 5 illustrates the learned hazard for the LL forest model and the log logistic Cox
regression model overlaid on the data for one patient. LL forests appear more confident about lack
of early discharge and lack of discharge without recent measurement.

6. Discussion

Iterative forest and log logistic approximation learning enables the efficient modeling of the hazard
function at any time, with the ability to model both regular, i.e. predictable or scheduled events, and
irregular or entropic events. Whereas forest point processes have difficulty modeling parametric
distributions often seen in real-world data, LL forests can incorporate approximations to them. LL

Table 2: Average likelihood £ 95% CI; paired t-test for LL forest, forest (MFPPs), and log logistic
Cox regression; paired t-test for log logistic Cox regression versus LL forest with baseline features

DATA LL FOREST FOREST LL-Cox LL FOREST, BASELINE FEATURES
TEST SET -1.344+0.48 -2.22+1.39 -1.544+0.39 -1.454+0.39
P-VALUE — 0.010 0.036 0.40

GAP P-VALUE <0.001 -




forests also can effectively model the hazard with arbitrary time-stamping of data, instead of relying
on covariates measured in panels all at once. Effectively, the LL forest point process transforms
series of time-stamped events into hazard functions, which provides an interpretation for the risk of
the outcome of interest at any point in time.

A difference of 0.2 in average log likelihood corresponds either to the comparison algorithm’s
comparative overestimates of the rate of discharge over time or underestimates when the discharges
do occur, or some mixture of both. In the case of ketoacidosis length of stay prediction, the benefit
seen in LL forests is likely due to two factors, first, the better ability to model survival distributions
than MFPPs given limited data, and, second, violation of the proportional hazards assumption made
in Cox models. Limited, heterogeneous data are commonplace in the health care setting, and LL
forests may be good choice for this setting.

The comparison against the log logistic Cox regression is limited by the fact that the LL for-
est model has access to the intermediate findings past the admission time. However, our method
substantially outperforms MFPPs which has the same access. Additionally, when using baseline
features only, the LL forest significantly outperforms the log logistic Cox regression.

We included mediating events in our modeling because by doing so, we are able to provide
risk assessments with as much information as possible, an analogue to what signals the physician
has access to throughout the admission. This is a demonstration of “now-time” hazard estimation,
depicted in Figure 5, where model belief about the “present”—namely a model for, “will the pa-
tient discharge right now”—could be interpreted as a useful surrogate for “is the patient ready for
discharge?”

To achieve forecasting to time 7', the features used to model the outcome event at time g
must simply derive from times before 7y — 7. The learning framework could then be extended to
learn features with time gap 7'y and shrinking 7y — 0. By restricting the learning of trees to have
specified time gaps, the learned forest can then make forecasts at arbitrary length scales between 0
and 7. This model variant could be useful for screening for high risk individuals and determining
schedules for the timing of follow-up.

Future work will consider modifying the objective function of bounded model likelihood to bet-
ter address pertinent clinical questions, including: readiness of discharge, real-valued and structured
predictions. While log logistic distributions have useful time and uncertainty representations, other
forms of parametric modeling will be considered including, periodic filters to account for latent
temporal regularity such as night shifts and seasonality. We will also consider risk attribution ques-
tions which can be informed by specification the length scale T'. Instead of making risk attribution
statements about features measured at 7', or using the distribution of features and outcome without
time to infer causation, point processes could provide early indications of risk at any time 7'.

7. Conclusion

Piecewise-constant representations can provide arbitrarily close approximations to any hazard func-
tion. The difficulty is effectively and efficiently learning those approximations from data. This
work introduces an iterative piecewise-constant conversion method which enables complex hazard
functions with compact parameterizations to be learned from regularly or irregularly time-stamped
data. We demonstrate in real data of patients with diabetic ketoacidosis that our method outperforms
forest and Cox regression algorithms at learning hazard functions from regular and irregularly time-
stamped data.
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