
JMLR: Workshop and Conference Proceedings 7: 111-122 KDD cup 2009

Accelerating AdaBoost using UCB

Róbert Busa-Fekete BUSAROBI@GMAIL.COM
LAL, University of Paris-Sud, CNRS
Orsay, 91898, France
Research Group on Artificial Intelligence of the
Hungarian Academy of Sciences and University of Szeged
Aradi vértanúk tere 1., H-6720 Szeged, Hungary

Balázs Kégl BALAZS.KEGL@GMAIL.COM

LAL/LRI, University of Paris-Sud, CNRS
Orsay, 91898, France

Editor: Gideon Dror, Marc Boullé, Isabelle Guyon, Vincent Lemaire, David Vogel

Abstract
This paper explores how multi-armed bandits (MABs) can be applied to accelerate AdaBoost. Ad-
aBoost constructs a strong classifier in a stepwise fashion by adding simple base classifiers to a
pool and using their weighted “vote” to determine the final classification. We model this stepwise
base classifier selection as a sequential decision problem, and optimize it with MABs. Each arm
represents a subset of the base classifier set. The MAB gradually learns the “utility” of the subsets,
and selects one of the subsets in each iteration. ADABOOST then searches only this subset instead
of optimizing the base classifier over the whole space. The reward is defined as a function of the
accuracy of the base classifier. We investigate how the well-known UCB algorithm can be applied
in the case of boosted stumps, trees, and products of base classifiers. The KDD Cup 2009 was a
large-scale learning task with a limited training time, thus this challenge offered us a good opportu-
nity to test the utility of our approach. During the challenge our best results came in the Up-selling
task where our model was within 1% of the best AUC rate. After more thorough post-challenge
validation the algorithm performed as well as the best challenge submission on the small data set
in two of the three tasks.

Keywords: AdaBoost, Multi-Armed Bandit Problem, Upper Confidence Bound

1. Introduction

ADABOOST (Freund and Schapire, 1997) is one of the best off-the-shelf learning methods devel-
oped in the last decade. It constructs a classifier in a stepwise fashion by adding simple classifiers
(called base classifiers) to a pool, and using their weighted “vote” to determine the final classifi-
cation. The simplest base learner used in practice is the decision stump, a one-decision two-leaf
decision tree. Learning a decision stump means to select a feature and a threshold, so the running
time of ADABOOST with stumps is proportional to the number of data points n, the number of at-
tributes d, and the number of boosting iterations T . When trees (Quinlan, 1993) or products (Kégl
and Busa-Fekete, 2009) are constructed over the set of stumps, the computational cost is multiplied
by an additional factor of the number of tree levels N or the number of terms m. Although the
running time is linear in each of these factors, the algorithm can be prohibitively slow if the data
size n and/or the number of features d is large.

c©2009 Róbert Busa-Fekete and Balázs Kégl.



BUSA-FEKETE AND KÉGL

There are essentially two ways to accelerate ADABOOST in this setting: one can either limit the
number of data points n used to train the base learners, or one can cut the search space by using only
a subset of the d features. Although both approaches increase the number of iterations T needed for
convergence, the net computational time can still be significantly decreased. The former approach
has a basic version when the base learner is not trained on the whole weighted sample, rather on
a small subset selected randomly using the weights as a discrete probability distribution (Freund
and Schapire, 1997). A recently proposed algorithm of the same kind is FILTERBOOST (Bradley
and Schapire, 2008), which assumes that an oracle can produce an unlimited number of labeled
examples, one at a time. In each boosting iteration, the oracle generates sample points that the base
learner can either accept or reject, and then the base learner is trained on a small set of accepted
points. The latter approach was proposed by (Escudero et al., 2000) which introduces several feature
selection and ranking methods used to accelerate ADABOOST. In particular, the LAZYBOOST

algorithm chooses a fixed-size random subset of the features in each boosting iteration, and trains
the base learner using only this subset. This technique was successfully applied to face recognition
where the number of features can be extremely large (Viola and Jones, 2004).

In this paper we aim to improve the latter approach by “aiding” the random feature selection. It
is intuitively clear that certain features are more important than others for classification. In specific
applications the utility of features can be assessed a-priori (e.g., on images of characters, we know
that background pixels close to the image borders are less informative than pixels in the middle of
the images), however, our aim here is to learn the importance of features by evaluating their em-
pirical performance during the boosting iterations. Our proposed method is similar in spirit to the
feature extraction technique described recently by (Borisov et al., 2006; Tuv et al., 2009). The ob-
jective of their method is to use tree-based ensembles for feature selection whereas our goal is more
restrictive: we simply want to accelerate ADABOOST. To avoid harming the generalization ability of
ADABOOST it is important to keep a high level of base learner diversity, which is the reason why we
opted for using multi-armed bandits (MAB) that are known to manage the exploration-exploitation
trade-off very well.

MAB techniques have recently gained great visibility due to their successful applications in real
life, for example, in the game of GO (Gelly and Silver, 2008). In the classical bandit problem the
decision maker can select an arm at each discrete time step (Auer et al., 2002b). Selecting an arm
results in a random reward, and the goal of the decision maker is to maximize the expected sum
of the rewards received. Our basic idea is to partition the base classifier space into subsets and use
MABs to learn the utility of the subsets. In each iteration, the bandit algorithm selects an optimal
subset, then the base learner finds the best base classifier in the subset and returns a reward based
on the accuracy of this optimal base classifier. By reducing the search space of the base learner, we
can expect a significant decrease of the complete running time of ADABOOST. We use the UCB
algorithm (Auer et al., 2002a) by assigning each feature to a subset. In the case of trees and products
we use UCB by considering each tree or product as a sequence of decisions, and using the same
partitioning as with decision stumps at each inner node.

The paper is organized as follows. First we describe the ADABOOST.MH algorithm and the
necessary notations in Section 2. Section 3 contains our main contribution of using MABs for ac-
celerating the selection of base classifiers. In Section 4 we present experiments conducted during the
development period of the competition, our competition results, and some post-challenge analysis.
Closing discussions are in Section 5.

112



ACCELERATING ADABOOST USING UCB

2. ADABOOST.MH

For the formal description let X = (x1, . . . ,xn) be the n × d observation matrix, where x(j)
i are

the elements of the d-dimensional observation vectors xi ∈ Rd. We are also given a label matrix
Y = (y1, . . . ,yn) of dimension n ×K where yi ∈ {+1,−1}K . In multi-class classification one
and only one of the elements of yi is +1, whereas in multi-label (or multi-task) classification yi

is arbitrary, meaning that the observation xi can belong to several classes at the same time. In the
former case we will denote the index of the correct class by `(xi).

ADABOOST.MH(X,Y,W(1),BASE(·, ·, ·), T )

1 for t← 1 to T

2 h(t)(·)← α(t)v(t)ϕ(t)(·)← BASE
(
X,Y,W(t)

)
3 for i← 1 to n for `← 1 to K

4 w
(t+1)
i,` ← w

(t)
i,`

exp
(
−h(t)

` (xi)yi,`

)∑n
i′=1

∑K
`′=1w

(t)
i′,`′ exp

(
−h(t)

`′ (xi′)yi′,`′
)

5 return f (T )(·) =
∑T

t=1 h(t)(·)

Figure 1: The pseudocode of the ADABOOST.MH algorithm. X is the observation matrix, Y is the
label matrix, W(1) is the initial weight matrix, BASE(·, ·, ·) is the base learner algorithm,
and T is the number of iterations. α(t) is the base coefficient, v(t) is the vote vector,
ϕ(t)(·) is the scalar base classifier, h(t)(·) is the vector-valued base classifier, and f (T )(·)
is the final (strong) classifier.

The goal of the ADABOOST.MH algorithm ((Schapire and Singer, 1999), Figure 1) is to return
a vector-valued classifier f : X → RK with a small Hamming loss

RH

(
f (T ),W(1)

)
=

n∑
i=1

K∑
`=1

w
(1)
i,` I

{
sign

(
f

(T )
` (xi)

)
6= yi,`

}
1

by minimizing its upper bound (the exponential margin loss)

Re

(
f (T ),W(1)

)
=

n∑
i=1

K∑
`=1

w
(1)
i,` exp

(
− f (T )

` (xi)yi,`

)
, (1)

where f`(xi) is the `th element of f(xi). The user-defined weights W(1) =
[
w

(1)
i,`

]
are usually set

either uniformly to w(1)
i,` = 1/(nK), or, in the case of multi-class classification, to

w
(1)
i,` =

{
1
2n if ` = `(xi) (i.e., if yi,` = 1),

1
2n(K−1) otherwise (i.e., if yi,` = −1)

(2)

1. The indicator function I {A} is 1 if its argument A is true and 0 otherwise.

113



BUSA-FEKETE AND KÉGL

to create K well-balanced one-against-all classification problems. ADABOOST.MH builds the final
classifier f as a sum of base classifiers h(t) : X → RK returned by a base learner algorithm
BASE(X,Y,W(t)) in each iteration t. In general, the base learner should seek to minimize the
base objective

E
(
h,W(t)

)
=

n∑
i=1

K∑
`=1

w
(t)
i,` exp

(
−h`(xi)yi,`

)
. (3)

Using the weight update formula of line 4 (Figure 1), it can be shown that

Re

(
f (T ),W(1)

)
=

T∏
t=1

E
(
h(t),W(t)

)
, (4)

so minimizing (3) in each iteration is equivalent to minimizing (1) in an iterative greedy fashion.
By obtaining the multi-class prediction

̂̀(x) = arg max
`

f
(T )
` (x),

it can also be proven that the “traditional” multi-class loss (or one-error)

R
(
f (T )

)
=

n∑
i=1

I
{
`(xi) 6= ̂̀(xi)

}
(5)

has an upper boundKRe

(
f (T ),W(1)

)
if the weights are initialized uniformly, and

√
K − 1Re

(
f (T ),W(1)

)
with the multi-class initialization (2). This justifies the minimization of (1).

2.1 Learning the base classifier

In this paper we use discrete ADABOOST.MH in which the vector-valued base classifier h(x) is
represented as

h(x) = αvϕ(x),

where α ∈ R+ is the base coefficient, v ∈ {+1,−1}K is the vote vector, and ϕ(x) : Rd →
{+1,−1} is a scalar base classifier. It can be shown that for minimizing (3), one has to choose ϕ
that maximizes the edge

γ =
n∑

i=1

K∑
`=1

wi,`v`ϕ(xi)yi,`, (6)

using the votes

v` =

{
1 if

∑n
i=1wi,`I {ϕ(xi) = yi,`} >

∑n
i=1wi,`I {ϕ(xi) 6= yi,`},

−1 otherwise,
` = 1, . . . ,K. (7)

The optimal coefficient is then

α =
1
2

ln
1 + γ

1− γ
.

It is also well known that the base objective (3) can be expressed as

E
(
h,W

)
=
√

(1 + γ)(1− γ) =
√

1− γ2. (8)

114



ACCELERATING ADABOOST USING UCB

The simplest scalar base learner used in practice is the decision stump, a one-decision two-leaf
decision tree of the form

ϕj,b(x) =

{
1 if x(j) ≥ b,
−1 otherwise,

where j is the index of the selected feature and b is the decision threshold. If the features are pre-
ordered before the first boosting iteration, a decision stump maximizing the edge (6) can be found
very efficiently in Θ(ndK) time (making the total running time Θ

(
nd(log n+KT )

)
).

Although boosting decision stumps often yields satisfactory results, state-of-the-art performance
of ADABOOST is usually achieved by using decision trees as base learners. In this paper we use
an “in-house” implementation that calls the decision stump optimizer as a subroutine. The learner
is similar to Quinlan’s C4.5 algorithm (Quinlan, 1993), except that we use the edge improvement
(instead of Quinlan’s entropy-based criterion) to select the next node to split and the threshold b.
The base learner has one hyperparameter, the number of the leaves N , which also shows up as a
linear factor in the running time.

We also test our approach using a recently proposed base learner that seems to outperform
boosted trees (Kégl and Busa-Fekete, 2009). The goal of this learner is to optimize products of
simple base learners of the form

h(·) = α
m∏

j=1

vjϕj(·), (9)

where the vote vectors vj are multiplied element-wise. The learner also calls the decision stump
optimizer as a subroutine but in an iterative rather than a recursive fashion. The hyperparameter m,
again, appears as a linear factor in the total running time.

3. Using multi-armed bandits to reduce the search space

In this section we will first describe the MAB framework and next we show how bandit algorithm
UCB can be used to accelerate the base learning step in ADABOOST.

3.1 Multi-armed bandits

In the classical bandit problem there are M arms that the decision maker can select at discrete time
steps. Selecting arm j in iteration t results in a random reward r(t)j ∈ [0, 1] whose (unknown) distri-
bution depends on j. The goal of the decision maker is to maximize the expected sum of the rewards
received. Intuitively, the decision maker’s policy has to balance between using arms with large past
rewards (exploitation) and trying arms that have not been tested enough times (exploration). The
UCB algorithm (Auer et al., 2002a) manages this trade-off by choosing the arm that maximizes the
sum of the average reward

r
(t)
j =

1

T
(t)
j

t∑
t′=1

I {arm j is selected}r(t
′)

j

and a confidence interval term

c
(t)
j =

√
2 ln t

T
(t)
j

,

115



BUSA-FEKETE AND KÉGL

where T (t)
j is the number of times when arm j has been selected up to iteration t. To avoid the

singularity at T (t)
j = 0, the algorithm starts by selecting each arm once. We use a generalized

version, denoted by UCB(k), in which the best k arms are selected for evaluation, and the one that
maximizes the actual reward r(t)j is finally chosen.

3.2 The application of UCB(k) for accelerating ADABOOST

The general idea is to partition the base classifier space into (not necessarily disjunct) subsets and
use MABs to learn the utility of the subsets. In each iteration, the bandit algorithm selects an optimal
subset (or, in the case of UCB(k), a union of subsets). The base learner then finds the best base
classifier in the subset, and returns a reward based on this optimal base learner. By reducing the
search space of the base learner, we can expect a significant decrease of the complete running time
of ADABOOST.

The upper bound (4) together with (8) suggest the use of −1
2 log(1 − γ2) for the reward. In

practice we found that

r
(t)
j = 1−

√
1− γ2

works as well as the logarithmic reward; it was not surprising since the two are almost identical
in the lower range of the [0, 1] interval where the majority of the edges are. The latter choice has
another advantage of always being in the [0, 1] interval which is a formal requirement in MABs.

The actual partitioning of the base classifier set depends on the particular base learner. In the
case of decision stumps, the most natural choice for UCB is to assign each feature to a subset, i.e.,
jth subset is {ϕj,b(x) : b ∈ R}. In principle, we could also further partition the threshold space
but that would not lead to further savings in the linear computational time since, because of the
changing weights wi,`, all data points and labels would have to be visited anyway. On the other
hand, subsets that contain more than one feature can be efficiently handled by UCB(k).

In the case of trees and products we use UCB by considering each tree or product as a sequence
of decisions, and using the same partitioning as with decision stumps at each inner node. In this
setup we lose the information in the dependence of the decisions on each other within a tree or a
product.

4. Experiments

4.1 Data set description and data preparation

In KDD Cup 2009 we were provided with two data sets referred as Small and Large. These two
data sets differed only in the number of features they consisted of. In the Small data set there were
190 numerical and 40 categorical features and the Large data consisted of 14740 numerical and 260
categorical features for a total of d = 15000. Both data sets contained the same 50000 training
and 50000 test instances. Each instance had three different labels corresponding to the three tasks
of Churn, Appetency, and Up-selling. About 65.4% (2%) of the values were missing in the Small
(Large); we treated them by using an out-of-range value (i.e., we set all missing value to∞).

Since the three tasks used the same instances, we experimented with both a single-task and a
multi-task approach. In the former, the three classifiers were trained completely separately, whereas
in the latter we trained one classifier with a three-element binary label.

116



ACCELERATING ADABOOST USING UCB

First, we trained all of our models using the large feature set, only deleting features with one
singular value. We also investigated the utility of the features. Using the info-gain based feature
ranker of WEKA package (Witten and Frank, 2005), we found that only a relatively small number
of features have positive score for any of task. In the single-task setup we used only those features
which had positive score for the given task, and in the multi-task case we used those features which
had positive score for at least one of the three tasks. The numbers of remaining features after feature
selection are shown in Table 1. We also performed experiments where we applied PCA, but this do
not results improvement in performance.

single-task multi-task
Churn Appetency Up-selling

Small 51 45 65 71
Large 2839 2546 4123 5543

Table 1: The number of features after applying feature selection.

All of the three KDD tasks were very imbalanced in size of classes: all three label sets contained
only a small number of positive labels compared to the size of the whole data set. In order to
handle this imbalance problem we tried a few initial weighting scheme beside the uniform weighting
described in Eq. 2. We found that the best-performing weighting scheme was when both classes
received half of the total weight, which meant that the instances from the positive class had higher
initial weights than the instances form the negative class.

4.1.1 VALIDATION

During the challenge we validated only the number of iterations using a 60%− 40% simple valida-
tion on the training set. Figure 2 shows the AUC curves for the three tasks. Due to the time limit in
the Fast Track we did not validate the number of tree leaves N and number of product terms m. We
set the N = 8 and m = 3 based on the former experiments using our program package (Kégl and
Busa-Fekete, 2009). The only remaining hyperparameter we had to choose was the number of best
arms to be evaluated in the case of UCB(k). We set k to 50. We also carried out some experiments
with a lower value (k = 20), but we found that this only slightly influenced the results.

Table 2 shows our official results. The Churn and Up-selling tasks were evaluated by ROC
analysis and the Appetency task was evaluated using Balanced Accuracy2.

learner \ data set Churn (AUC) Appetency (B. Acc.) Up-selling (AUC)
Validation Evaluation Validation Evaluation Validation Evaluation

STUMP 0.7424 0.6833 0.7051 0.7359 0.8938 0.8917
PRODCT 0.6702 0.6377 0.6999 0.6398 0.8888 0.8665
TREE 0.7088 0.6819 0.7424 0.7216 0.8956 0.8891
BEST – 0.7611 – 0.883 – 0.9038

Table 2: The validation and evaluation results in Fast Track. The bold face values indicate our final
submission.

2. http://www.kddcup-orange.com/

117



BUSA-FEKETE AND KÉGL

100 102 1040.5

0.6

0.7

0.8

0.9

1
Stump

 

 

Appetenecy
Churn
Up−selling

100 102 1040.5

0.6

0.7

0.8

0.9

1
Product (m=3)

 

 

Appetenecy
Churn
Up−selling

100 102 1040.5

0.6

0.7

0.8

0.9

1
Tree (N=8)

 

 

Appetenecy
Churn
Up−selling

Figure 2: The ROC values vs. number of iterations on the validation set using ADABOOST.MH
with Stump, Product, and Tree base learners.

As a post-challenge work we carried out a more comprehensive validation. We used the same
60% − 40% validation scheme but this time we validated all the parameters in a wide range: 2 ≤
N ≤ 32, 2 ≤ m ≤ 10, T ≤ 10000. Similarly to other teams (Miller et al., 2009; IBM Research,
2009), we found that, relatively to other benchmarks, smaller trees and products worked better on
this challenge. In the case of products, it turned out that the optimal number of terms m is in only
a few times more than two (see in Tables 3 and 5). The optimal number of iterations was chosen
based on the maximum of the ROC values on the validation set calculated in each iteration. In the
multi-task case we used the average of the ROC values of the three tasks. Both in the single- and
multi-task setup, the ROC values can have a large fluctuation from one iteration to another so we
smoothed the learning curves using a moving average filtering with a relative window size of 20%.
In general, the optimal numbers of iterations are also relatively small compared to the parameters
of the experiments of (Kégl and Busa-Fekete, 2009).

4.2 Combination technique

We also tried to combine the three (stump, product, tree) learners. In case of Appetency we applied
a simple majority voting. In the tasks where scores were required, we used the discriminant output
f(x) rescaled into [0, 1] of the trained models as posterior probabilities and we simply multiplied
them.

4.3 Performance evaluation

4.3.1 LARGE DATA SET

Our official results in Fast Track on the Large data set using multi-task approach are shown in
Table 2. Without the full knowledge of the validation we found that the multi-task approach using
feature selection achieves better than single-task one.

Table 3 shows our post-challenge results and the validated parameters. The first four blocks
(single/multi-task, feature selection on/off) are followed by results obtained using the combined
models. We tried combining only the multi-task or only the single-task classifiers, then we combined
all of them. The results revealed a few general trends. The single-task approach was superior in
solving the Churn task whereas the Appetency task seemed to prefer the multi-task approach. In the

118



ACCELERATING ADABOOST USING UCB

Up-selling problem both were competitive, and compared to the winning results we scored the best
on this task.

Churn (AUC) Appetency (B. Acc.) Up-selling (AUC)
Parameters Evaluation Parameters Evaluation Parameters Evaluation

MULTI-TASK
STUMP T = 1671 0.6808 0.7176 0.8844

PRODUCT
T = 1664
m = 2

0.6877 0.7388 0.8817

TREE
T = 4090
N = 3

0.6918 0.7158 0.8870

MULTI-TASK/FEATURE SELECTION
STUMP T = 369 0.6802 0.7514 0.8804

PRODUCT
T = 946
m = 2

0.6749 0.6406 0.8818

TREE
T = 1501
N = 4

0.6871 0.6165 0.8822

SINGLE-TASK
STUMP T = 1528 0.7002 T = 682 0.5403 T = 431 0.7685

PRODUCT
T = 448
m = 2

0.6873
T = 401
m = 2

0.5726
T = 344
m = 4

0.7558

TREE
T = 1362
N = 2

0.6350
T = 241
N = 5

0.6719
T = 1201
N = 2

0.7784

SINGLE-TASK/FEATURE SELECTION
STUMP T = 427 0.7052 T = 255 0.5981 T = 2260 0.6449

PRODUCT
T = 348
m = 2

0.6887
T = 9177
m = 4

0.6875
T = 410
m = 2

0.8840

TREE
T = 296
N = 2

0.71
T = 2514
N = 3

0.6836
T = 296
N = 2

0.8762

COMBINED CLASSIFIERS
MULTI-TASK 0.7197 0.7362 0.8920
SINGLE-TASK 0.7126 0.6312 0.8832
ALL 0.7245 0.7013 0.8944

WINNERS
BEST/Fast3 – 0.7611 – 0.8830 – 0.9038
BEST/Slow4 – 0.7570 – 0.8836 – 0.9048

Table 3: The post-challenge results for Large data set with the validated parameters.

4. IBM Research (IBM Research, 2009)
5. University of Melbourne (Miller et al., 2009)

119



BUSA-FEKETE AND KÉGL

4.3.2 SMALL DATA SET

In the Slow Track we concentrated only on the Small data set. During the challenge our best results
were obtained by single-task models using feature selection. Table 4 shows our official submission
results and Table 5 shows our post-challenge results together with the validated parameters. We
found that the multi-task approach did not work very well; our explanation for this is that the three
tasks had different complexities and they needed very different number of iterations, so a single
shared stopping time harmed the results. On the other hand, the single task approach worked very
well in these experiments. In fact, the combined single-task post-challenge classifiers outperformed
the best official results (among teams that did not used unscrambling).

learner \ data set Churn (AUC) Appetency (B. Acc.) Up-selling (AUC)
Validation Evaluation Validation Evaluation Validation Evaluation

STUMP 0.716862 0.7258 0.6712 0.7243 0.85747 0.8582
PRODCT 0.692894 0.6816 0.78055 0.6915 0.842176 0.8512
TREE 0.695429 0.7158 0.778751 0.6174 0.840568 0.8549
BEST – 0.7375 – 0.8245 – 0.8620

Table 4: The validation and evaluation results in the Slow Track. The bold face values indicate our
final submission.

4.4 Time complexity

Since out goal was to accelerate ADABOOST, we show in Table 6 the time (in minutes) needed for
training and testing for 8000 iterations. The numbers indicate that all the models can be trained and
tested in less than 10 hours on the Large database. For the Small data set the whole training time is
typically less than an hour.

5. Discussion and Conclusions

The goal of this paper was to accelerate ADABOOST using multi-armed bandits. Recently, machine
learning applications have become the center of interest in which millions of training examples and
thousands of features are not uncommon. In this scenario, fast optimization becomes more impor-
tant than the asymptotic statistical optimality (Bottou and Bousquet, 2008). From this point of view,
our approach has solved the tasks well because it reduced greatly the computational complexity
of the learning phase. In the official competition our approach achieved competitive results only
on the Up-selling task. Based on our post-challenge analysis it seems that on small data set we
could also have been competitive also on the Churn task, but since there was a confusion during the
competition (people merged the small and large data sets), we decided to concentrate on the Large
set. Our post-challenge results nevertheless confirmed that ADABOOST is among the best generic
classification methods on large, real-world data sets.

6. University of Melbourne (Miller et al., 2009)

120



ACCELERATING ADABOOST USING UCB

Churn (AUC) Appetency (B. Acc.) Up-selling (AUC)
Parameters Evaluation Parameters Evaluation Parameters Evaluation

MULTI-TASK
STUMP T = 600 0.7046 0.7045 0.8542

PRODUCT
T = 150
m = 2

0.7128 0.6677 0.8500

TREE
T = 600
N = 2

0.7255 0.7214 0.8578

MULTI-TASK/FEATURE SELECTION
STUMP T = 740 0.6273 0.5000 0.6872

PRODUCT
T = 191
m = 2

0.6188 0.5000 0.6805

TREE
T = 194
N = 3

0.6223 0.5006 0.6842

SINGLE-TASK
STUMP T = 465 0.7303 T = 20 0.5000 T = 250 0.8590

PRODUCT
T = 191
m = 2

0.7210
T = 10
m = 2

0.6135
T = 174
m = 2

0.8543

TREE
T = 200
N = 2

0.7278
T = 100
N = 3

0.6494
T = 185
N = 2

0.8571

SINGLE-TASK/FEATURE SELECTION
STUMP T = 300 0.7353 T = 20 0.5162 T = 540 0.8612

PRODUCT
T = 154
m = 2

0.7237
T = 10
m = 4

0.5318
T = 345
m = 2

0.8551

TREE
T = 188
N = 2

0.7317
T = 191
N = 2

0.7207
T = 203
N = 2

0.8606

COMBINED CLASSIFIERS
MUTLI-TASK 0.7040 0.6600 0.8241
SINGLE-TASK 0.7369 0.6033 0.8630
ALL 0.7316 0.5918 0.8538

WINNERS
BEST5 – 0.7375 – 0.8245 – 0.8620

Table 5: The post-challenge results for Small data set with the validated parameters.

Base learner STUMP PRODUCT TREE

Time requirements 274 456 384

Table 6: Training and testing running times (in minutes) on the Large data set. The number of
iterations is T = 8000.

121



BUSA-FEKETE AND KÉGL

References

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47:235–256, 2002a.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The non-stochastic multi-armed bandit
problem. SIAM Journal on Computing, 32(1):48–77, 2002b.

A. Borisov, A. Eruhimov, and E. Tuv. Tree-Based Ensembles with Dynamic Soft Feature Selection,
volume 207, pages 359–374. Springer, 2006.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural Information
Processing Systems, volume 20, pages 161–168, 2008.

J.K. Bradley and R.E. Schapire. FilterBoost: Regression and classification on large datasets. In
Advances in Neural Information Processing Systems, volume 20. The MIT Press, 2008.

G. Escudero, L. Màrquez, and G. Rigau. Boosting applied to word sense disambiguation. In
Proceedings of the 11th European Conference on Machine Learning, pages 129–141, 2000.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

S. Gelly and D. Silver. Achieving master level play in 9 x 9 computer go. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 1537–1540, 2008.

IBM Research. Winning the KDD Cup Orange Challenge with ensemble selection. In this volume,
pages 0–0, 2009.

B. Kégl and R. Busa-Fekete. Boosting products of base classifiers. In Proceedings of the 26th
International Conference on Machine Learning, 2009.

H. Miller, S. Clarke, Lane S., A. D. Lazaridis, Petrovski S., and Jones O. Predicting customer
behaviour: The University of Melbourne’s KDD Cup report. In this volume, pages 0–0, 2009.

J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions.
Machine Learning, 37(3):297–336, 1999.

E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with ensembles, artificial vari-
ables, and redundancy elimination. Journal of Machine Learning Research, 10:1341–1366, 2009.

P. Viola and M. Jones. Robust real-time face detection. International Journal of Computer Vision,
57:137–154, 2004.

I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, 2005.

122


