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Abstract

In this work, we describe our approach to the “Small Challenge” of the KDD cup 2009,
a classification task with incomplete data. Preprocessing, feature extraction and model
selection are documented in detail. We suggest a criterion based on the number of missing
values to select a suitable imputation method for each feature. Logistic Model Trees (LMT)
are extended with a split criterion optimizing the Area under the ROC Curve (AUC), which
was the requested evaluation criterion. By stacking boosted decision stumps and LMT we
achieved the best result for the “Small Challenge” without making use of additional data
from other feature sets, resulting in an AUC score of 0.8081. We also present results of an
AUC optimizing model combination that scored only slightly worse with an AUC score of
0.8074.
Keywords: KDD cup, Area Under Curve, Logistic Regression, Boosting, Decision Trees,
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1. Introduction

In the following we describe our approach to the “Small Challenge” of the KDD cup 2009.
The task was to predict customer behavior for a mobile phone network provider. While
exploring several classification and regression methods, we focused on tree-based models.
Our most successful approaches were a variant of Logistic Model Trees (Landwehr et al.
(2005)) and boosted decision stumps (Schapire and Singer (2000)).

Our final submission used these classifiers in combination and was ranked 35th in the
slow challenge and was the best solution that did not use data from other data sets to aid
classification (“unscrambling”).

Our team was formed within a student Data Mining lab course at the Chair for Computer
Science 6 of RWTH Aachen University. Eight students took part in the lab.

This paper is organized as follows: We briefly describe the task of the KDD cup 2009 in
Section 2. In Section 3 we explain our preprocessing steps. In Section 4 the classification
methods are described, while the model combination techniques are described in Section 5.
Experimental results are given in Section 6. Finally, conclusions are drawn in Section 7.

2. Task

The task of the KDD cup 2009 was to improve marketing strategies in the context of
customer relationship management using data provided by the French telecom company
Orange. Three binary target variables had to be predicted: Churn (propensity of customers
to switch providers), Appetency (propensity of customers to buy new products or services)
and Up-selling (propensity of customers to buy upgrades or add-ons). The challenge was
split into a fast and a slow track. The fast track required predictions to be submitted after
5 days, the slow track lasted for one month. For the slow track there were two separate data
sets with different number of features: a small data set with 230 features (190 numerical
and 40 categorical) and a large data set with 15,000 features. Both sets contained 50,000
labeled train instances and 50,000 unlabeled test instances. We participated in the slow
track and used only the small data set.

Neither the feature names nor the values allowed any intuitive interpretation of the data.
In 211 out of 230 features values were missing and 18 features contained no values at all.
Since the target classes were disjoint in the training data, we reformulated the classification
task as a four-class problem. Experimental results have shown an average improvement of
about 0.015 AUC score compared to performing three binary predictions separately. The
class distribution of the data was imbalanced. Only 16.5% of the training instances were
labeled positive in one of the three classes and 1.8% of the data belonged to the class
Appetency.

Evaluation The Area Under the Curve (AUC) was the evaluation criterion of the pre-
dicted ranking. According to Bradley (1997), this ranking measure is defined as the area
under the curve obtained by plotting the specificity against the sensitivity. Sensitivity is the
percentage of correctly classified positives, whereas specificity is the percentage of correctly
classified negatives.
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The organizers of the KDD cup provided an opportunity to upload the predicted rank-
ings during the cup to check performance on 10% of the test data. For internal evaluation
and parameter tuning we split the training data as described in the following section.

3. Preprocessing

3.1 Cross-validation

The full training set consisting of 50,000 data samples was split into a holdout set of 10,000
samples and a training set of 40,000 samples for internal evaluation. For training and
optimization we used a 5-fold cross validation. Each fold consisted of 32,000 training and
8,000 test samples. The AUC score on the test part of the individual folds was averaged and
used as evaluation criterion. We used the cross validation data to optimize the parameters
of the algorithms and the holdout set to evaluate this parametrization on unseen data.

3.2 Missing Values

A large number of values was missing in the data. 18 features contained no values at all
and for five features only one value was observed. These features were discarded. Among
the remaining 207 features only 19 were fully observed. Features with less than 5% of
missing values were handled by inserting the mean or mode for numerical features or the
most frequent value for categorical features. We divided the remaining features into three
categories and handled each category separately.

Selection Criterion To select an adequate method to address the missing values for the
features with different fractions of missing values, we introduced the following measure:
Given a set of features fi, . . . , fI , let fi be a feature with missing values and Mfi

the
number of distinct feature values in fi. Further assume that there are Nfi

observations in
our data set where the value of this feature is not missing. Then we define the Missing
Value Ratio (MVR) as Nf/(Mf · (I − 1)), where I is the total number of features. The
value of MVR(fi) gives the average number of samples per possible target value and feature
available to predict missing values in fi. A small value of MVR(fi) indicates that it will
be difficult to predict the feature from the given data. We use the MVR to divide features
into three categories. 37 features with MVR(f) ≥ 3 belong to category A, 25 features with
1 ≤ MVR(f) < 3 belong to category B and the remaining 126 features belong to category
C. These thresholds were chosen based on initial experiments and experience from other
tasks. Most features are contained in the category C. These features cannot be addressed
by simple imputation techniques, so we tried different algorithms to estimate the values as
described below.

Imputation Methods Missing values can be treated as a prediction problem, so we
formulated the search for the missing values for each category as classification problem or
as regression problem. All samples where the corresponding feature is not missing were
used as training data to impute the values of this feature in the remaining samples. The
algorithms we used to solve this classification or regression task were all parametrized. To
optimize these parameters empirically, we created a development set for each feature. This
set contained about 5% of the data where the particular feature is not missing.
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Category A features provided a sufficiently large number of occurrences per value and we
classified their missing values with support vector machines using an RBF kernel and cost
penalties between 1 and 2. Category B and C were imputed by a regression tree implemented
in MATLAB. We declared all features with less than ten distinct feature values to be
categorical. The implementation used an entropy split criterion and the minimum number
of observations for splitting a node was set to 200.

For category C features, we additionally used the full information maximum likelihood
method (FIML, Myrtveit et al. (2001)), where the missing values are replaced by estimating
a normal distribution. To choose between different imputation methods for each feature
from category C we used ranking methods described in Subsection 3.3.

Feature Extraction Beside the features created by the imputation methods described
above, we produced additional features, such as flags for missing values or features describing
the length of the textual values. Class-specific thresholding of features yielded useful binary
indicators. For instance, the value of -30 in feature 126 supported Up-selling. While the
features improved the performance of log-linear models and neural networks by up to 10%
relative, tree induction methods were able to find such relations by themselves. We produced
5,318 new features in this way. Since most of our classifiers only support numerical input,
categorical ones had to be binarized, resulting in more than 10,000 features in total.

3.3 Feature Selection

In order to build feature sets with a high predictive potential we analyzed correlation ma-
trices, performed forward selection and backward elimination of features, and implemented
two ranking algorithms to create class-specific feature sets.

For one, we used a ranking based on information gain ratio (Quinlan (1986)) in order
to find most relevant features. In addition, we used the likelihood-ratio test (Duda et al.
(2000)) as a ranking criterion. We only looked at features with a class-dependent support
of more than 100 within the first cross-validation fold. The value of -30 in feature 126
mentioned above given the Up-selling class label had the highest likelihood-ratio. Although
this approach led to good binary features, the tree-based learning algorithms described in
Section 4 were able to extract those indicators automatically.

With these selection techniques we produced a feature set consisting of the 206 features
from the original set described above with imputed missing values and additionally a selec-
tion of highly ranked features. In the following this set will be denoted by XO , while the
same features without imputation of missing values will be denoted by XM .

4. Modeling

Given the setup described in Section 3 we evaluated the performance of various standard
classifiers. This included parameter optimization as well as the selection of an appropriate
set of features and preprocessing steps for each classifier. We briefly describe the used
classifiers in this section.
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4.1 MLP

One of our first experiments on the KDD cup 2009 task was done using multilayer percep-
trons (MLP) implemented in the Netlab (Nabney (2001)) toolbox with GNU Octave. The
MLPs provided one input node for each feature, one layer of hidden nodes and four output
nodes, one for each class. Using the logistic activation function in the nodes, the MLPs were
trained with different numbers of hidden nodes and training iterations. Due to the nature of
the nonconvex optimization problem and random initialization of the weights, 10 runs with
identical parameter sets were made in order to find different local optima. Subsequently,
the outputs of these runs were averaged class-wise to construct the final outputs.

4.2 SVM

Several methods to incorporate the AUC as an optimization criterion in SVMs have been
proposed with implementations available online. We used SVMperf (Joachims (2005)), an
implementation that can optimize a number of multivariate performance measures including
AUC. Due to the large amount of generated features all experiments were done using a linear
kernel.

4.3 LMT

We used our own implementation of the Logistic Model Tree (LMT) (Landwehr et al.
(2005)), which is available for free download on the website of our chair1. In this algorithm
a tree is grown similar to the C4.5 approach where each node estimates a LogitBoost
model (Friedman et al. (1998)) on the assigned data, i.e. it performs an iterative training of
additive logistic regression models. At each split, the logistic regressions of the parent node
are passed to the child nodes. The final model in the leaf nodes accumulates all parent
models and creates probability estimates for each class. After growing the whole tree,
pruning was applied to simplify the model and to increase the generalization capability.

The LogitBoost algorithm creates an additive model of least-squares fits to the given
data for each class c, which has the following form:

Lc(x) = β0 +
F∑

i=1

βixi

where F is the number of features and βi is the coefficient of the ith component in the
observation vector x. The posterior probabilities in the leaf nodes can then be computed
by the method of linear logistic regression (Landwehr et al. (2005)):

p(c|x) =
exp (Lc(x))∑C

c′=1 exp (Lc′(x))

where C is the number of classes and the least-squares fits Lc(x) are transformed in a
way that

∑C
c=1 Lc(x) = 0.

For the task of the KDD cup 2009 we modified the algorithm to use AUC as split
criterion. Ferri et al. (2003) introduced the AUC split criterion for decision trees, where

1. http://www-i6.informatik.rwth-aachen.de/web/Teaching/LabCourses/DMC/lmt.html
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each leaf is labeled by one class. Each possible labeling corresponds to one point on the
curve obtained by plotting the specificity against the sensitivity. The search for a split
point then corresponds to finding an optimal labeling of the resulting leaves. This can be
done efficiently, as shown by Ferri et al. (2002): Let N c

l be the number of training examples
in leaf l assigned to class c. For each pair of classes ci and cj , i 6= j, we define the local
accuracy (LA) in leaf l as:

LAl(ci, cj) =
N ci

l

N ci
l +N

cj

l

Given the two classes ci, cj and a possible split point S with the corresponding leaves
lleft and lright, we calculate the LA for each leaf and sort them by this value in decreasing
order. According to Ferri et al. (2003), this ordering creates the path of labelings on the
curve obtained by plotting the specificity against the sensitivity. Finally the metric defined
by Ferri et al. (2002) is used to compute the AUC:

AUCS(ci, cj) =
1

2QR

(
N ci

1 N
cj

1 +N ci
2 (2N cj

1 +N
cj

2 )
)

(1)

where Q = N ci
1 + N ci

2 and R = N
cj

1 + N
cj

2 . We select the split point that maximizes
Eq. (1) averaged over all class pairs. Our implementation of the LMT supported only
numerical features, so each split always generated two child nodes and there were no leaves
which did not contain any observation. Therefore, Eq. (1) considers only the two distinct
labelings of these two child nodes, while Ferri et al. (2002) give a general form of this
equation.

To increase the generalization ability of the model, pruning was applied to the fully
grown tree. We used a two fold cross validation within the tree to calculate the pruning
values for each node. The pruning procedure originally calculated the pruning value for a
node based on the tree error of its subtrees. For this purpose the tree is grown using one
fold of the internal cross validation. Then the corresponding test set is evaluated and each
node saves the number of samples misclassified by its LogitBoost model as local error EL.
If v is a node of the LMT and vleft and vright are its child nodes, the tree error ET of v is
EL(v) if v is a leaf and ET (vleft) + ET (vright) otherwise.

Finally, the pruning values are calculated by the ratio of the local error and the tree error
in a node. This was modified for the AUC criterion, but we did not observe an improvement
using this pruning procedure. Unpruned trees with about 7,500 observations in each leaf
also led to comparable results to pruned trees, as shown in Section 6. The computational
complexity of building a logistic regression model is quadratic in the number of features F .
The complexity of building an LMT is O(NF 2d + v2), where N denotes the number of
training samples, d is the depth of the tree, and v the number of nodes in the unpruned
tree. Note that the internal K-fold cross-validation generates a large constant factor in the
complexity, such that training unpruned trees is about K times faster.

4.4 Boosted Decision Stumps

Since boosting and tree induction methods performed well on the given task, we also made
experiments with boosted decision stumps. For this purpose we used BoosTexter, which
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was developed for text categorization and is a particular implementation of the AdaBoost
algorithm (Freund and Schapire (1999)) with decision stumps as weak learners. In our
experiments we used the Adaboost.MH version of the algorithm. For categorical features,
the weak learners pose simple “questions” whether the given feature value occurs in the
sample or not. As in the LMT, numerical features are thresholded by a split point. Missing
values are ignored in this procedure. For each split point we compute weights W lc

+ and
W lc
− for each class c and leaf l generated by that split, where + and − indicate whether

the observations in leaf l belong to class c or not according to these weights. As usual,
the computation is based on the distribution estimated by the boosting procedure (Eq. (4)
in Schapire and Singer (2000)). Given these weights, we select the split point minimizing

2
∑

l

∑C
c=1

√
W lc

+W
lc
− , where C is the number of classes. For details and other versions of

the AdaBoost algorithm implemented in BoosTexter, see Schapire and Singer (2000).
The algorithm creates a ranked scoring of the classes for a given test sample. The

absolute value of this score can be interpreted as unnormalized “confidence“ measure of the
prediction. A negative score indicates that the sample does not belong to the specific class.

In our experiments we used a reimplementation called icsiboost2. The implementation
is able to handle categorical features, numerical features, and missing values in the weak
learners as described above. The AUC evaluation could directly be applied to the class scores
produced by the implementation, but for the combination methods described in Section 5
we normalized them to obtain posterior probabilities. Therefore, a sigmoid function is fit
to the resulting scores. Let m be the number of iterations performed during training and
score(x, c) the output of the classification procedure for the test sample x and class c. Then
the posterior probability defined by Niculescu-Mizil and Caruana (2005) is given by

p(c|x) =
(
1 + exp

(
−2m · score(x, c)

))−1

Boosted decision stumps performed best on all 206 features described in Section 3 with
no further preprocessing and a selection of binary features (see Section 6 for details). After
about 25 iterations the AUC converged, while the test error still decreased. A direct opti-
mization on AUC was not implemented. The algorithm can be implemented with a time-
per-round complexity of O(NC), so it is linear in the number of classes C and training
samples N .

5. Combinations

We combined the approaches described in Section 4 to improve the overall result. Simple
accumulation of multiple predictions showed no improvements in performance compared to
the results obtained by boosted decision stumps. Thus we implemented two other combi-
nation methods, which are presented in this section.

Rank combination In order to aggregate different models, we transformed their output
into a new ranking r(c|x). We first assumed that the predictions obtained from a certain
classifier k for an observation x and class c could be interpreted as posterior probabili-

2. http://code.google.com/p/icsiboost

83



Doetsch et al.

ties pk(c|x). While this is not true for e.g. SVMs, it enabled us to compute the average of
posteriors as a baseline for classifier combination.

The posteriors can also be interpreted as votes for a relative ranking. pk(c|x) > pk(c|y)
would indicate one vote for x to be ranked higher than y. By counting all votes and
normalizing for each classifier we can derive a total ranking by accumulating all votes for
each observation x:

rvote(c|x) =
1
|K|

∑
k

1
Zk

∑
y

δ
(
pk(c|x)− pk(c|y)

)
where Zk is a normalization constant so that maxx 1/Zk

∑
y δ
(
pk(c|x) − pk(c|y)

)
= 1

and δ(x) is 1 if x > 0 and 0 otherwise. The normalization is needed to give equal influence to
each classifier and not to penalize predictions with few distinct values. Both of the methods
described above can be extended to a weighted linear combination by using a weight wk

for each classifier k. We implemented a general gradient descent and the downhill simplex
method by Nelder and Mead (1965) to optimize the weights wk with respect to the AUC
evaluation criterion.

Stacking As further combination approach we used the outputs of one classifier as fea-
tures for another classifier (Smyth and Wolpert (1999)). We created stacking features from
boosted decision stumps described in Section 4. With these features we were able to im-
prove the raw results of boosted decision stumps with an LMT, which is presented in the
next section. In the following, the feature set XO extended by these additional stacking
features will be denoted as XS .

6. Results

All results were averaged over all folds of our 5-fold cross validation. The feature sets
were optimized for each classifier. Table 4 shows the comparison of their performance on a
common feature set.

MLP As described in Section 4, one of our first attempts were MLPs. The number of
hidden nodes and number of iterations maximizing the average AUC for all classes and
folds were found by grid search. The highest AUC score for Appetency was achieved with
100, for Churn with 300, and for Up-selling with 500 hidden nodes. This behavior indicates
different complexities for the classification on each separate class. The best result with an
AUC score of 0.78 was achieved on the data set XO with a selection of binary features.
Therefore, MLPs were discarded as a single approach for the KDD cup 2009 task.

Boosted decision stumps As starting point for the best of our final submissions we used
boosted decision stumps, described in Section 4. In the experiments presented in Table 1
we declared all features with less than 10 distinct values as categorical and performed 25
boosting iterations. In our first attempt we did not apply any missing value imputation
methods, since the algorithm is able to handle them internally. We repeated the experiment
with the same feature set, but missing values were imputed by the techniques described in
Section 3. Table 1 shows the class-specific results. Furthermore, we found binary features
as described in Section 3 which were able to improve the resulting AUC.
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Features Missing values Appetency Churn Up-selling
original imputation methods 0.7928 0.6389 0.8401
original internal handling 0.8013 0.6758 0.8503
original + binary imputation methods 0.7913 0.6452 0.8425
original + binary internal handling 0.8024 0.6945 0.8538

Table 1: AUC scores of boosted decision stumps on the XM set

Features Configuration Appetency Churn Up-selling Average

original

entropy 0.7578 0.6857 0.7565 0.7333
entropy + pruning 0.7595 0.6894 0.7555 0.7348
AUC 0.7564 0.6834 0.8443 0.7614
AUC + pruning 0.7844 0.6803 0.8417 0.7688

Table 2: AUC scores of Logistic Model Trees on the XO set

Table 1 shows that the internal handling of missing values outperforms our imputation
method. As described in Section 4, the missing values are simply ignored in the split point
search of the weak learners. So our imputed values often belong to the wrong partitions
obtained by these splits. The binary features mainly improved the results of Churn and
Up-selling. Since these features indicate particular values of numerical features, they were
not considered by the decision stumps.

LMT Based on the predictions by boosted decision stumps we generated stacking features
as described in Section 5 and appended them to the XM set used in the boosted decision
stumps to create the XS set. In our experiments, the LMT was the only classifier that
could benefit from the stacking features. All experiments in Table 2 and 3 were done
using 50 LogitBoost iterations and splitting only was applied to nodes with at least 7,500
observations. The Tables 2 and 3 compare the entropy split criterion to the AUC split
criterion described in Section 4 and show the effect of pruning in this task. To show the
benefit of the stacked feature set XS , we additionally applied the algorithm to the original
features XO .

Notice that pruning had a low impact on the resulting AUC when applied to the
XO feature set. Many tree induction methods were suitable to the given problem. Since

Features Configuration Appetency Churn Up-selling Average

stacked

entropy 0.7096 0.6730 0.8090 0.7305
entropy + pruning 0.7950 0.7037 0.8457 0.7815
AUC 0.7652 0.6938 0.8349 0.7646
AUC + pruning 0.8050 0.7037 0.8557 0.7881

Table 3: AUC scores of Logistic Model Trees on the XS set
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Classifier Appetency Churn Up-selling Score
Boosted decision stumps 0.8172 0.7254 0.8488 0.7971
LMT 0.8176 0.7161 0.8450 0.7929
MLP 0.8175 0.7049 0.7741 0.7655
SVMPerf 0.8102 0.7000 0.7495 0.7532

Table 4: Comparison of classifiers on a common feature set of 399 numerical features, sorted
by averaged AUC score

Combination method Appetency Churn Up-selling Score
combined posteriors 0.8263 0.7283 0.8355 0.7967
combined votes 0.8246 0.7285 0.8344 0.7958
weighted posteriors 0.8242 0.7325 0.8507 0.8025
weighted votes 0.8225 0.7331 0.8516 0.8024
Downhill-Simplex 0.8256 0.7306 0.8493 0.8018

Table 5: Combination of boosted decision stumps, MLP, SVM and LMT on a common
feature set of 399 numerical features, sorted by averaged AUC score

the stacked features were better than any other subset of the XO features, the tree grow-
ing procedure tend to split only on the XS features in the first levels. Therefore, pruning
indeed increased the generalization performance of the model and led to improved results.
Trees with an entropy based split criterion resulted in degenerated trees, while trees with
the AUC split criterion produced balanced tree structures. Especially on Up-selling, these
balanced tree structures yielded an improvement. While on the XO data set the difference
to the entropy criterion was rather small, a benefit could be observed when applied to the
XS feature set.

In the presented experiments the feature sets were selected separately for each classi-
fier. To isolate the classification performance from the effect of the feature selection, we
conducted experiments on a common feature set. Table 4 shows the results on this data.

Combination Methods Finally, we combined results from different models, which pro-
duced our second best result. In the presented experiments we combined the predictions
of four classifiers. In particular, boosted decision stumps, an MLP, an SVM, and an LMT
were passed to the algorithm. The results obtained by the individual classifiers are shown
in Table 4. With the Downhill-Simplex method an average AUC of 0.8018 was achieved
on the common feature set, which is an improvement of +0.0047 compared to the boosted
decision stumps. The weighted posteriors described in Section 5 were able to improve the
result of boosted decision stumps by +0.0054 with an average AUC score of 0.8025. Further
results are presented in Table 5.
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Rank Team Name Appetency Churn Up-selling Score
Fast track

1 IBM Research 0.8830 0.7611 0.9038 0.8493
2 ID Analytics, Inc 0.8724 0.7565 0.9056 0.8448
3 David Slate, Peter W. Frey 0.8740 0.7541 0.9050 0.8443

Slow track
1 IBM Research 0.8819 0.7651 0.9092 0.8521
2 Uni Melb 0.8836 0.7570 0.9048 0.8484
3 ID Analytics, Inc 0.8761 0.7614 0.9061 0.8479
35 RWTH Aachen 0.8268 0.7359 0.8615 0.8081

Table 6: Winners of the KDD cup 2009

7. Conclusions

As part of a Data Mining lab course at the Chair of Computer Science 6 of RWTH Aachen
University, we participated in the “Small Challenge” of the KDD cup 2009. The task was
the prediction of three aspects of customer behavior: Churn, Appetency and Up-Selling. In
our submission, we restricted ourselves to the provided feature set and did not use additional
data from other tracks.

Given the large amount of missing values in the data, techniques for handling missing
values were important in this task. While imputation methods are helpful and can improve
results, our experiments showed that tree-based methods are more capable of handling or
ignoring missing values. Our most successful method was a Logistic Model Tree with AUC
as split criterion using predictions from boosted decision stumps as features. With the final
AUC score of 0.8081, this was the best submission for the “Small Challenge” of the KDD
cup 2009 that did not use additional data from other feature sets. It was ranked 35th among
89 submissions for this track. A second approach using an AUC-optimized weighted linear
combination of several rankings scored slightly worse with an average AUC of 0.8074. The
final results of the competition are summarized in Table 6.
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