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Abstract

We discuss the challenges of the 2009 KDD Cup along with our ideas and methodologies
for modelling the problem. The main stages included aggressive nonparametric feature
selection, careful treatment of categorical variables and tuning a gradient boosting machine
under Bernoulli loss with trees.
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1. Introduction

The KDD Cup 20091 was organised by Orange Labs, France. The data consisted of informa-
tion about telecommunication customers, with 15,000 predictor variables. The competition
involved producing binary classifiers for three types of consumer behaviour:

• churn, which is whether someone ceases to be a customer,
• appetency, being the propensity to buy a service or product, and
• upselling, where a more profitable or additional service is sold to a customer.

Competitors were provided with a training set of 50,000 observations, with an additional
50,000 in the test set, which was used by the organisers for model evaluation. The measure
for predictive accuracy was the area under the ROC curve (AUC), which integrates sensitiv-
ity over all possible specificities of the model. The average of the AUC for the three different
classification tasks was used to rank competitors. A reduced dataset of 230 variables was
also available, which our team did not make use of for our primary entry.

The challenge had a fast component, with predictions for the test data due within 5
days of the full data being released, and a slow component, where predictions had to be
submitted within 5 weeks. IBM Research produced the best model for both components,
but as the competition rules stated that no team could win both parts, The University
of Melbourne team won first prize in the slow component, having the second best model.
Table 1 shows the final results for both IBM research and The University of Melbourne.
Our model was based entirely on the large dataset, making no use of the other smaller
dataset provided to competitors.

Model
Team Churn Appetency Upselling Average
IBM Research 0.7651 0.8819 0.9092 0.85206
Univ. Melbourne 0.7570 0.8836 0.9048 0.84847

Table 1: Final model performance for IBM research and The University of Melbourne.

The dataset provided for the KDD Cup 2009 is typical of many contemporary data-
mining problems. There are a large number of observations, which enables many signals
to be resolved through the noise, allowing complex models to be fit. There are also a
large number of predictors, which is common since companies and other organisations are
able to collect a large amount of information regarding customers. However many of these
predictors will contain little or no useful information, so the ability to exclude redundant
variables from a final analysis is important. Many of the predictors have missing values,
some are continuous and some are categorical. Of the categorical predictors, some have
a large number of levels with small exposure; that is, a small number of observations at
that level. For the continuous variables, the distribution among the observations can have
extreme values, or may take a small number of unique values. Further, there is potential for
significant interaction between different predictors. Finally, the responses are often highly
unbalanced; for instance only 7% of the upselling observations were labelled “1”. All these

1. www.kddcup-orange.com
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factors need to be considered in order to produce a satisfactory model. Sections 2 to 4
detail the stages of our modelling for the KDD Cup, while Section 5 makes some comment
on the computational resources used.

2. Feature selection

As mentioned in the introduction, many of the predictors were irrelevant for predictive
purposes and thus needed to be excluded. In fact, some variables were absolutely redundant,
having the same entry in all cells. Over 3,000, about 20%, of the variables had either entirely
identical observations, or had fewer than 10 observations different to the baseline, so these
were obvious candidates for removal.

For those features remaining, we assessed the individual predictive power with respect
to the three responses (churn, appetency and upselling). To do this we split the data
into two halves, one to make predictions and the other to measure the resulting AUC,
so that the measure of predictor performance was directly related to the measure used
in the competition. For categorical values, the proportion of positive responses for each
level was used as the prediction that was applied to the second half of the data. For
continuous variables we separated the observations into bins based on 1% quantiles and
used the proportion of positive responses for each quantile bin as the prediction. In both
cases missing values were treated as a separate level. An AUC score could then be calculated
for each variable using the second half of the training data and the process was repeated to
increase reliability

The above feature selection technique is very simple; it involves taking the mean of the
responses for each level, and so amounts to a least squares fit on a single categorical variable
against a 0-1 response, with the categories in the continuous case defined by quantiles.
Despite its simplicity, it had a number of advantages:

• Speed: Computing means and quantiles is direct and efficient
• Stability with respect to scale: Extreme values for continuous variables do not

skew predictions as they would in many models, especially linear models, and the
results are invariant under any monotone transformation of the continuous variables.
Therefore this is robust to unusual distribution patterns.
• Comparability between continuous and categorical variables: Predictive per-

formance of the two types of variables is measured in a similar way and so they are
directly comparable.
• Accommodation of nonlinearities: Since a mean is estimated for every quantile

in the continuous case, nonlinear dependencies are just as likely to be detected as a
linear pattern.

Naturally there were some drawbacks to this approach as well. For instance, by under-
emphasising linear patterns, any genuine linear or nearly linear patterns were less likely to
be detected. Also, the choice of 1% for the quantiles was somewhat arbitrary, but judged
to maintain a reasonable balance between shape flexibility and reliability. Figure 1 shows
the quantile fit for the most important variable in the churn model, as recorded in Table 4,
against the response. Although the fit does exhibit substantial noise when compared to
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the smoothed overlay, created using a local kernel regression fit, there remains a strong
detectable signal and the noise is mitigated by testing on a separate portion of the data. It
is also noteworthy that this variable exhibits significant nonlinearity.
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Figure 1: Quantile and smooth fits for variable V8981 against the churn response.

This method of feature selection can be considered as a special case of generalised
correlation as in Hall and Miller (2009). There the generalised correlation of the jth variable
is the maximum correlation of the response with a nonlinear transformation of that variable:

ρj = sup
h∈H

cor{h(Xj), Y } ,

where H is the allowable set of nonlinear transformations. When this set has a finite basis
then the choice of h is equivalent to the least squares fit under the basis of H. In our case
the finite basis was the collection of quantile based indicator functions (in the continuous
case), or indicator functions for each category (for categorical variables). Thus the feature
selection may be thought of as maximising the nonlinear correlation between each variable
and the response, making use of a large number of degrees of freedom, as permitted by the
relatively large number of observations.

The above rankings were reasonably effective in capturing all the interesting behaviour
for the churn and appetency models. However for the upselling model, spurious variables
tended to appear high in the variable ranking. In this case, the list of top variables needed
to be adjusted in the later, more sophisticated modelling stages to produce competitive
results.

Figure 2 shows the sorted AUC scores for all the variables using the churn response. The
plot is typical of the three different models, with the bulk of predictors having AUC close
to 0.5, implying no relationship with the response. The dotted line represents our cutoff
for admission into the boosted model of Section 4. The cutoff is reasonably aggressive,
but there did not appear to be much gain in admitting more variables. Even if a more
conservative cutoff was adopted, considering more than the top 2,000 variables for the final
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model appears to be unnecessary, so a substantial dimensionality reduction is possible and
preferred.
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Figure 2: AUC scores for feature selection using churn response.

We also compared the results of this feature selection with a F-score based feature
selection method as described in Chen and Lin (2006). In general, agreement was good,
although this alternative method suggested a small number of new variables to also include
at the modelling stage.

3. Treatment of categorical variables with a large number of levels

Many of the categorical variables had a large number of levels—some even having over
10,000—and some of these ranked high in our feature selection. In many modelling contexts
such an abundance of levels is undesirable, since it encourages overfitting on the small
exposure levels. This is particularly true of decision trees, which we used for building our
final models. Another problem is that some levels appear in the training set but not the
test set and vice versa. While some of the levels that had a large exposure were important,
the other levels needed aggregation.

Our initial attempt to aggregate was to collapse the levels with less than 1,000 corre-
sponding observations into 20 levels, with grouping based on the response. Thus levels with
small exposure and a large proportion of positive responses were grouped together, while
those with small exposure but lower proportion would be aggregated in a different level.
This was the aggregation we used for the fast part of the challenge. Unfortunately this
exacerbated the overfitting problem because we were artificially creating good predictors of
the training set which depressed model performance on the test set, so an alternative means
of aggregation was necessary.

To prevent this kind of overfitting, our second attempt at aggregation was completed
independently of the response. If a categorical variable had more than 25 levels, we created
a replacement variable by:
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• keeping any levels that had at least 1000 observations worth of exposure,
• aggregating any levels with exposure between 500-999 into a new level,
• aggregating any levels with exposure between 250-499 into a new level, and
• aggregating any levels with exposure between 1-250 into a new level.

This removed the overfitting problem. It is not entirely clear whether the aggregating into
three levels based on exposure did in fact provide any improvement compared to using
a single level, although there is some supporting evidence. For instance some variables,
such as V14788 and V14904, had only levels corresponding to the different exposures and
were judged significant in some of our models. Also, Table 2 gives AUC scores on 5-fold
cross-validated training set predictions for our final models using the exposure aggregation
compared to a single aggregation. The churn and appetency models in particular seem to
support the exposure based aggregation. While not conclusive, it is worth noting that if
the differences in the table are representative then not including the exposure levels would
have lowered the team’s ranking.

Model Exposure-based Single level Difference
aggregation

Churn 0.7493 0.7478 0.0015
Appetency 0.8790 0.8784 0.0006
Upselling 0.9062 0.9063 -0.0001

Table 2: AUC scores comparing aggregation approaches for categorical variables

Another advantage of this approach compared to the initial attempt was that the pro-
cessed categorical variables were the same across the three consumer behaviours.

4. Modelling with decision trees and boosting

The basic approach for constructing the final models involved the collection of shallow de-
cision trees with boosting and shrinkage as in gradient boosting machines. Friedman (2001)
serves as a primary reference for this approach; other literature on boosting includes Freund
and Schapire (1997), Ridgeway (1999), Friedman et al. (2000) and Friedman (2002). Deci-
sion trees have been studied for many years, and include the work of Morgan and Sonquist
(1963), Breiman et al. (1984) and Quinlan (1993). The basic principle is to fit a relatively
simple tree-based model many times, each time focusing on the observations that are hard-
est to classify correctly by means of a weighting scheme. Bernoulli loss was used to compute
the deviance, and the class weights were chosen so that the two classes had roughly equal
weight. For example the churn model used a weight of 12 for the positive class, to better
balance the trees.

Decision trees have a number of advantages which suited this year’s KDD data, in
particular. These are well-known, but worth restating here:

• Predictions are possible even when an important predictor has a missing value, through
the use of surrogate variables.
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• They are not affected by extreme values or strange distributions in continuous vari-
ables. In fact, they are invariant under monotone transformations of the predictors.
• They can easily handle both continuous and categorical variables.
• They can effectively model interactions between predictors.
• They allow for nonlinear dependencies.

Model validity was tested both by cross-validation and using the online feedback on the
10% test sample provided by the organisers. We aimed to build a model using about 200
predictors, partly for computational reasons and partly because adding extra predictors to
our final subsets did not appear to noticeably improve performance. These variables were
chosen on the basis of the feature selection ranking. However an important part of tuning
the models involved discarding variables that did not appear useful in the model and adding
some lower down the feature selection ranking. Here usefulness refers to the relative amount
of deviance (Bernoulli loss) reduction each variable contributes to the model. Details of the
variables used in each of the models are given in Appendix A. Model parameters for each of
the fits are presented in Table 3. These were selected to maximise the AUC performance,
using the test set feedback and cross-validation.

Model
Churn Appetency Upselling

Number of variables 198 196 201
Class weight 12 20 12
Shrinkage parameter 0.01 0.01 0.01
Number of trees 1300 1300 3000
Tree depth 5 3 5

Table 3: Model parameters for boosted tree models

The final models suggest that there are some significant interactions between predictors
in the models, most strikingly between continuous and categorical variables. Figure 3
shows one example of this, plotting the partial dependence between the two most important
variables in the appetency model, V9045 and two levels of V14990. Note that this is not the
change in the response excluding the effect of all the other variables, but rather integrating
over them. The different behaviour in the continuous variable for the different levels is
visible.

5. Computational details

The analysis and modelling work was performed almost entirely in the free open source
program R.2 We say “almost”, because the original data chunks were too large to be read
into R with our limited hardware, so it was first read into SAS3 and exported in batches of
200 variables, each of which could then be read into and then deleted from R.

All modelling was conducted on individual desktop and laptop computers; the computer
that did the most modelling was a mass-market laptop running Windows XP with 2Gb of

2. http://cran.r-project.org/
3. http://www.sas.com/
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Figure 3: Partial dependence plots in the appetency model for variables V9045 and two
levels of V14990. The different shapes, particularly for higher values of V9045,
suggest interactions are present.

RAM, a 2.66GHz Intel Core 2 Duo processor and a 120Gb hard drive. The feature selection
and categorical collapsing was programmed ourselves, while the boosted decision tree used
the “gbm” package, also freely downloadable2.

The feature selection stage took a few hours of computing time for each response, while
the boosted decision tree models typically took just over an hour to fit, depending on
the number of trees and variables involved. This demonstrates that a linux cluster is not
necessary to produce strong predictive results, although the authors suspect it would help;
in our case, it would have enabled more comprehensive investigation of the effect of choices
in category collapsing and feature selection. Interested readers are encouraged to contact
the first author regarding any questions of coding or computation, or with any suggestions
and comments.
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Appendix A. Tables relating to final models

Rank Churn Appetency Upselling
Name Rel. Inf. Name Rel. Inf. Name Rel. Inf.

1 V8981 20.13 V9045 23.78 V9045 45.52
2 V14990 10.25 V8032 13.56 V14990 7.86
3 V10533 4.65 V14995 10.79 V8981 5.32
4 V14970 4.60 V14990 6.07 V12507 4.96
5 V5331 2.36 V5826 3.72 V6808 4.65
6 V14995 2.19 V8981 3.23 V1194 2.58
7 V14822 2.10 V10256 3.03 V14970 2.16
8 V9045 2.00 V12641 2.72 V14871 1.33
9 V2570 2.00 V14772 1.72 V1782 1.15
10 V14923 1.88 V14939 1.68 V10256 1.05
11 V14765 1.19 V14867 1.62 V5026 0.96
12 V14904 1.14 V14970 1.42 V8032 0.91
13 V5702 1.13 V11781 1.14 V14786 0.81
14 V11047 1.12 V14871 0.89 V7476 0.62
15 V14778 0.97 V14788 0.86 V11781 0.59
16 V14795 0.90 V13379 0.81 V14795 0.57
17 V990 0.90 V5216 0.71 V6255 0.57
18 V12580 0.86 V14795 0.70 V5216 0.50
19 V9075 0.86 V11315 0.66 V2591 0.50
20 V647 0.85 V12702 0.62 V12641 0.46

Table 4: Relative influence of top 20 variables in final models
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Churn Appetency Upselling
V47 V5216 V10447 V28 V5723 V11315 V28 V5216 V10136
V173 V5245 V10513 V83 V5808 V11322 V169 V5405 V10256
V384 V5277 V10533 V134 V5826 V11392 V173 V5462 V10402
V559 V5331 V10557 V182 V5873 V11396 V182 V5521 V10443
V621 V5360 V10589 V193 V5899 V11642 V213 V5576 V10521
V635 V5365 V10687 V282 V6003 V11777 V542 V5632 V10538
V647 V5559 V10808 V647 V6016 V11781 V559 V5723 V10687
V698 V5613 V10985 V698 V6238 V11916 V749 V5815 V11051
V706 V5666 V11047 V855 V6310 V12058 V941 V5826 V11083
V724 V5702 V11068 V941 V6424 V12102 V959 V5840 V11092
V749 V5723 V11172 V959 V6468 V12147 V975 V5985 V11115
V843 V5808 V11247 V1026 V6503 V12252 V1004 V6032 V11135
V941 V5820 V11315 V1075 V6565 V12264 V1045 V6228 V11160
V953 V5833 V11322 V1204 V6620 V12321 V1194 V6246 V11196
V990 V5895 V11392 V1275 V6659 V12483 V1362 V6255 V11277
V1036 V5982 V11480 V1476 V6735 V12507 V1376 V6503 V11315
V1095 V6016 V11671 V1514 V6751 V12517 V1596 V6514 V11369
V1227 V6049 V11731 V1543 V6812 V12548 V1623 V6565 V11566
V1254 V6255 V11985 V1596 V6825 V12638 V1782 V6637 V11781
V1392 V6310 V12199 V1969 V7004 V12641 V1853 V6735 V11832
V1428 V6468 V12200 V2120 V7055 V12670 V1925 V6778 V11859
V1501 V6534 V12264 V2157 V7180 V12702 V2095 V6808 V12011
V1565 V6551 V12370 V2284 V7212 V12747 V2120 V6837 V12058
V1604 V6636 V12381 V2334 V7335 V12840 V2157 V6892 V12147
V1996 V6653 V12580 V2352 V7356 V12884 V2249 V6894 V12199
V2284 V6722 V12702 V2413 V7575 V13084 V2321 V7004 V12221
V2315 V7071 V12840 V2418 V7579 V13104 V2434 V7014 V12264
V2370 V7146 V12993 V2453 V7651 V13362 V2453 V7029 V12507
V2450 V7212 V13008 V2531 V7653 V13379 V2531 V7055 V12539
V2453 V7229 V13038 V2544 V7904 V13492 V2591 V7230 V12548
V2456 V7425 V13053 V2591 V7950 V13653 V2849 V7308 V12641
V2570 V7500 V13153 V2715 V7960 V13871 V2852 V7476 V12702
V2773 V7511 V13210 V2822 V8003 V13952 V2890 V7485 V12884
V2822 V7670 V13350 V2849 V8032 V14221 V2892 V7521 V12952
V2852 V7706 V13571 V2852 V8343 V14246 V2985 V7522 V13038
V2961 V7758 V13572 V2966 V8458 V14334 V3128 V7575 V13135
V3080 V7817 V13573 V3000 V8591 V14344 V3219 V7579 V13153
V3104 V7964 V13644 V3128 V8619 V14362 V3305 V7631 V13162
V3264 V8032 V13663 V3130 V8787 V14374 V3487 V7737 V13287
V3305 V8181 V13714 V3199 V8936 V14377 V3558 V7874 V13362
V3339 V8375 V13849 V3202 V8981 V14517 V3568 V7987 V13379
V3439 V8484 V14087 V3219 V9001 V14643 V3711 V8032 V13467
V3508 V8605 V14187 V3249 V9045 V14696 V3962 V8070 V13469
V3515 V8621 V14226 V3305 V9248 V14721 V3999 V8122 V13592
V3624 V8709 V14274 V3339 V9311 V14732 V4048 V8181 V13653
V3719 V8717 V14334 V3704 V9408 V14772 V4075 V8338 V13705
V3759 V8854 V14359 V3719 V9409 V14786 V4221 V8458 V13727
V3766 V8863 V14429 V3759 V9655 V14788 V4316 V8505 V13952
V3886 V8981 V14487 V3863 V9671 V14795 V4566 V8561 V14015
V3905 V9001 V14502 V4186 V9704 V14834 V4585 V8591 V14138
V3972 V9037 V14765 V4248 V10032 V14846 V4614 V8619 V14157
V4028 V9045 V14778 V4340 V10130 V14867 V4659 V8833 V14170
V4088 V9075 V14788 V4347 V10212 V14871 V4665 V8981 V14362
V4098 V9342 V14791 V4585 V10256 V14878 V4686 V9045 V14721
V4218 V9375 V14795 V4590 V10333 V14923 V4735 V9051 V14773
V4389 V9408 V14822 V4614 V10343 V14928 V4802 V9069 V14778
V4393 V9498 V14846 V4665 V10405 V14939 V4856 V9230 V14786
V4563 V9536 V14871 V4902 V10415 V14970 V4996 V9294 V14795
V4669 V9608 V14904 V4957 V10443 V14974 V5021 V9311 V14862
V4735 V9616 V14906 V5026 V10450 V14980 V5026 V9386 V14871
V4856 V9686 V14923 V5065 V10521 V14990 V5053 V9409 V14890
V4986 V9704 V14970 V5185 V10589 V14995 V5065 V9431 V14928
V5025 V9711 V14990 V5213 V10594 V5097 V9574 V14946
V5026 V9799 V14995 V5216 V10739 V5138 V9658 V14965
V5031 V10073 V5405 V10843 V5144 V9708 V14970
V5166 V10183 V5462 V11196 V5182 V9797 V14990
V5170 V10256 V5554 V11247 V5213 V10097 V14995

Table 5: Variables used in final models
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