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Abstract

With imbalanced data a classifier built using all of the data has the tendency to ignore
the minority class. To overcome this problem, we propose to use an ensemble classifier
constructed on the basis of a large number of relatively small and balanced subsets, where
representatives from both patterns are to be selected randomly. As an outcome, the system
produces the matrix of linear regression coefficients whose rows represent the random sub-
sets and the columns represent the features. Based on this matrix, we make an assessment
of how stable the influence of a particular feature is. It is proposed to keep in the model only
features with stable influence. The final model represents an average of the base-learners,
which is not necessarily a linear regression. Proper data pre-processing is very important
for the effectiveness of the whole system, and it is proposed to reduce the original data to
the most simple binary sparse format, which is particularly convenient for the construction
of decision trees. As a result, any particular feature will be represented by several binary
variables or bins, which are absolutely equivalent in terms of data structure. This property
is very important and may be used for feature selection. The proposed method exploits
not only contributions of particular variables to the base-learners, but also the diversity of
such contributions. Test results against KDD-2009 competition datasets are presented.
Keywords: ensemble classifier, gradient-based optimisation, boosting, random forests,
decision trees, matrix factorisation

1. Introduction

Ensemble (including voting and averaged) classifiers are learning algorithms that construct
a set of many individual classifiers (called base-learners) and combine them to classify
test data points by sample average. It is now well-known that ensembles are often much
more accurate than the base-learners that make them up (Biau et al., 2007). The tree
ensemble called “random forests” (RF) was introduced in (Breiman, 2001) and represents
an example of a successful classifier. In another example, the bagged version of the support
vector machine (SVM) (Zhang et al., 2007) is very important because direct application of
the SVM to the whole data set may not be possible. In the case of the SVM, the dimension
of the kernel matrix is equal to the sample size, which thus needs to be limited.

Our approach was motivated by (Breiman, 1996), and represents a compromise between
two major considerations. On the one hand, we would like to deal with balanced data. On
the other hand, we wish to exploit all available information. We consider a large number n
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of balanced subsets of available data where any single subset includes two parts (a) nearly all
‘positive’ instances (minority) and (b) randomly selected ‘negative’ instances. The method
of balanced random sets (RS) is general and may be used in conjunction with different
base-learners.

Regularised linear regression (RLR) represents the most simple example of a decision
function. Combined with quadratic loss function it has an essential advantage: using a
gradient-based search procedure we can optimise the value of the step size. Consequently,
we will observe a rapid decline in the target function.

By definition, regression coefficients may be regarded as natural measurements of influ-
ence of the corresponding features. In our case we have n vectors of regression coefficients,
and we can use them to investigate the stability of the particular coefficients.

Proper feature selection (FS) may reduce overfitting significantly. We remove features
with unstable coefficients, and recompute the classifiers. Note that stability of the coeffi-
cients may be measured using different methods. For example, we can apply the t-statistic
given by the ratio of the mean to the standard deviation (Nikulin, 2008).

Matrix factorisation, an unsupervised learning method, is widely used to study the
structure of the data when no specific response variable is specified. In principle, it would
be better to describe the data in terms of a small number of meta-features, derived as a
result of matrix factorisation, which could reduce noise while still capturing the essential
features of the data. In addition, latent factor models are generally effective at estimating
overall structure that relates simultaneously to most or all items.

Note that the methods for non-negative matrix factorisation (NMF) which were intro-
duced in (Lee and Seung, 2001) are valid only under the condition that all the elements
of all input and output matrices are non-negative. In Section 3.4 we formulate a general
method for matrix factorisation, which is significantly faster compared with NMF. Note
also that some interesting and relevant ideas for the stochastic gradient descent algorithm
were motivated by methods used in the well-known Netflix Cup; see, for example, (Paterek,
2007).

The proposed approach is flexible. We do not expect that a single specification will
work optimally on all conceivable applications and, therefore, an opportunity of tuning and
tailoring the algorithm is important.

Results which were obtained during the KDD-2009 Data Mining Competition are pre-
sented.

2. Task Description

The KDD Cup 2009' offered the opportunity to work on large marketing databases from the
French Telecom company Orange to predict the propensity of customers to switch provider
(churn), buy new products or services (appetency), or buy upgrades or add-ons proposed
to them to make the sale more profitable (up-selling).

Churn (Wikipedia definition) is a measure of the number of individuals or items moving
into or out of a collection over a specific period of time. The term is used in many contexts,
but is, most widely, applied in business with respect to a contractual customer base. For
instance, it is an important factor for any business with a subscriber-based service model,

1. http://www.kddcup-orange.com/
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including mobile telephone networks and pay TV operators. The term is also used to refer to
participant turnover in peer-to-peer networks. Appetency is the propensity to buy a service
or a product. Up-selling (Wikipedia definition) is a sales technique whereby a salesman
attempts to have the customer purchase more expensive items, upgrades, or other add-ons
in an attempt to make a more profitable sale. Up-selling usually involves marketing more
profitable services or products, but up-selling can also be simply exposing the customer to
other options that he or she may not have considered previously. Up-selling can imply selling
something additional, or selling something that is more profitable or, otherwise, preferable
for the seller instead of the original sale.

Customer Relationship Management (CRM) is a key element of modern marketing
strategies. The most practical way in a CRM system to build knowledge on customer
is to produce scores. The score (the output of a model) is computed using input variables
which describe instances. Scores are then used by the information system (IS), for example,
to personalize the customer relationship. There is also an industrial customer analysis plat-
form able to build prediction models with a very large number of input variables (known
as explanatory variables or features).

Generally, all features may be divided into two main parts: primary (collected directly
from the customer) and secondary, which may be computed as a functions of primary fea-
tures or may be extracted from other databases according to the primary features. Usually,
the number of primary features is rather small (from 10 to 100). On the other hand, the
number of secondary features may be huge (up to a few thousands). In most cases, proper
design of the secondary features requires deep understanding of the most important primary
features.

The rapid and robust detection of the features that have most contributed to the output
prediction can be a key factor in a marketing applications. Time efficiency is often a crucial
point, because marketing patterns have a dynamic nature and in a few days time it will be
necessary to recompute parameters of the model using fresh data. Therefore, part of the
competition was to test the ability of the participants to deliver solutions quickly.

3. Main Models

Let X = (x4,4:),t = 1,...,n, be a training sample of observations where x; € R’ is /-
dimensional vector of features, and y; is binary label: y, € {—1,1}. Boldface letters denote
vector-columns, whose components are labelled using a normal typeface.

In supervised classification algorithms, a classifier is trained with all the labelled training
data and used to predict the class labels of unseen test data. In other words, the label y;
may be hidden, and the task is to estimate it using vector of features. Let us consider the
most simple linear decision function

14
up=u(x) = Y wj- 45 +b,
j=1

where w; are weight coefficients and b is a bias term.

We used AUC as an evaluation criterion, where AUC is the area under the receiver
operating curve. By definition, ROC is a graphical plot of true positive rates against false
positive rates.
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3.1 RLR Model

Let us consider the most basic quadratic minimization model with the following target
function:

L(w) = Q(¢,n, w) + th Sy —w)?, (1)
=1

where Q(¢,n,w) = ¢-n - ||wl||? is a regularization term with ridge parameter ¢; the & are
non-negative weight coefficients.

Remark 1 The aim of the reqularization term with parameter ¢ is to reduce the difference
between training and test results. Value of ¢ may be optimized using cross-validation; see

Mol et al. (2009) for more details.
3.1.1 GRADIENT-BASED OPTIMISATION

The direction of the steepest decent is defined by the gradient vector

g(W) = {gj(W),j = 17' .. >£}7

where
OL(w)

gj(w) = ows 2¢ - n - wy —2Z$tjft(yt—ut)-
J t=1

Initial values of the linear coefficients w; and the bias parameter b may be arbitrary.
Then, we recompute the coefficients by

1 n
Wi = w4 5 glw®), B =50 1237 6 (g — ),
t=1

where k is the iteration number. Minimizing (1), we find the size of the step according to
the formula

N —¢-n Y wig;
- Sl
Y Gisitonyig;

where

n n 14
L= § §estyt, Lo = E §istug, S¢ = E Ttjgj-
t=1 t=1 j=1

3.2 Random Sets

According to the proposed method, we consider large number of classifiers, where any
particular classifier is based on a relatively balanced subset with randomly selected (without
replacement) ‘positive’ and ‘negative’ instances. The final decision function was calculated
as the sample average of the single decision functions or base-learners.

Definition 2 We refer to the above subsets as random sets RS(«a, 3, m), where « is the
number of positive cases, (8 is the number of negative cases, and m is the total number of
random sets.
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Figure 1: MVF, ratios (2): (a-b) Churn, (¢c-d) Appetency and (e-f) Upselling. In order to improve
visibility, we displayed two fragments (out of 9586) with 500 ratios each.

This model includes two very important regulation parameters: m and ¢ = % <1,

where ¢ is the proportion of positive to negative cases. In practice, m must be big enough,
and g can not be too small.

We consider m subsets of X with a positive and 8 = k-« negative data-instances, where
k>1q= % Using gradient-based optimization (see Section 3.1.1), we can compute the
matrix of linear regression coefficients: W = {wj;,i =1,...,m,j =0,...,¢}.

3.3 Mean-Variance Filtering

The mean-variance filtering (MVF) technique was introduced in (Nikulin, 2006), and can
be used to reduce overfitting. Using the following ratios, we can measure stability of the
contributions of the particular features by

|14

rj:A—],j:L...,e, (2)

where p; and A; are the mean and standard deviation corresponding to the j-column of the
matrix W.
A low value of r; indicates that the influence of the jth binary secondary feature is not

stable. We conducted feature selection according to the condition: r; > v > 0. The sum of
the r; corresponding to the original feature f will give us a stability rating for the feature

I
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3.4 Learning from the Test Data with Matrix Factorisation

Unlike classification and regression, matrix decomposition requires no response variable
and thus falls into the category of unsupervised learning methods. Using this fact as a
motivation, we can merge training and test datasets into one matrix X . There are possible
differences between training and test sets, and we can expect that the matrix factorisation
will be able to smooth such differences.

In this section, we describe the procedure for undertaking the matrix factorisation,

Xt ~ AB, (3)

where matrices A = {a;5,9 = 1,...,2n,f = 1,...,k,} and B = {bg;,f = 1,... ,k,j =
1,...,¢}. After the factorisation, the first n rows of the matrix A will used for training and
the last n rows will be used for testing.

The matrix factorisation represents a gradient-based optimisation process with the ob-
jective to minimise the following squared loss function,

2n £
L(A,B) = ﬁZZEi (4)

i=1 j=1

where E;; = x;; — lef:1 aifbyj-

Algorithm 1 Matrix factorisation.
1: Input: X7 - dataset.
: Select v - number of global iterations; k - number of factors; A > 0 - learning rate,
0 < 7 < 1 - correction rate, Lg - initial value of the target function.
: Initial matrices A and B may be generated randomly.
: Global cycle: repeat v times the following steps 5 - 17:
. samples-cycle: for i = 1 to 2n repeat steps 6 - 17:
: features-cycle: for j =1 to £ repeat steps 7 - 17:
: compute prediction S = ch:l a;rbyj;
: compute error of prediction: F = x;; — S
. internal factors-cycle: for f =1 to k repeat steps 10 - 17:
10: compute o = a;fby;;
11: update a;f < ajr + A - E - by; (see (5a));
122 B < F+a—ajfbyj;
13: compute o = a;rby;;
14: update by; < by + A E - a5 (see (5b));
15: B < E+a—a;rbyy;
16: compute L = L(A,B);
17 Lg=Lif L < Lg, and A < X - 7, otherwise.
18: Output: A and B - matrices of latent factors.

[\V]

© 00 N O Ut k= W

The above target function (4) includes in total k(2n+¢) regulation parameters and may
be unstable if we minimise it without taking into account the mutual dependence between
elements of the matrices A and B.
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Figure 2: Convergence of Algorithm 1: (a) Churn, ¢ = 477; (b) Appetency, ¢ = 532; and (c)
Upselling, ¢ = 385, where blue lines correspond to & = 8 and red lines correspond to
k = 20.

As a solution to the problem, we can cycle through all the differences £;;, minimising
them as a function of the particular parameters which are involved in the definition of E;;.
Compared to usual gradient-based optimisation, in our optimisation model we are dealing
with two sets of parameters, and we therefore mix uniformly updates of these parameters,
because the latter are dependent.

The following partial derivatives are necessary for Algorithm 1:

OE};

8aif = —ZEZ'jbfj, (5&)

OF;, 2F (5b)
= — i-aif.

Oby; J

Similarly, as in Section 3.1, we can optimise here the value of the step-size. However,
taking into account the complexity of the model, it will be better to maintain fixed and
small values of the step size or learning rate. In all our experiments, we conducted matrix
factorisation with the above Algorithm 1 using 300 global iterations with the following
regulation parameters: A = 0.01 - initial learning rate, £ = 0.75 -correction rate. We
conducted experiments with Algorithm 1 against the datasets in a binary format, and
Figure 2 illustrates convergence of the algorithm.
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4. Experiments
4.1 Pre-processing Technique

The sizes of the training and test datasets are the same and are equal to 50000. There are
14740 numerical and 260 categorical features in the large dataset. The training data are
very imbalanced. The numbers of positive cases were 3672 (Churn), 890 (Appetency) and
3682 (Upselling) out of a total number of 50000.

Firstly, we conducted a basic checking of the categorical data. We detected 72 variables
with only one value. In addition, we removed 74 variables, where the number of missing
variables was greater than 49500. The number of the remaining variables was 184. As
a next step, we considered all possible values for the latter 184 variables, and found that
1342 values occurred frequently enough to be considered as independent binary variables
(otherwise, values were removed from any further consideration).

An effective way to link information contained in numerical and categorical variables is
to transfer the numerical variables to binary format (as it was before in the application to
the categorical variables). We used a technique similar to that used before in converting the
categorical variables to binary format. We removed all variables with numbers of missing
and zeros greater than 49500. The number of the remaining variables was 3245. Next, we
split the range of values for any particular variable into 1000 subintervals, and computed
the numbers of occurrences for any subinterval. These numbers were considered later as
weights of the bins.

Then, we split all subintervals for the particular variable into 10 consecutive bins with
approximately the same size (in terms of weights). In many cases, where weights of some
subintervals were too big, the numbers of bins were smaller than 10.

Finally, we got a totally binary dataset in a sparse format with 13594 variables. After
secondary trimming, we were left with 9586 binary features.

Remark 3 It is a well-known fact that the exact correspondence between small and large
datasets may be found. We managed to find such a correspondence as some other teams
(it was rather a response to the findings of other teams). However, we can not report any
significant progress (in the sense of the absolute scores), which was done by the help of this
additional information.

4.2 Results

The initial experiments, which were conducted against the vector of toy labels, were in-
teresting and helpful for further studies. The system clearly detected all binary variables,
which are secondary to the only one important original variable N5963 (see Table 1). The
definition of the transformation function between two known variables is a rather technical
issue, which may be solved easily using two steps procedure: (1) sorting according to the
explanatory variable, and (2) smoothing using sample averages in order to reduce noise.
As a first step (after labels for the Churn, Appetency and Upselling were released), we
applied regularised linear regression model as described in Section 3.1. The number of the
random sets was 100 and the ridge parameter was ¢ = 0.01. In order to form any random
set, we used about 90% of positive cases and & = 1. That is, any random set contains
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Table 1: Training and test in terms of AUC with averaged score 0.8059 (initial results); 0.8373
(fast and slow tracks results); 0.8407 (best results); 0.851 (post-challenge results). The
column FS indicates the number of variables, which were used in the model, where by *
we indicate the number of binary variables

Status Data Method Train Test FS
Initial Churn RLR 0.8554 0.7015 9586*
Initial Appetency LinearSVM  0.9253 0.8344 9586*
Initial Upselling RLR 0.9519 0.8819 9586*
Initial Toy RLR 0.7630 0.7190 645"
Fast Churn LogitBoost 0.7504 0.7415 39
Fast/Best  Appetency BinaryRF 0.9092 0.8692 145*
Fast Upselling LogitBoost 0.9226 0.9012 28
Slow/Best  Churn LogitBoost  0.7666 0.7484 41
Slow Appetency  LogitBoost 0.9345 0.8597 33
Slow Upselling LogitBoost 0.9226 0.904 54
Best Upselling LogitBoost 0.9208 0.9044 44
Best Toy Special 0.7354 0.7253 1 (N5963)
Post Churn Ensemble 0.8772 0.7618 278
Post Appetency Ensemble 0.9586 0.8835 348
Post Upselling Ensemble 0.9628 0.9077 285

equal number of positive and negative instances. Note that in the case of Appetency, we
considered initially the use of the SVM with a linear kernel; see the first 3 lines of Table 1.

Further, we employed mean-variance filtering, and reduced the number of features to
145 for Appetency, 151 for Churn, and 68 for Upselling (see Figure 1).

The participants received feedback against 10% of the test dataset (named leaderboard).
In addition, we used cross-validation (CV) with up to 20 folds. Any CV-fold was formed
under the strict condition that relation of the patterns is exactly the same as in the train-
ing dataset. Based on our CV-experiments, we observed a close relationship between the
leaderboard and CV-results.

Remark 4 After publication of the final results, we found that the relationship between the
leaderboard and test results is also tight. It appears that in this particular case an “excessive”
submissions against the leaderboard dataset did mot lead to overfitting of the model. This
prior knowledge may be very helpful for the second (slow) part of the competition.

The binary (sparse) format gives a significant advantage in the sense of computational
speed. But, it is not very important for the R-based packages in difference to the memory
allocation. Accordingly, we returned to the original variables by replacing the binary fea-
tures by their sequential indices (within the group corresponding to the particular original
feature) before loading the new datasets into the R-environment.

We used mainly in our experiments five models RLR, LinearSVM, BinaryRF, LogitBoost
and RF, where the last two models were implemented in R, the other models were written
in C. For example, the following settings were used for the BinaryRF (Appetency case, see
Table 1): (1) decision trees with up to 14 levels; (2) the number of features were selected
randomly out of the range between 12 and 17 for any particular split; (3) the splitting
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Table 3: Results of the winners

Track Team Churn Appetency Upselling Score

Fast IBM Research  0.7611 0.883 0.9038 0.8493
Slow Uni. Melb. 0.7542 0.8836 0.9047 0.8475
Overall - 0.7651 0.8836 0.9092 0.8526

process was stopped if improvement was less than 0.1% or number of data in the node was
less than 100; 4) number of RS was 100 and number of trees for any RS was 400 (that
means, the total number of trees was 40000).

5. Post-challenge Submissions

Firstly, we decided to rebuild completely all the databases. It was an extension of the
previous databases based on the MVF feature selections ratings. Also, we took into ac-
count ratings from the KDD-preprint of the University of Melbourne team - winner of the
slow track (see Table 3). We were working in two mutually dependent directions: binary
databases for our own software binaryRF, and the corresponding integer databases of in-
dexes for R packages named randomForest, ADA and GBM (for the last one we would like
to thank the University of Melbourne team again, as they reported this package in their
KDD-preprint).

Table 2: Selected pure results

Data Model Test Weight | Data Model Test Weight
Appetency BinaryRF  0.8784 10 Churn GBM 0.7613 -
Appetency GBM 0.878 9 Upselling GBM 0.9072 20
Appetency ADA 0.8742 3 Upselling ADA 0.9071 19

5.1 Ensemble Constructor

Using results of Table 2 separately we can achieve the score of 0.8489. Now, we shall describe
a general framework how using ensemble technique we can increase the score to 0.851 based
on the results of the above Table 2 and without any additional information. Note that the
particular solutions, which were produced using different software may have approximately
the same AUC, but they are very different in the structural sense and we can not link them
directly.

Suppose we have k solutions, which may be represented by the squared matrix T with
k columns. By S we shall denote the matrix, which was derived from the original matrix of
solutions T by sorting on any column in an increasing order. In order to define the ensemble
constructor we also need a matrix R of indices defining an exact correspondence between
the elements of T and S. More precisely, s;,,; = t;;.

Let us denote by §; the quality measurement of the solution with index j = 1,... k.
In order to simplify the following notation and without loss of generality we shall assume
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Figure 3: Histograms with 300 bins illustrating the structural similarities between training and test
trajectories, where the right columns corresponds to the score 0.8509: (a-b) Churn, (c-d)
Appetency and (e-f) Upselling.

that (a) solution ¢ is better comparing with solution j if §; > (;, (b) the top solution

corresponds to the index 1, that means 31 > 3;,7 = 2,...,k. Then, we can accept solution
N1 as a base solution, and shall adjust remaining k& — 1 solutions according to the rule:
¢ij = Sri;1,0 = 1,...,m,j = 2,..., k. Note that the first column in the matrix Q coincides

with the first column of the original matrix T (base solution).

We shall define vector-column of the weight coefficients w; = (53;), Z?zl wj = 1, where
1 is an increasing function. In line with the proposed method, the ensemble solution will
be computed according to the formula: f = QW.

We can report a significant progress with above technique in application to the Ap-
petency case. Our ensemble solution was constructed using three pure solutions as it is
displayed in Table 2, where the weight coefficients are shown without normalisation. Also,
we achieved some modest progress in application to the Upselling case. However, in the
case of Churn we were not able to improve GBM-solution using above technique.

On the other hand, we were trying to exploit mutual dependences between different
cases. For example, higher combined score in relation to the Appetency and Upselling cases
most likely indicates lower score in application to the Churn case:

new.scorec = old.scorec — c1scores — coscorey, (6)

where ¢; and c¢o are non-negative constants. In fact, using above method (6) we managed
to achieve some small improvement only in application to the Churn case. Possibly, some
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interesting results may be achieved using multinomial logistic regression (MLR) (Bohning,
1992), as this model explore a hidden dependencies between labels. In our case we have
four different labels: 1) Churn, 2) Appetency, 3) Upselling and 4) Other. In the case of
MLR, we shall be dealing with the 3¢/-dimensional Hessian matrix of second derivatives. We
can expect that the matrix factorisation, as it is described in Section 3.4, will be effective
to reduce original dimensionality ¢ to k - number of the latent factors.

It is interesting to note that the histograms displayed on Figure 3 illustrate remarkable
similarity between left (training) and right (test) columns. The structure of the histograms
corresponding to the Upselling case is far from simple and it will be very important to find
explanations in the terms of the particular features.

6. Concluding Remarks

The main philosophy of our method may be described as follows. We can not apply fairly
complex modelling systems to the original huge and noisy database, which contains more
than 90% of useless information. So we conducted the FS step with three very simple and
reliable methods, namely RS, RLR, and MVF. As an outcome, we produced significantly
smaller datasets, which are able to be used as an input for more advanced studies.

In general terms, we have found that our results are satisfactory, particularly, for the
most important fast track. Based on the results of our post-challenge submission, we can
conclude that significant progress may be achieved using more advanced pre-processing
and feature selection techniques. Also, it will be a good idea not to rely completely on
any particular model or software, and conduct cross-validation experiments with several
different models. In this way, the performance of the final solution might be improved using
various ensemble techniques.
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