JMLR: Workshop and Conference Proceedings 7: 35-43 KDD cup 2009

A Combination of Boosting and Bagging for KDD Cup 2009
- Fast Scoring on a Large Database

Jianjun Xie JXIEQIDANALYTICS.COM
Viktoria Rojkova VROJKOVA@QIDANALYTICS.COM
Siddharth Pal SPAL@QIDANALYTICS.COM
Stephen Coggeshall SCOGGESHALL@IDANALYTICS.COM

ID Analytics
15110 Avenue of Science
San Diego, CA, 92128, USA

Editor: Gideon Dror, Marc Boullé, Isabelle Guyon, Vincent Lemaire, David Vogel

Abstract

We present the ideas and methodologies that we used to address the KDD Cup 2009
challenge on rank-ordering the probability of churn, appetency and up-selling of wireless
customers. We choose stochastic gradient boosting tree (TreeNet®) as our main classifier
to handle this large unbalanced dataset. In order to further improve the robustness and
accuracy of our results, we bag a series of boosted tree models together as our final sub-
mission. Through our exploration we conclude that the most critical factors to achieve our
results are effective variable preprocessing and selection, proper imbalanced data handling
as well as the combination of bagging and boosting techniques.

Keywords: KDD Cup, bagging, boosting, data mining, ensemble methods, imbalanced
data

1. Introduction

The task of the KDD Cup 2009 is to build three Customer Relationship Management (CRM)
models to predict three different wireless customer behaviors: 1) loss of interest toward
current provider (churn), 2) propensity to purchase new products or services (appetency),
and 3) tendency for upgrades or add-ons (up-selling).

Several aspects of data mining and statistical modeling have been addressed in this
challenge:

e Handling a large dataset. The organizers provided 15000 variables, 14740 numerical
and 260 categorical, to test the ability of participants in handling a large dataset.
Although a downsized version with only 230 variables was made available in the second
phase of the challenge, all the top teams also descrambled the variable mapping and
used information from the large set.

e Rapidity of model building. Participating teams were required to complete all three
models in 5 days in order to win the fast track, which has a higher priority than the
slow track.

(©2009 Jianjun Xie, Viktoria Rojkova, Siddharth Pal & Stephen Coggeshall.

XiE, RoJkovA, PAL & COGGESHALL

e Variable preprocessing and selection. Variables were populated by unnormalized val-
ues. Missing entries and outliers are significant. Some categorical variables have a
huge number of distinct entries. Effective variable preprocessing and selection is a
must for any modeling algorithm to achieve the best results.

All three tasks are binary classification problems. There are several well established mod-
eling algorithms available and suitable: Logistic Regression, Neural Networks, Decision
Trees, SVM etc. Nowadays, ensemble learning schemes are widely used to enhance the
overall performance of a single classifier by combining predictions from multiple classifiers
(Breiman, 1996; Dietterich, 2000). In the family of decision tree classifiers, Random For-
est uses bagging to combine many decision trees by bootstrap sampling (Breiman, 2001).
TreeNet® uses the stochastic gradient boosting (Friedman, 1999a,b) which constructs ad-
ditive regression trees by sequentially fitting a base learner to current pseudo-residuals by
least squares at each iteration. The pseudo-residuals are the gradient of the loss functional
being minimized, with respect to the model values at each training data point evaluated at
the current step.

In this competition we use TreeNet® as our main classifier. The log-likelihood loss
function has been chosen since all 3 tasks are binary classification problems. In order to
further enhance the results, we combine bagging and boosting together. We bag a total of 5
boosted tree models for each task and take the average of all scores as the final prediction.

The results of each model are evaluated by area under receiver operating characteristic
(ROC) curve, so called AUC. The AUC measurement does not require the models to produce
the true probability of the predicted class as long as the model score can rank order the
positive class and negative class effectively. This gives us more freedom of using sampling
techniques to tackle the imbalance issue without worrying about converting the score back
to a real probability.

We organize this paper as follows. Data analysis and preprocessing on training and
testing datasets are described in Section 2. After establishing a gradient boosting tree
as the main classifier, we proceed with variable selection and sampling the imbalanced
data. These steps together with final bagging of different boosting decision tree models
are described in Section 3. In Section 4 we explain our exploration on the small dataset.
Finally, we summarize our final submissions and how they are compared with others in
Section 5.

2. Data Analysis and Preprocessing

Data analysis is an important step of any data mining and modeling task. It helps for
deep understanding the modeling task and selecting the proper modeling technique. One
illustrative example is KDD Cup 2008. The Patient ID was found to be a predictive variable:
essentially a target leakage which was introduced into the training data by mistake. It was
overlooked by everybody except for the winner (Perlich et al., 2008).

2.1 Histogram Analysis

The frequency distributions of all 15000 variables of the training and testing datasets are
analyzed to establish the “equality” between training and testing samples. The binning for

36

BoosTING AND BAGGING FOR KDD Cupr 2009

(@) Variable 1194

60

40

20

Frequency Distribution (%)

Frequency Distribution (%)

0 7 14 21 28 35 42 49 56 63 70 77 84

Figure 1: Example of histogram analysis: variable 1194 and variable 8981.

Table 1: Histogram analysis on labels of churn, appetency and up-selling.

Values

(b) \Variable 8981

30

20

10

||||||I|..I

o

-75 -50 -25

010 30 50 70missing

Values

Churn | Appetency | Up-selling | Frequency | Percentage
-1 -1 -1 41756 83.51%
-1 -1 1 3682 7.36%
-1 1 -1 890 1.78%
1 -1 -1 3672 7.34%

the histogram is performed around every discrete entry. Based on the histogram results
we conclude that there is no substantial sampling bias between the training and testing
data sets. In the slow track, we utilize histogram results of the large and small datasets to
unscramble the small dataset. More details of the unscrambling process will be described
in Section 4.1.

We find that most of the numerical variables have skewed distributions as shown in Fig-
ure 1. By checking the histograms of the variables, we discover that many of the numerical
variables are populated by values that have a common factor, for example in Figure 1(a)
the data values are all multiples of 7. This could be an indicator that these variables were
artificially encoded.

Another observation is that many variables only have a few discrete values. For example,
about 50% of all numerical variables have 1 or 2 discrete values as shown in Figure 2(a).
Nearly 80% of all categorical variables have fewer than 10 categories, as shown in Figure
2(b). It can also be seen in Figure 2 that 12% of numerical variables and 28% of categorical
variables are constant (only have a single entry). Furthermore, numerical values are heavily
populated by 0s. We find that 80% of the numerical variables have more than 98% of
their population filled by 0. These results suggest that a large number of variables can be
removed since they are constant or close to constant.

Label frequencies for all three tasks are presented in Table 1. We can see that all of
them are highly unbalanced. Appetency has extremely low positive rate. The imbalance of
the class distribution has to be taken into account in the model building step. There is no
overlap between any pair of labels, they are exclusive to each other. This motivated us to

37

XiE, RoJkovA, PAL & COGGESHALL

N
o

100

I
=)

u
o
j=]

w
o
Cumul Percent of Cat Vars (%), CPCV

75

w
(=]

80

N
o

50 60

Percent of Num Vars (%), PNV
Percent of Cat Vars (%), PCV
N
o

Cumul Percent of Num Vars (%), CPNV

I
1
1
1<— PNV
10H 25 10 40
1
1
Sova §
0 \d 0 0 AW 1Y 1 M 20
1 10 100 1000 10000 1 10 100 1000 10000
Number of discrete values Number of discrete values

Figure 2: Distribution of discrete value frequencies in (a) numerical variable and (b) cate-
gorical variable.

incorporate the other 2 scores for a given model to improve the performance. However, we
did not see significant improvement as described in Section 4.3.

2.2 Discretization and Grouping (Binning)

Even though most of numerical variables are populated by a limited number of discrete
values, the population on each value differs significantly. We discretize 10 selected numerical
variables that have strong correlation with the target. We consolidate the extremely low
populated entries (having fewer than 200 examples) with their neighbors to smooth out
the outliers. Similarly, we group some categorical variables which have a large number of
entries (> 1000 distinct values) into 100 categories. This procedure of univariate groupings
is frequently referred to as binning. Every category is replaced by a numerical risk factor
(mean positive rate).

2.3 Missing Value Handling

A significant amount of variables are poorly populated, that is, for some variables many
of the input values are missing. There are known techniques to approach the missing
value problem which include mean substitution, multiple regression, maximum likelihood
estimation, multiple imputation etc (Little and Rubin, 1987). In this work, we perform a
simple substitution. We either replace them by a risk factor (for binned numerical variables
and categorical variables) or treat them as a standalone entry (“missing” is simply another
category of the input variable).

3. Modeling on Fast Track
3.1 Variable Selection

First, we removed 1531 constant variables and 5874 quasi-constant variables (where a single
value occupies more than 99.98% population) based on our data analysis step. This left us

38

BoosTING AND BAGGING FOR KDD Cupr 2009

a dataset with 7595 variables which is still a quite large number. We then went on with
a multi-round wrapper approach. We first split the reduced training set into 3 chunks for
each label and built 3 preliminary models for each task. The parameters used in TreeNet
model were set as the following: learning rate = 0.02, number of nodes = 6, number of
trees = 600. At every step TreeNet uses exhaustive search by trying all 7595 variables and
split points to achieve the maximum reduction of impurity. Therefore, the tree construction
process itself can be considered as a type of variable selection and the impurity reduction
due to a split on a specific variable could indicate the relative importance of the variable in
the tree model.

For a single decision tree a measure of variable importance can be calculated by (Breiman
et al., 1984)

VI(x,T) =Y AI(z;,T),
teT

where AT (x;,T) = I(t) — prI(tr) — prl (tg) is the decrease in impurity to the actual
or potential split on variable x; at a node t of optimally pruned tree T. pr and pg are
proportion of cases sent to the left or right by x;.

The variables entered into the model based on their contribution to the impurity re-
duction at each split. We removed all variables with relative importance less than 2.0% for
each model. We then merged all variables selected by these preliminary models for each
task together as a pool. We got a total of 1720 variables for the next round selection. The
final variable set was obtained by using 75% of all training data. The rest was reserved as
testing. We kept removing variables that have the least importance until the model perfor-
mance on the 25% test dataset started dropping. We narrowed down our final variable set
to less than 300 for all 3 labels.

3.2 Down Sample Negative Population

As listed in Table 1, the distribution of labels for the 3 models are highly unbalanced.
There are several popular ways to handle such an unbalanced dataset, for example, cost
sensitive learning (Domingos, 1999), and a variety of sampling techniques (Van Hulse et al.,
2007). Here we take the approach of down sampling the negative population. Table 2 lists
the down sampling rate we used in our model. Since the model performance is measured
by AUC which is the rank order of each record, the absolute value (scaling) of the score
will not affect the results. Therefore, we directly used the raw score without any sampling
correction.

3.3 Build the Best Boosting Tree Model via Cross Validation

We started building the best boosting tree models by adjusting the training parameters
after variable selection. The factors we considered include the down sampling rate on the
negative population, learning rate, number of trees, and minimum number of nodes. The
model performance was evaluated by 5-fold cross validation. We also used the feedback on
10% test data as a reference. Not always was the 10% test feedback in agreement with
the cross validation results. Upon checking the AUC results for each fold validation, we
discovered large variations. Table 3 lists the AUC results for each fold and total of 5 folds

39

XiE, RoJkovA, PAL & COGGESHALL

Table 2: Down-sampling rate for each modeling task.

Label Sampling rate of negative records | Positive rate after sampling
Churn 70% 10.17%

Appetency 20% 8.31%

Up-selling 90% 8.12%

Table 3: AUC results for Upsell model in 5-fold cross validation.
Fold Number 1 2 3 4 5 Total
AUC 0.8956 | 0.9112 | 0.9037 | 0.9182 | 0.9085 | 0.9071

for Upselling model. We can see that the variation among each fold can be as large as 0.02
which is big enough to drop your ranking by more than 20 in this very close competition.
This makes us believe that the 10% feedback is not reliable to judge the performance of
a model. We did not change our strategy even though we saw other team’s results were
better than ours based on the 10% test feedback.

3.4 Bagging the Selected Boosting Tree Models

After we determined the final variable set, learning rate, and other tree parameters we were
convinced that the best strategy for improvement of model performance was consistent
bagging. This is an essential part of our solution, since we take a down sampling approach
on the negative class to improve the label balance, so as a result some of the records are
never seen in the training set. By creating the training dataset 5 times using different
random seeds, we built a total of 5 boosted tree models for each label. Our final model is
a simple average of all these boosted tree models. We noticed after the competition that
an ensemble of TreeNet classifiers won the 2003 Duke/NCR Teradata Churn model contest
(Cardell et al., 2003). Ensembles of multiple TreeNet models usually outperform a single
model.

4. Modeling on the Slow Track

We processed the small dataset in a similar way as we did for the large. We quickly realized
that unscrambling the small dataset, mapping and combining it with the large might be the
most beneficial strategy in the slow track. First, the rule of this year’s KDD Cup competition
requires the results on small dataset to compete with the large. Next, after experimenting
in this direction we discovered that results on small dataset did not outperform the results
on the large. Finally, a combination of small and large datasets gives us an additional 10%
testing feedback on the same model.

4.1 Unscramble the Small Dataset

It turns out that unscrambling the small dataset is quite straightforward. There are two
unscrambling steps: first is to unscramble the variable mapping, second is to unscramble the

40

BoosTING AND BAGGING FOR KDD Cupr 2009

example order. Step 1 can be done by comparing the frequency distribution of each variable
in the small and large datasets. This simple comparison maps 194 out of 230 variables in
the small dataset to the large dataset. It is found that most of the numerical variables of the
small dataset are simply scrambled as a constant fraction of the corresponding numerical
variable in the large. The remaining variables typically have a one-to-many or many-to-
many correspondence, which can be solved after Step 2.

In Step 2, we selected some mapped variables from the small and large and place them
together as a key in the format of var;, varj, vary ... var,. We then cut them out from
the small file in their original order. To ensure the uniqueness of the key enough variables
have to be pulled. We create a file that has 2 fields, a sequence IDg,,11 and a key. Then we
created the same file using the mapped variables from the large data in the format of the
sequence IDj,ee and key (consists of the corresponding variables from large dataset). The
value is unscrambled so that the key will be same for both the large and small. Sort both
files by key and then paste them together, and you get a map for the sequence IDs between
the small and large data.

With this mapping table we converted one set of score files of the large dataset into the
small data order and submitted for evaluation. Results on the 10% test feedback confirms
that 1) there is a large variation of the AUC on the 10% test sample (we saw the same file
geting 0.88 AUC on one 10% test sample and 0.79 AUC on another 10% test sample), and
2) the small dataset does not have all the information needed to beat the large dataset.
Therefore we stopped building models on the small dataset and focused on the large dataset
only.

4.2 Combine Small and Large

We compared the variables selected from the small dataset and the large dataset, then
added back several variables not present in the model on the large dataset and rebuilt the
models on the large data. To improve the robustness of the model we binned all the top
10 numerical variables (if they were not discretized in the previous steps) for each task and
then added them back to the variable list. We made 5 iterations of bagging on the final
model. The final results are obtained by averaging the final score from the slow track and
the score from the fast track.

4.3 Test of Using Scores from Other Models

As discussed in Section 2, the exclusive nature of the 3 tasks motivated us to incorporate
scores from the other 2 tasks as variables in the 3rd task. We explored this strategy in
the appetency model which has the most imbalanced distribution of target class. We did
find a little improvement over the model without using other scores. However, this nested
structure complicates the modeling process: update of the other models then requires the
rebuilding of the underlying model.

5. Results and Discussions

Table 4 lists our final submissions for both the fast track and the slow track. The winner’s
results are also listed for comparison. Looking back to our submission history, we find

41

XiE, RoJkovA, PAL & COGGESHALL

Table 4: AUC results of our final models on KDD Cup test dataset.Winner’s final results
are also listed for comparison.

Dataset Churn Appetency Up-selling Scores

10% 100% | 10% 100% | 10% 100% | 10% 100%

Large (fast) 0.7333 | 0.7565 | 0.8705 | 0.8724 | 0.9308 | 0.9025 | 0.8354 | 0.8448
Large (slow) 0.7390 | 0.7614 | 0.8714 | 0.8761 | 0.9023 | 0.9061 | 0.8376 | 0.8479
Small (slow) 0.7612 | 0.7611 | 0.8544 | 0.8765 | 0.9155 | 0.9057 | 0.8437 | 0.8478
Winner’s fast - 0.7611 | - 0.8830 | - 0.9038 | - 0.8493
Winner’s slow | - 0.7651 | - 0.8819 | - 0.9092 | - 0.8520

that we did submit our best model as final, which confirms the correctness of our model
improvement process. The difference between the 10% test and the 100% test is significant,
which is in line with what we found in our cross validation process. The results on the small
dataset are results of the model built on the large dataset bagged with one set of scores
obtained from the real small data model. It actually decreases the overall performance from
0.8479 to 0.8478. In fact, all the top teams in the slow track descrambled the small dataset.
In our view, the large dataset has more predictive information than the small.

We tried two other modeling techniques, logistic regression and SVM (Chang and Lin,
2001). Both of them require converting all categorical variables to proper numerical values.
Logistic regression gives slightly worse results than boosted decision tress on same dataset
we prepared. SVM can achieve similar accuracy but with much slower computing speed.

Comparing our results with the others in the contest, our overall performance ranked
second in the fast track and third in the slow track. Our weakest model comparing with
the winner was Appetency which has the most imbalanced class label. This might be an
effect of our aggressive down-sampling and not enough number of bagging iterations.

In conclusion, we find through our practice that effective variable preprocessing and
selection, proper imbalanced data handling and the combination of bagging and boosting
are the important factors for achieving our results on the KDD Cup 2009 challenge.

Acknowledgments

We would like to thank the KDD Cup organizers for setting up this year’s contest with
a challenging problem, a nice website that participants can see online feedbacks and ex-
change ideas. Author J. Xie would like to thank his wife Rui Zhang for the support and
encouragement she provided during her maternity leave for taking care of their baby girl
Joann.

References

L. Breiman, Jerome H. Friedman, R.A. Olson, and C.J. Stone. Classification and Regression
Trees. Wadsworth Int’l Group, Belmont, Calif., 1984.

42

BoosTING AND BAGGING FOR KDD Cupr 2009

Leo Breiman. Bagging predictors. In Machine Learning, volume 24, pages 123-140, 1996.
Leo Breiman. Random forests. In Machine Learning, pages 5-32, 2001.

N. Scott Cardell, Mikhail Golovnya, and Dan Steinberg. Churn modeling for mobile telecom-
munications, 2003. URL http://www.salford-systems.com/doc/churnwinF08.pdf.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,
2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/1libsvm.

Thomas G. Dietterich. Ensemble methods in machine learning. Lecture Notes in Computer
Science, 1857:1-15, 2000.

Pedro Domingos. Metacost: A general method for making classifiers cost-sensitive. In
In Proceedings of the Fifth International Conference on Knowledge Discovery and Data
Mining, pages 155-164. ACM Press, 1999.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals
of Statistics, 29:1189-1232, 1999a.

Jerome H. Friedman. Stochastic gradient boosting, 1999b. URL http://www-stat.
stanford.edu/~jhf/ftp/stobst.ps.

R. J. A. Little and D. B. Rubin. Statistical analysis with missing data. John Wiley & Sons,
New York, 1987.

Claudia Perlich, Prem Melville, Yan Liu, Grzegorz Swirszcz, Richard Lawrence, and Sa-
haron Rosset. Breast cancer identification: Kdd cup winner’s report. SIGKDD Ezplor.
Newsl., 10(2):39-42, 2008. ISSN 1931-0145.

Jason Van Hulse, Taghi M. Khoshgoftaar, and Amri Napolitano. Experimental perspectives
on learning from imbalanced data. In ICML ’07: Proceedings of the 24th international
conference on Machine learning, pages 935-942, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-793-3.

43

