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Abstract

Symmetric distribution properties such as sup-
port size, support coverage, entropy, and prox-
imity to uniformity, arise in many applications.
Recently, researchers applied different estima-
tors and analysis tools to derive asymptotically
sample-optimal approximations for each of these
properties. We show that a single, simple, plug-in
estimator—profile maximum likelihood (PML)-
is sample competitive for all symmetric proper-
ties, and in particular is asymptotically sample-
optimal for all the above properties.

1. Introduction

1.1. Symmetric distribution properties

Let A {(p1,....px): pi>0, S5 pi=1, 1<k < o0}
denote the collection of all discrete distributions over finite
or infinite support. A distribution property is a mapping
f A — R. It is symmetric if it remains unchanged under
relabeling of domain symbols, namely if it is determined
by just the probability multiset {p1,ps,...,pr}. Many
important properties are symmetric. For example:

Support size S(p) = |{x : p(x) > 0}|, plays an important
role in population and vocabulary estimation.

Support coverage S, (p) = >, (1—(1—p(z))™), the ex-
pected number of elements observed in m samples, arises
in ecological and biological studies, e.g., (Colwell et al.,
2012).

Shannon entropy H(p) = ) p(z)log ﬁ, central to

information theory (Cover & Thomas, 2006), has numerous
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applications.

Distance to uniform |[p—ull; =} [p(z)—1/|X||, where
u is the uniform distribution over the domain X" of p. This
distance measure appears in the error of hypothesis testing,
and the uniform distribution is arguably one of the com-
monest discrete distributions.

1.2. Distribution estimation

Considerable research, over many years, has focused on es-
timating distribution properties. In the common setting, an

unknown underlying distribution p € A generates n inde-

def L
pendent samples X” = X7, ,...,X,, and the objective is

to estimate a given property f(p) as accurately as possible.

Specifically, an estimator for a distribution p over X’ is a
function f : X" — R mapping observed samples to a
property estimate. The sample complexity of f is the small-
est number of samples it requires to estimate a property f
with accuracy € and confidence probability ¢, for all distri-
butions in a collection P C A,

def

ctf,p,o,e)
min {n: p(1f(p) = F(X")| > 2) < 6Vp e P}.

The sample complexity of estimating f is the lowest sam-
ple complexity of any estimator,

C*(f,P,5,e) = min C/ (£, P, 6,e).
f

By taking the median of about log% independent estima-
tors, the error rate can be driven down from a constant to
0. Therefore, the sample complexity depends on § only
through a factor of at most log %. For simplicity, we there-

fore abbreviate C/ (f,P,1/3,) by C/ (f,P, ¢).

1.3. Result summary

Recent research has shown that while simple estimators for
the aforementioned properties require sample size n pro-
portional to the support size k, more sophisticated tech-
niques need only a sub-linear sample size n = O(k/log k).
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However, each of the problems was approximated via dif-
ferent estimators and analysis techniques, that for some
properties were rather complex.

Motivated by the principle of maximum likelihood, we
show that a single, simple, plug-in estimator—profile max-
imum likelihood (PML) (Orlitsky et al., 2004b)— is com-
petitive for estimating any symmetric property. Its sample
complexity is at most quadratically worse than that of any
estimator.

Specifically, we show that if a symmetric property can be
estimated using n samples with confidence §, then the PML
plug-in estimator can estimate it using as many samples
with confidence §-eV™. While this increase may seem high,
note that it is sub-exponential. We show that if a property
has an estimator that has a small bounded difference con-
stant (how much the estimator changes when we change
one sample), then the error probability reduces exponen-
tially with n (Please see Section 7.1). Combined, these two
facts imply that for properties with locally-smooth estima-
tors, the PML plug-in estimator is optimal up to a constant:
CP™ML = ©(C*). We then show that all the above proper-
ties have locally-smooth estimators, hence they can be es-
timated by the PML plug-in estimator with up to a constant
factor more than the optimal number of samples.

1.4. Outline

The rest of the paper is organized as follows. In Section 2
we describe existing results and those shown in this paper.
In Section 3 we formally define the quantities involved and
state the results. In Section 4 we define profiles and PML.
In Section 5, we outline the new approach. In Section 6,
we demonstrate auxiliary results for maximum likelihood
estimators. In Section 7, we outline how we apply maxi-
mum likelihood to support, support coverage, entropy, and
uniformity. In Section 8, we provide the details for sup-
port, and support coverage and in the appendix we outline
results for distance to uniformity and entropy.

2. Previous and New Results
2.1. Previous Results

Plug-in estimation is a general approach for estimating dis-
tribution properties. It uses the samples X™ to find an ap-
proximation p of p, and lets f(p) estimate f(p).

One of the most common distribution estimators, dating
back to Fisher is maximum likelihood, that for clarity we
call sequence maximum likelihood (SML) (Aldrich, 1997).
To any sample =" it assigns the distribution p that maxi-
mizes p(x™). The SML estimate is exceedingly simple to

derive. The multiplicity N, &f N, (z™) of symbol z is the
number of times it appears in the sequence x™. The empiri-

cal frequency estimator assigns to each symbol z, the frac-
tion p(z) LN, /n of times it appears in the sample z".
For example, if 7 =bananas, empirical frequency would
assign p(a) = 3/7, p(n) = 2/7, and p(b) = p(s) = 1/7.
It can be readily shown that SML is exactly the empirical
frequency estimator.

While the SML plug-in estimator performs well in the
limit of many samples, sophisticated techniques have re-
cently yielded more accurate estimators for several impor-
tant symmetric properties.

Support size. With finitely many samples, S(p) cannot
be estimated to any accuracy as many symbols with ar-
bitrarily small probability may not be observed. Mo-
tivated by databases, where each entry appears at least
once, (Raskhodnikova et al., 2009) considered distributions
whose non-zero probabilities are at least %,

def

A ={peA:p(x) {0} U[1/k 1]},

1
%
and estimated the normalized support S(p) &g (p)/k.
It can be shown that CSM™(S(p), A 1,¢) = O(klog 1)
Yet (Valiant & Valiant, 2011a; Wu & Yang, 2015) showed
that C*(5(p), As1.,¢) = © (bﬁk log? g).

Support coverage. Here too we consider the normalized
coverage Sy, (p) &g, (p)/m. (Good & Toulmin,
1956) proposed the Good Toulmin (GT) estimator that
achieves CCT(S,,(p),A,e) = m/2. Recently, (Orlit-
sky et al., 2016) derived a simple estimator showing that
C*(Sm(p), A ) = O(as; - log 7). (Zou et al., 2016)
derived a more complex estimator with similar dependence
on m but worse dependence on €.

Shannon entropy. Since elements with arbitrarily small
probability can contribute to an arbitrarily high entropy,
H(p) cannot be estimated over aribtrary support with
finitely many samples. Therefore researchers are mostly
interested in estimating entropy of distributions with sup-
port size at most k.

A {peA:Sp) <k}
It can be shown that CSM“(H (p), Ay, e) = O(%) (Panin-
ski, 2003). Moreover, (Paninski, 2003) showed that
C*(H (p), Aj,¢e) is sublinear in k, (Valiant & Valiant,
2011a) showed that the optimal dependence on k is k/ log k
and (Wu & Yang, 2016; Jiao et al., 2015) obtained the
optimal dependence on both %, and &, and showed that

C*(H(p), A, e) = O (k5 - 1).

Distance to uniform. (Valiant & Valiant, 2011b) showed

that C*(|[p—ul|1, Ak, e) = O (@ : E%), and (Jiao et al.,

2016) showed that this bound is tight.
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These results are summarized in Table 1.

Other properties were considered as well. (Bar-Yossef
et al., 2001; Acharya et al., 2015; Caferov et al., 2015;
Obremski & Skorski, 2017) estimated Rényi entropy
and (Bu et al., 2016) estimated KL divergence. (Canonne,
2015) surveyed testing whether distributions have certain
properties, and (Jiao et al., 2014) studied the performance
of SML estimators for several properties. Closest to this
work in terms of approach and techniques are (Acharya
et al., 2011; 2012; 2013a;b; Valiant & Valiant, 2013; Orlit-
sky & Suresh, 2015) that design algorithms whose sample
complexity is provably close to the best possible regardless
of the domain size.

2.2. Profile Maximum Likelihood

Symmetric distribution properties do not depend on the
symbol labels. They are determined by a simple sufficient
statistic: the number of elements appearing any given num-
ber of times. The profile of a sequence X", denoted (X ™)
is the multiset of the multiplicities of all the symbols ap-
pearing in X™. For example, p(abracadabra) =
{1,1,2,2,5}, as two symbols appearing once, two ap-
pearing twice, and one symbol appearing five times, re-
moving the association of the individual symbols with the
multiplicities. Profiles are also referred to as histograms
of histograms (Batu et al., 2000), histogram order statis-
tics (Paninski, 2003), and fingerprints (Valiant & Valiant,
2011a).

Motivated by the principle of maximum likelihood, (Orlit-
sky et al., 2004b; 2017b) discarded the symbol labels, and
considered the profile maximum likelihood (PML) distribu-
tion that maximizes the probability of the observed profile.

A number of PML properties were established. (Orlitsky
et al., 2004b; 2005) proved PML’s existence, consistency,
and some of its properties. (Orlitsky et al., 2004d; 2005;
Orlitsky & Pan, 2009; Pan et al., 2009) described addi-
tional properties and derived the PML distributions of sev-
eral short and simple profiles. (Orlitsky et al., 2017b;c) pro-
vide a unified review of several of these results. (Anevski
et al., 2013) contains a combination of previously-known
and new results. A related distribution-estimation approach
is described in (Orlitsky et al., 2004c; 2003).

Several approaches were taken to computing the PML
distribution. ~ Algebraic computation was considered
in (Acharya et al., 2010). A combination of the EM and
MCMC algorithms have shown excellent results for calcu-
lating the PML distribution and applying it to support-size
estimation (Orlitsky et al., 2004a; 2006; Pan, 2012) and a
summary of some of the results appears in (Orlitsky et al.,
2017a). (Vontobel, 2012; 2014) derived the Bethe approxi-
mation of these algorithms.

Following the first draft of this work, (Vatedka & Vonto-
bel, 2016) showed that both theoretically and empirically
plug-in estimators obtained from the PML estimate yield
good estimates for symmetric functionals of Markov distri-
butions.

2.3. New Results

We show that replacing the SML plug-in estimator by PML
yields a unified estimator that, like the best results shown
via specialized techniques developed, is optimal.

Theorem 1. There is a unified approach based on PML
distribution that achieves the optimal sample complexity
for the problems of estimating the entropy, support, sup-
port coverage, and distance to uniformity.

We prove in Corollary 1 that the PML approach is com-
petitive with respect to any symmetric property. For sym-
metric properties, these results are perhaps a justification of
Fisher’s thoughts on Maximum Likelihood:

“Of course nobody has been able to prove that maximum
likelihood estimates are best under all circumstances. Maximum
likelihood estimates computed with all the information available
may turn out to be inconsistent. Throwing away a substantial part
of the information may render them consistent.”

R. A. Fisher’s thoughts on Maximum Likelihood (Le Cam, 1979).

To prove these PML guarantees, we establish two results
that are of interest on their own right.

e With n samples, PML estimates any symmetric prop-
erty of p with essentially the same accuracy, and at
most €3V times the error, of any other estimator. This
follows by combining Theorem 3 with Lemma 1.

e For a large class of symmetric properties, including
all those mentioned above, if there is an estimator that
uses n samples, and has an error probability 1/3, we
design an estimator using O(n) samples, whose er-
ror probability is nearly exponential in n. We remark
that this decay is much faster than applying the median
trick. This result follows by combining McDiarmid’s
inequality with Lemma 2.

Combined, these results prove that PML plug-in estimators
are sample-optimal.

We also introduce the notion of S-approximate ML distri-
butions, described in Definition 1. These distributions are
more relaxed version of PML, hence may be more easily
computed, yet they provide essentially the same perfor-
mance guarantees.
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Property name f(p) P CSME C* PML
Entropy H(p) Ay 3 IO’; 1 Theorem 5 and Section 8.1
Support size S(p) Asi | klog % log2 L1 Theorem 5 and Section 8.2
Support coverage | Sy, (p) A m Ton 11 g = | Theorem 5 and Section A
Distancetou | [[p—ull1 | Ax £ g Theorem 5 and Section A

Table 1. Estimation complexity for various properties up to a constant factor. For all properties shown, PML achieves the best known
results up to a constant factor. The details of where the optimal sample complexity was derived for each problem is discussed in

Section 2.1.

3. Formal Definitions and Results

In the past, different sophisticated estimators were used for
every property in Table 1. We show that the simple plug-in
estimator that uses any PML approximation p, has optimal
performance guarantees for all these properties.

In the next theorem, assume n is at least the optimal sample
complexity of estimating entropy, support, support cover-
age, and distance to uniformity (given in Table 1) respec-
tively.

Theorem 2. For all € > ¢/n°2, any plug-in exp (—/n)-
approximate PML p satisfies,

Entropy

Cﬁ(H(p), Akz‘g) = O*(H(p)7 Akag)a

Support size
Cﬁ(S(p)/k‘, AZ% ) 5) =
Support coverage

CP(Sn(p) /. A ) =

C*(S(p)/k, Dsy.9),

C*(Sm(p)/m, A €),

Distance to uniformity

Cﬁ(Hp - qu,A/\g,E) = C*(Hp - qu?Ak’E)'

4. PML: Profile Maximum Likelihood

4.1. Preliminaries

For a sequence X", recall that the multilplicity N, is the
number of times x appears in X™. Discarding, the labels,
profile of a sequence (Orlitsky et al., 2004b) is defined be-
low. Let @™ be all profiles of length-n sequences. Then,
o+ = {{1,1,1,1},{1,1,2},{1,3},{2,2}, {4}}. In par-
ticular, a profile of a length-n sequence is an unordered
partition of n. Therefore, |®"|, the number of profiles
of length-n sequences is equal to the partition number of
n. Then, by the Hardy-Ramanujan bounds on the partition
number,

For a,b > 0, denote a < bor b 2 a if for some universal
constant ¢, a/b < c¢. Denote a < bifbotha < banda 2> b.

Lemma 1 ((Hardy & Ramanujan, 1918)).

exp(3y/n).

For a distribution p, the probability of a profile ¢ is defined
as

|@"] <

p(X™),
Xmip(Xm)=¢

the probability of observing a sequence with profile ¢. Un-
der i.i.d. sampling, p(gp) = ZXTL:@(.XH):@ I, p(XZ)
For example, the probability of observing a sequence with
profile ¢ = {1,2} is the probability of observing a se-
quence with one symbol appearing once, and one symbol
appearing twice. A sequence with a symbol x appearing
twice and y appearing once (e.g., © y x) has probability
p(x)%p(y). Appropriately normalized, for any p, the prob-
ability of the profile {1, 2} is

> o

P(X™)={1,2} i=1

p({1,2))= 1= (3) 3 starno.
aF#beX

(D

where the normalization factor is independent of p. The
summation is a monomial symmetric polynomial in the
probability values. See (Pan, 2012) for more examples.

4.2. PML Estimation Scheme
Recall that p,, is the distribution maximizing the proba-

bility of X ™. Similarly, define (Orlitsky et al., 2004b):

d f
p, = mea;cp(so)

as the distribution in P that maximizes the probability of
observing a sequence with profile ¢.

For example, for ¢ = {1,2}. For P = Ay, from (1),

Note that in contrast, SML only maximizes one term of this
expression.

We give two examples from the table in (Orlitsky et al.,
2004b) to distinguish between SML and PML distributions,
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and also show an instance where PML outputs distributions
with a larger support than those appearing in the sample.

Example 1. Let X = {a,b,...,z}. Suppose X" =z y ,
then the SML distribution is (2/3,1/3). However, the dis-
tribution in A that maximizes the probability of the profile
olxyz) = {1,2} is (1/2,1/2). Another example, illus-
trating the power of PML to predict new symbols is X™ =
aba c, with profile p(a ba c) = {1,1,2}. The SML distri-
bution is (1/2,1/4,1/4), but the PML is a uniform distri-
bution over 5 elements, namely (1/5,1/5,1/5,1/5,1/5).

Suppose we want to estimate a symmetric property f(p)
of an unknown distribution p € P given n independent
samples. Our high level approach using PML is described
below.

Input: Class of distributions P, symmetric function
f(-), sample X"

1. Compute p,, : arg max,ep p(¢(X™)).

2. Output f(p,,).

There are a few advantages of this approach (as is true with
any plug-in approach): (¢) the computation of PML is ag-
nostic to the function f at hand, (i¢) there are no parameters
to be tuned, (4i7) techniques such as Poisson sampling or
median tricks are not necessary, (iv) well motivated by the
maximum-likelihood principle.

Comparison to the linear-programming plug-in estima-
tor (Valiant & Valiant, 2011a). Our approach is per-
haps closest in flavor to the plug-in estimator of (Valiant &
Valiant, 2011a). Indeed, as mentioned in (Valiant, 2012),
their linear-programming estimator is motivated by the
question of estimating the PML. Their result was the first
estimator to provide sample complexity bounds in terms
of the alphabet size, and accuracy the problems of entropy
and support estimation. Before we explain the differences
of the two approaches, we briefly explain their approach.

Define, ¢,,(X™) to be the number of elements that appear
w times. For example, when X™ = abracadabra,
1 = 2,9 = 2, and 5 = 1. (Valiant & Valiant, 2011a)
design a linear program that uses SML for high values of
1, and formulate a linear program to find a distribution for
which E[p,,|’s are close to the observed ¢,,’s. They then
plug-in this estimate to estimate the property. On the other
hand, our approach, by the nature of ML principle, tries to
find the distribution that best explains the entire profile of
the observed data, not just some partial characteristics. It
therefore has the potential to estimate any symmetric prop-
erty and estimate the distribution closely in any distance
measures, competitive with the best possible. For exam-
ple, the guarantees of the linear program approach are sub-
optimal in terms of the desired accuracy €. For entropy

estimation the optimal dependence is é, whereas (Valiant
& Valiant, 2011a) yields 6% This is more prominent for
support size and support coverage, which have optimal
dependence of polylog(é), whereas (Valiant & Valiant,
2011a) gives a 8% dependence. Besides, we analyze the
first method proposed for estimating symmetric properties,
designed from the first principles, and show that in fact it
is competitive with the optimal estimators for various prob-
lems.

5. Proof Outline

Our arguments have two components. In Section 6 we
prove a general result for the performance of plug-in es-
timation via maximum likelihood approaches.

Let P be a class of distributions over Z, and f : P — R be
a function. For z € Z, let

& arg max (2)
p. & peP p

be the maximum-likelihood estimator of z in P. Upon ob-
serving z, f(p.) is the ML estimator of f. In Theorem 4,
we show that if there is an estimator that achieves error
probability §, then the ML estimator has an error probabil-
ity at most §| Z|. We note that variations of this result in the
asymptotic statistics were studied before (see (Lehmann &
Casella, 1998)). Our contribution is to use these results in
the context of symmetric properties and show sample com-
plexity bounds in the non-asymptotic regime.

We emphasize that, throughout this paper Z will be the set
of profiles of length n, and P will be distributions induced
over profiles by length-n ¢...d. samples. Therefore, we
have |Z| = |®"|. By Lemma 1, if there is a profile based
estimator with error probability §, then the PML approach
will have error probability at most 6 exp(3+/n). Such argu-
ments were used in hypothesis testing to show the existence
of competitive testing algorithms for fundamental statisti-
cal problems (Acharya et al., 2011; 2012).

At its face value this seems like a weak result. Our second
key step is to prove that for the properties we are interested,
it is possible to obtain very sharp guarantees. For example,
we show that if we can estimate the entropy to an accuracy
=+e with error probability 1/3 using n samples, then we can
estimate the entropy to accuracy 42¢ with error probability
exp(—n"?) using only 2n samples. Using this sharp con-
centration, the new error probability term dominates |®"|,
and we obtain our results. The arguments for sharp con-
centration are based on modifications to existing estimators
and a new analysis. Most of these results are technical and
are in the appendix.
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6. Maximum Likelihood Property Estimation

We establish performance guarantees of ML property es-
timation in a general set-up. Recall that P is a collection
of distributions over Z, and f : P — R. Given a sam-
ple Z from an unknown p € P, we want to estimate f(p).
The maximum likelihood approach is the following two-
step procedure.

1. Find p, = argmax,ep p(Z).
2. Output f(p,).

We bound the performance of this approach in the follow-
ing theorem.

Theorem 3. Suppose there is an estimator f 1 Z2 = R
such that for any p, and Z ~ p,

Pr(|fn) - f(2)] > <) <5, @
then

Pr(|f(p) — f(p,)] >2¢) <6-|2]. 3)

Proof. Consider symbols with p(z) > § and p(z) < §
separately. A distribution p with p(z) > ¢ outputs z with
probability at least 6. For (2) to hold, we must have,

’f(p) - f(z)’ < €. By the definition of ML, p_(z) >

p(z) > 4, and for (2) to hold for p_, ’f(pz) — f(z)’ < e
By the triangle inequality, for all such z,

F0) = £ < |10) = f&)] + |£0) - F()| < 2

Thus if p(z) > ¢, then PML satisfies the required guar-
antee with zero probability of error, and any error occurs
only when p(z) < §. We bound this probability as follows.
When Z ~ p,

Pr(p(Z)<d)< >

2€Z:p(2)<8

p(z) <6-|Z]|. O

For some problems, it might be easier to just approximate
the ML, instead of finding it exactly. We define an approx-
imation ML as follows:

Definition 1 (S-approximate ML). Let 8 < 1. For Z € Z,
Dz € P is a B-approximate ML distribution if p,(z) >
B - p.(z). When Z is profiles of length-n, a 3-approximate
PML is a distribution p,, such that p,(¢) > B - py(p).

The next result proves guarantees for any (-approximate
ML estimator.

Theorem 4. Suppose there exists an estimator satisfy-
ing (2). Forany p € P and Z ~ p, any B-approximate
ML py satisfies:

Pr(|f(p) = f(pz)| > 2¢) < 0-|2]/p.

The proof is very similar to the previous theorem and is
presented in the Appendix B.

6.1. Competitiveness of ML via Median Trick

Suppose for a property f(p), there is an estimator with
sample complexity n that achieves an accuracy +e with
probability of error at most 1/3. The standard method to
boost the error probability is the median trick: (i) Obtain
O(log(1/6)) independent estimates using O(nlog(1/0))
independent samples. (ii) Output the median of these es-
timates. This is an e-accurate estimator of f(p) with error
probability at most 4. By definition, estimators are a map-
ping from the samples to R. However, in many applications
the estimators map from a much smaller (some sufficient
statistic) of the samples. Denote by Z,, the space consist-
ing of all sufficient statistics that the estimator uses. For
example, estimators for symmetric properties, such as en-
tropy typically use the profile of the sequence, and hence
Z, = ®". Using the median-trick, we get the following
result.

Corollary 1. Let f : Z, — R be an estimator of f (p) with
accuracy e and error-probability 1/3. The ML estimator
achieves accuracy 2¢ with probability at least 2/3 using

/

min {n’ : 2010g(3Zn/)} > n samples.

Proof. Since n is the number of samples to get error prob-
ability 1/3, by the Chernoff bound, the error after n’ sam-
ples is at most exp(—(n'/(20n))). Therefore, the er-
ror probability of the ML estimator for accuracy 2¢ is at
most exp(—(n'/(20n)))Z,, which we desire to be at most
1/3. O

For estimators that use the profile of sequences, |®"| <
exp(3+/n). Plugging this in the previous result shows that
the PML based approach has a sample complexity of at
most O(n?). This result holds for all symmetric proper-
ties, independent of ¢, and the alphabet size k. For the
problems mentioned earlier, something much better in pos-
sible, namely the PML approach is optimal up to constant
factors.

7. Sample optimality of PML
7.1. Sharp Concentration for Some Properties

To obtain sample-optimality guarantees for PML, we need
to drive the error probability down much faster than the
median trick. We achieve this by using McDiarmid’s in-
equality stated below. Let f : X* — R. Suppose f gets
n independent samples X ™ from an unknown distribution.
Moreover, changing one of the X; to any X J’ changed f by
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at most c,.. Then McDiarmid’s inequality (bounded differ-
ence inequality, (Boucheron et al., 2013)) states that,

Pr(|f(xX™) ~ BIF(X™)]| > t) < 2exp (—f;) @

This inequality can be used to show strong error probability
bounds for many problems. We mention a simple applica-
tion for estimating discrete distributions.

Example 2. [t is well known (Devroye & Lugosi, 2001)
that SML requires ©(k/c?) samples to estimate p in {1 dis-
tance with probability at least 2/3. In this case, f(X™) =
> ow f% —p(x)|, and therefore c, is at most 2/n. Using
McDiarmid’s inequality, it follows that SML has an error
probability of § = 2 exp(—k/2), while still using ©(k/e?)
samples.

Let B, be the bias of an estimator f(X") of f(p), namely

B, € |f(p) — E[f(X ”)]’ . By the triangle inequality,
) - F(x™)
< |£o) — ELF )| + | fx™) — ELF(X™)]
= B, + | f(X") ~Elf(x")]].
Plugging this in (4),

Pr(|£(0) = F(XM)]| > t+ Ba) <2exp (— 31;) L 5)

*

With this in hand, we need to show that ¢, can be bounded
for estimators for the properties we consider. In particular,
we will show that

Lemma 2. Let a > 0 be a fixed constant. For entropy,
support, support coverage, and distance to uniformity there
exist profile based estimators that use the optimal number
of samples (given in Table 1), have bias € and if we change
any of the samples, changes by at most c - %, where c is a
positive constant.

We prove this lemma by proposing several modifications to
the existing sample-optimal estimators. The modified esti-
mators will preserve the sample complexity up to constant
factors and also have a small c,.. The proof details are given
in the appendix.

Using (5) with Lemma 2,

Theorem 5. Let n be the optimal sample complexity of esti-
mating entropy, support, support coverage and distance to
uniformity (given in table 1) and c be a large positive con-
stant. Let ¢ > ¢/n%?2, then any for any 3 > exp (—/n),
the B-PML estimator estimates entropy, support, support

coverage, and distance to uniformity to an accuracy of 4e
with probability at least 1 — exp(—+/n).

Proof. Let a = 0.05. By Lemma 2, for each property of
interest, there are estimators based on the profiles of the
samples such that using near-optimal number of samples,
they have bias ¢ and maximum change if we change any of
the samples is at most ¢'n® /n for some constant ¢’. Hence,
by McDiarmid’s inequality, an accuracy of 2¢ is achieved
with probability at least 1 —2 exp ( —2e2pt=2e /¢! ?). Now
suppose p is any S-approximate PML distribution. Then by
Theorem 4
p 5 > 4y <2127

r(f ()= fp) > 4e) <—
< 2 exp(—2e2nt=2%/¢* 4 3,/n)
- B
< exp(*\/ﬁ%

where in the last step we used e2n'=2* > ¢/\/n, and B >

exp(—v/n). O

8. Support and Support Coverage

We analyze both support coverage and the support estima-
tion via a single approach. We first start with support cover-
age. Recall that the goal is to estimate S, (p), the expected
number of distinct symbols that we see after observing m
samples from p. By the linearity of expectation,

Sm(p) = Z E[ln, (xm)>o0] = Z (1= (1 —=p)™).

reX zeX

The problem is closely related to the support coverage
problem (Orlitsky et al., 2016), where the goal is to esti-
mate Uy (X™), the number of new distinct symbols that we
observe in n - ¢ additional samples. Hence

Z%‘

i=1

Sm(p> =E +E[Ut],

where t = (m — n)/n. We show that the modification of
an estimator in (Orlitsky et al., 2016) is also near-optimal
and satisfies conditions in Lemma 2. We propose to use the
following estimator

n

Sm(p) = Z wi + UtSGT(Xn)y

=1

where UFST(X™) = 3" ()" Pr(Z > i)and Z is a
Poisson random variable with mean r and t = (m — n)/n.

The above theorem also works for any € > 1/n%2%~" for
anyn >0
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We remark that the proof also holds for Binomial smoothed
random variables as discussed in (Orlitsky et al., 2016).

‘We need to bound the maximum coefficient and the bias to
apply Lemma 2. We first bound the maximum coefficient
of this estimator.

I:emma 3. For all n < m/2, the maximum coefficient of
S (p) is at most 1 4 "= 1),

Proof. For any i, the coefficient of ; is 1 + (—t)! Pr(Z >

1). It can be upper bounded as 1 + Zf:o eﬂ;”)i =1+
r(t—1)
e .

The next lemma bounds the bias of the estimator.

Lemma 4. For all n < m/2, the bias of the estimator is
bounded by

|]E[S'm(p)] —Snp)| <2+ 2e"(t=1) min(m, S(p))e".

Proof. As before let t = (m — n)/n.

E[Sm (p)] = Sm(p)

n

3 Bl + U (x7)] -

Y (1= —p)™)

reX

=E[UF9(X™)] = Y (1= p(z)" = (L —p(x)™).

rzeX

Hence by Lemma 8 and Corollary 2, in (Orlitsky et al.,
2016), we get

B[S (p)] = Sin(p)| <2+2¢"" Y + min(m, S(p))e "
O

Using the above two lemmas we prove results for both the
observed support coverage and support estimator.

8.1. Support Coverage Estimator

Recall that the quantity of interest in support coverage es-
timation is S, (p)/m, which we wish to estimate to an ac-
curacy of €.

Proof of Lemma 2 for observed. If we choose r = log g,

then by Lemma 3, the maximum coefficient of S, (p)/m

nlog(n/2'/%) is at
log(3/¢)

most n®/m < n®/n. Similarly, by Lemma 4,

. m 3 .
1S at most %e w1982 which for m < «

(24 2e"¢Y e ™) <,

B[S (p)] — Sn(p)] < -

for all e > 6n“/n. O

8.2. Support Estimator

Recall that the quantity of interest in support estimation is
S(p), which we wish to estimate to an accuracy of €.

Proof of Lemma 2 for support. Note that we are interested
in distributions with all the non zero probabilities are at
least 1/k. We propose to estimate S(p) using S, (p)/k,
for m = klogg. If we choose r = log%, then by
Lemma 3, the maximum coefficient of S, (p)/k is at most
2% log 2, which for n > log? 3 is at most

k*/k < n®/n.

_k
alog(k/21/)

To bound the bias, note that for this choice of m

0<S(p) = Sm(p) =D _(1—pla)™

T

< Ze—mp(ﬂﬂ) < ke~ log? _
x

Similarly, by Lemma 4,
1 N

7 [ElSm(p)] = 5(p)]
1 - 1
< Z[ESm )] = Sm(p)l + £15(2) = Sm(P)]
< Loyoertn ppey £ S < g
k 3
foralle > 12n*/n. O

9. Discussion and Future Directions

We studied estimation of symmetric properties of discrete
distributions using the principle of maximum likelihood,
and proved optimality of this approach for a number of
problems. A number of directions are of interest. We be-
lieve that the lower bound requirement on € is perhaps an
artifact of our proof technique, and that the PML based ap-
proach is indeed optimal for all ranges of €. Approximation
algorithms for estimating the PML distributions would be
a fruitful direction to pursue. Given our results, approxi-
mations stronger than exp(—&2n) would be very interest-
ing. In the particular case when the desired accuracy is a
constant, even an exponential approximation would be suf-
ficient for many properties. We plan to apply the heuris-
tics proposed by (Vontobel, 2012) for various problems we
consider, and compare with the state of the art provable
methods.
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A. Entropy and Distance to Uniformity

The known optimal estimators for entropy and distance to
uniformity both depend on the best polynomial approx-
imation of the corresponding functions and the splitting
trick (Wu & Yang, 2016; Jiao et al., 2015). Building on
their techniques, we show that a slight modification of their
estimators satisfy conditions in Lemma 2. Both these func-
tions can be written as functionals of the form:

F) = g(p)),

where g(y) = —ylogy for entropy and g(y) = |y — | for
uniformity.

Both (Wu & Yang, 2016; Jiao et al., 2015) first approximate
g(y) with Pr, 4(y) polynomial of some degree L. Clearly
a larger degree implies a smaller bias/approximation error,
but estimating a higher degree polynomial also implies a
larger statistical estimation error. Therefore, the approach
is the following:

e For small values of p(z), we estimate the polynomial
L i
Pro(p(r)) =325, bi - (p(2))".

e For large values of p(z) we simply use the empirical
estimator for g(p(x)).

However, it is not a priori known which symbols have high
probability and which have low probability. Hence, they
both assume that they receive 2n samples from p. They
then divide them into two set of samples, X 1, ceey X;L, and
Xq1,...,X,. Let N;,, and N, be the number of appear-
ances of symbol x in the first and second half respectively.
They propose to use the estimator of the following form:

Q(X12n) = max {min {ng, fmax} ,O} .

where fiax is the maximum value of the property f and

Gr,g(Ng), for N;c < cologn, and N, < ¢ logn,
ge =14 ¢ (%) , for N‘; < cologn, and N, > c¢q logn,

g (%) + gn, for N; > cologn,
where g, is the first order bias correction term for g,
Gr,g(Nz) = Zle b; Nz /nt is the unbiased estimator for
Pr 4, and ¢y and ¢y are two constants which we decide
later. We remark that unlike previous works, we set g, to 0

for some values of N,, and N, to ensure that ¢* is bounded.
The following lemma bounds c¢* for any such estimator g.

Lemma 5. For any estimator § defined as above, changing
any one of the values changes the estimator by at most

L |
8 max (6L2/” max |b;|, =, g (clog(n)) »9n> ,
n

n

where Ly = nmax;en [g(i/n) — g((¢ — 1)/n)|.

A.1. Entropy

The following lemma is adapted from Proposition 4 in (Wu
& Yang, 2016) where we make the constants explicit.

Lemma 6. Ler g, = 1/(2n) and o > 0. Suppose ¢; =
2¢o, and co > 35, Further suppose that n? (12% + %) >
logk - logn. There exists a polynomial approximation of
—ylogy with degree L = 0.25, over [0, ¢ 2] such that

n
max; |b;| < n®/n and the bias of the entropy estimator is

C1 1 1 k‘
at most O ((; +5 T nsle) W)'

Proof. Our estimator is similar to that of (Wu & Yang,
2016; Jiao et al., 2016) except for the case when N; <
¢ologn, and N, > ¢; log n. For any p(x), and N, and N,
both distributed Bin(np(z)). By the Chernoff bounds for
binomial distributions, the probability of this event can be
bounded by,

1

r;l(g{Pr (Nw < cologn, Ny > 2c¢y logn) Sm Sn4~9'

Therefore, the additional bias the modification introduces
is at most k log k/n*? which is smaller than the bias term
of (Wu & Yang, 2016; Jiao et al., 2016).

The largest coefficient can be bounded by using that the
best polynomial approximation of degree L of xlogz in
the interval [0, 1] has all coefficients at most 23, There-
fore, the largest change we have (after appropriately nor-
malizing) is the largest value of b; which is

93L L% /n

—

For L = 0.25« log n, this is at most % O

The proof of Lemma 2 for entropy follows from the above

lemma and Lemma 5 and by substituting n = O (10’; Z %) .

A.2. Distance to Uniformity

We state the following result stated in (Jiao et al., 2016).

Lemma 7. Let ¢ > 2c¢y, co = 35. There is an estimator
for distance to uniformity that changes by at most n®/n
when a sample is changed, and the bias of the estimator is

c1 logn)

at most O(L /<8

Proof. Estimating the distance to uniformity has two re-
gions based on N/, and N,.

Case 1: % < cologn/n. In this case, we use the estima-
tor defined in the last section for g(z) = | — 1/k|.
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Case 2: % > cplogn/n. In this case, we have a slight

change to the conditions under which we use various esti-

mators.
e For N;—%‘<\/czlog" & |N, — |<\/7cli°ng":
9o = Gr.g(Na),

e For |N, — H < \/Czlog" & [N, — ¢| < \/761;’5":
9z =0,
1 cologn |
k kn :

e For N;
= (5)-

The estimator proposed in (Jiao et al., 2016) is slightly dif-
ferent, assigning G, ,(INV,) for the first two cases. We
design the second case to bound the maximum devia-
tion. The bias of their estimator was shown to be at most
O(1 k'ffog n) , which can be shown by using Equation
Equation 7.2.2 of (Timan, 1963)

EerL01 <0 ( 7

T(17)>. ©)

By our choice of ¢y, co, our modification changes the bias
by at most 1/n* < £2.

To bound the largest deviation, we use the fact from Lemma
2 in (Cai et al., 2011) that the largest coefficient of the best
degree-L polynomial approximation of |z| in [—1, 1] has
all coefficients at most 23”. Similar argument as with en-
tropy yields that after appropriate normalization, the largest
difference in estimation will be at most n®/n. O

The proof of Lemma 2 for entropy follows from the
above lemma and Lemma 5 and by substituting n =

0 (k).

B. Proof of Approximate ML Performance

Proof. We consider symbols such that p(z) > ¢/ and
p(2) < 6/ separately. For an z with p(z) > §/f, by the
definition of f(p,),

p=(2) 2 p.(2)B = p(2)B = 6.

Applying (2) to p,, we have for Z ~ p,,

where [ 1is the indicator function, and therefore,

{’fpz_ ()’>6} = 0
‘f (p2) — (z)‘ < ¢e. By an identical reasoning, since

p(z) > /83, we have ‘f(p) -
gle inequality,

This implies that
f(Z)’ < ¢e. By the trian-

®) = 1G] < |10) = F )| + |1(5:) = ()| < 2e.

Thus if p(z) > §/5, then PML satisfies the required guar-
antee with zero probability of error, and any error occurs
only when p(z) < 6/5. We bound this probability as fol-

lows. When Z ~ p,

Pr(p(2)<5/B)< Y.

z€Z:p(2)<6/B

p(z) <0-|1Z|/p. D



