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Abstract
Combining abstract, symbolic reasoning with con-
tinuous neural reasoning is a grand challenge of
representation learning. As a step in this direc-
tion, we propose a new architecture, called neural
equivalence networks, for the problem of learn-
ing continuous semantic representations of alge-
braic and logical expressions. These networks are
trained to represent semantic equivalence, even
of expressions that are syntactically very differ-
ent. The challenge is that semantic representa-
tions must be computed in a syntax-directed man-
ner, because semantics is compositional, but at
the same time, small changes in syntax can lead
to very large changes in semantics, which can be
difficult for continuous neural architectures. We
perform an exhaustive evaluation on the task of
checking equivalence on a highly diverse class of
symbolic algebraic and boolean expression types,
showing that our model significantly outperforms
existing architectures.

1. Introduction
Combining abstract, symbolic reasoning with continuous
neural reasoning is a grand challenge of representation learn-
ing. This is particularly important while dealing with ex-
ponentially large domains such as source code and logical
expressions. Symbolic notation allows us to abstractly rep-
resent a large set of states that may be perceptually very
different. Although symbolic reasoning is very powerful,
it also tends to be hard. For example, problems such as
the satisfiablity of boolean expressions and automated for-
mal proofs tend to be NP-hard or worse. This raises the
exciting opportunity of using pattern recognition within
symbolic reasoning, that is, to learn patterns from datasets
of symbolic expressions that approximately represent se-
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mantic relationships. However, apart from some notable
exceptions (Alemi et al., 2016; Loos et al., 2017; Zaremba
et al., 2014), this area has received relatively little attention
in machine learning. In this work, we explore the direction
of learning continuous semantic representations of symbolic
expressions. The goal is for expressions with similar seman-
tics to have similar continuous representations, even if their
syntactic representation is very different. Such representa-
tions have the potential to allow a new class of symbolic
reasoning methods based on heuristics that depend on the
continuous representations, for example, by guiding a search
procedure in a symbolic solver based on a distance metric
in the continuous space.

In this paper, we make a first essential step of addressing
the problem of learning continuous semantic representa-
tions (SEMVECs) for symbolic expressions. Our aim is,
given access to a training set of pairs of expressions for
which semantic equivalence is known, to assign continuous
vectors to symbolic expressions in such a way that seman-
tically equivalent, but syntactically diverse expressions are
assigned to identical (or highly similar) continuous vectors.
This is an important but hard problem; learning composable
SEMVECs of symbolic expressions requires that we learn
about the semantics of symbolic elements and operators
and how they map to the continuous representation space,
thus encapsulating implicit knowledge about symbolic se-
mantics and its recursive abstractive nature. As we show
in our evaluation, relatively simple logical and polynomial
expressions present significant challenges and their seman-
tics cannot be sufficiently represented by existing neural
network architectures.

Our work in similar in spirit to the work of Zaremba et al.
(2014), who focus on learning expression representations to
aid the search for computationally efficient identities. They
use recursive neural networks (TREENN)1 (Socher et al.,
2012) for modeling homogenous, single-variable polyno-
mial expressions. While they present impressive results, we
find that the TREENN model fails when applied to more
complex symbolic polynomial and boolean expressions. In
particular, in our experiments we find that TREENNs tend
to assign similar representations to syntactically similar ex-
pressions, even when they are semantically very different.
The underlying conceptual problem is how to develop a con-

1To avoid confusion, we use TREENN for recursive neural
networks and RNN for recurrent neural networks.
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tinuous representation that follows syntax but not too much,
that respects compositionality while also representing the
fact that a small syntactic change can be a large semantic
one.

To tackle this problem, we propose a new architecture, called
neural equivalence networks (EQNET). EQNETs learn how
syntactic composition recursively composes SEMVECs, like
a TREENN, but are also designed to model large changes
in semantics as the network progresses up the syntax tree.
As equivalence is transitive, we formulate an objective func-
tion for training based on equivalence classes rather than
pairwise decisions. The network architecture is based on
composing residual-like multi-layer networks, which allows
more flexibility in modeling the semantic mapping up the
syntax tree. To encourage representations within an equiv-
alence class to be tightly clustered, we also introduce a
training method that we call subexpression autoencoding,
which uses an autoencoder to force the representation of
each subexpression to be predictable and reversible from its
syntactic neighbors. Experimental evaluation on a highly
diverse class of symbolic algebraic and boolean expression
types shows that EQNETs dramatically outperform existing
architectures like TREENNs and RNNs.

To summarize, the main contributions of our work are: (a)
We formulate the problem of learning continuous semantic
representations (SEMVECs) of symbolic expressions and
develop benchmarks for this task. (b) We present neural
equivalence networks (EQNETs), a neural network archi-
tecture that learns to represent expression semantics onto a
continuous semantic representation space and how to per-
form symbolic operations in this space. (c) We provide
an extensive evaluation on boolean and polynomial expres-
sions, showing that EQNETs perform dramatically better
than state-of-the-art alternatives. Code and data are avail-
able at groups.inf.ed.ac.uk/cup/semvec.

2. Model
In this work, we are interested in learning semantic, compo-
sitional representations of mathematical expressions, which
we call SEMVECs, and in learning to generate identical rep-
resentations for expressions that are semantically equivalent,
i.e. they belong to the same equivalence class. Equivalence
is a stronger property than similarity, which has been the
focus of previous work in neural network learning (Chopra
et al., 2005), since equivalence is additionally a transitive
relationship.

Problem Hardness. Finding the equivalence of arbitrary
symbolic expressions is a NP-hard problem or worse. For
example, if we focus on boolean expressions, reducing an
expression to the representation of the false equivalence
class amounts to proving its non-satisfiability — an NP-
complete problem. Of course, we do not expect to circum-

vent an NP-complete problem with neural networks. A
network for solving boolean equivalence would require an
exponential number of nodes in the size of the expression if
P 6= NP . Instead, our goal is to develop architectures that
efficiently learn to solve the equivalence problems for ex-
pressions that are similar to a smaller number of expressions
in a given training set. The supplementary material shows
a sample of such expressions that illustrate the hardness of
this problem.

Notation and Framework. To allow our representations
to be compositional, we employ the general framework of
recursive neural networks (TREENN) (Socher et al., 2012;
2013), in our case operating on tree structures of the syn-
tactic parse of a formula. Given a tree T , TREENNs learn
distributed representations for each node in the tree by recur-
sively combining the representations of its subtrees using a
neural network. We denote the children of a node n as ch(n)
which is a (possibly empty) ordered tuple of nodes. We also
use par(n) to refer to the parent node of n. Each node in
our tree has a type, e.g. a terminal node could be of type “a”
referring to the variable a or of type “and” referring to a
node of the logical AND (∧) operation. We refer to the type
of a node n as τn. In pseudocode, TREENNs retrieve the
representation of a tree T rooted at node ρ, by invoking the
function TREENN(ρ) that returns a vector representation
rρ ∈ RD, i.e., a SEMVEC. The function is defined as

TREENN (current node n)
if n is not a leaf then
rn ← COMBINE(TREENN(c0), . . . , TREENN(ck), τn),
where (c0, . . . , ck) = ch(n)

else
rn ← LOOKUPLEAFEMBEDDING(τn)

return rn

The general framework of TREENN allows two points
of variation, the implementation of LOOKUPLEAFEM-
BEDDING and COMBINE. Traditional TREENNs (Socher
et al., 2013) define LOOKUPLEAFEMBEDDING as a simple
lookup operation within a matrix of embeddings and COM-
BINE as a single-layer neural network. As discussed next,
these will both prove to be serious limitations in our setting.
To train these networks to learn SEMVECs, we will use a
supervised objective based on a set of known equivalence
relations (see Section 2.2).

2.1. Neural Equivalence Networks

Our domain requires that the network learns to abstract
away syntax, assigning identical representations to expres-
sions that may be syntactically different but semantically
equivalent, and also assigning different representations to
expressions that may be syntactically very similar but non-
equivalent. In this work, we find that standard neural ar-
chitectures do not handle well this challenge. To repre-
sent semantics from syntax, we need to learn to recursively

http://groups.inf.ed.ac.uk/cup/semvec
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(a) Architectural diagram of EQNETs. Example parse tree shown is of the boolean expression (a ∨ c) ∧ a.

COMBINE (rc0 , . . . , rck , τp)
l̄0 ← [rc0 , . . . , rck ]
l̄1 ← σ

(
Wi,τp · l̄0

)
l̄out ←Wo0,τp · l̄0 +Wo1,τp · l̄1
return l̄out/

∥∥l̄out∥∥2
(b) COMBINE of EQNET.

SUBEXPAE (rc0 , . . . , rck , rp, τp)
x← [rc0 , . . . , rck ]
x̃← tanh

(
Wd · tanh

(
We,τp · [rp,x] · n

))
x̃← x̃ · ‖x‖2 / ‖x̃‖2
r̃p ← COMBINE(x̃, τp)
return −

(
x̃>x + r̃>p rp

)
(c) Loss function used for subexpression autoencoder

Figure 1. EQNET architecture.

compose and decompose semantic representations and re-
move syntactic “noise”. Any syntactic operation may sig-
nificantly change semantics (e.g. negation, or appending
∧FALSE) while we may reach the same semantic state
through many possible operations. This necessitates us-
ing high-curvature operations over the semantic representa-
tion space. Furthermore, some operations are semantically
reversible and thus we need to learn reversible semantic
representations (e.g. ¬¬A and A should have an identical
SEMVECs). Based on these, we define neural equivalence
networks (EQNET), which learn to compose representations
of equivalence classes into new equivalence classes (Fig-
ure 1a). Our network follows the TREENN architecture,
i.e. is implemented using TREENN to model the composi-
tional nature of symbolic expressions but is adapted based
on the domain requirements. The extensions we introduce
have two aims: first, to improve the network training; and
second, and more interestingly, to encourage the learned
representations to abstract away surface level information
while retaining semantic content.

The first extension that we introduce is to the network struc-
ture at each layer in the tree. Traditional TREENNs (Socher
et al., 2013) use a single-layer neural network at each tree
node. During our preliminary investigations and in Sec-
tion 3, we found that single layer networks are not ade-
quately expressive to capture all operations that transform
the input SEMVECs to the output SEMVEC and maintain
semantic equivalences, requiring high-curvature operations.
Part of the problem stems from the fact that within the
Euclidean space of SEMVECs some operations need to be
non-linear. For example a simple XOR boolean operator re-
quires high-curvature operations in the continuous semantic
representation space. Instead, we turn to multi-layer neural

networks. In particular, we define the network as shown
in the function COMBINE in Figure 1b. This uses a two-
layer MLP with a residual-like connection to compute the
SEMVEC of each parent node in that syntax tree given that
of its children. Each node type τn, e.g., each logical oper-
ator, has a different set of weights. We experimented with
deeper networks but this did not yield any improvements.

However, as TREENNs become deeper, they suffer from
optimization issues, such as diminishing and exploding gra-
dients. This is essentially because of the highly compo-
sitional nature of tree structures, where the same network
(i.e. the COMBINE non-linear function) is used recursively,
causing it to “echo” its own errors and producing unstable
feedback loops. We observe this problem even with only
two-layer MLPs, as the overall network can become quite
deep when using two layers for each node in the syntax
tree. We resolve this issue in the training procedure by
constraining each SEMVEC to have unit norm. That is, we
set LOOKUPLEAFEMBEDDING(τn) = Cτn/ ‖Cτn‖2 , and
we normalize the output of the final layer of COMBINE in
Figure 1b. The normalization step of l̄out and Cτn is some-
what similar to weight normalization (Salimans & Kingma,
2016) and vaguely resembles layer normalization (Ba et al.,
2016). Normalizing the SEMVECs partially resolves issues
with diminishing and exploding gradients, and removes a
spurious degree of freedom in the semantic representation.
As simple as this modification may seem, we found it vital
for obtaining good performance, and all of our multi-layer
TREENNs converged to low-performing settings without it.

Although these modifications seem to improve the represen-
tation capacity of the network and its ability to be trained,
we found that they were not on their own sufficient for good
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performance. In our early experiments, we noticed that the
networks were primarily focusing on syntax instead of se-
mantics, i.e., expressions that were nearby in the continuous
space were primarily ones that were syntactically similar.
At the same time, we observed that the networks did not
learn to unify representations of the same equivalence class,
observing multiple syntactically distinct but semantically
equivalent expressions to have distant SEMVECs.

Therefore we modify the training objective in order to en-
courage the representations to become more abstract, reduc-
ing their dependence on surface-level syntactic information.
We add a regularization term on the SEMVECs that we call
a subexpression autoencoder (SUBEXPAE). We design this
regularization to encourage the SEMVECs to have two prop-
erties: abstraction and reversibility. Because abstraction
arguably means removing irrelevant information, a network
with a bottleneck layer seems natural, but we want the train-
ing objective to encourage the bottleneck to discard syntactic
information rather than semantic information. To achieve
this, we introduce a component that aims to encourage re-
versibility, which we explain by an example. Observe that
given the semantic representation of any two of the three
nodes of a subexpression (by which we mean the parent, left
child, right child of an expression tree) it is often possible to
completely determine or at least place strong constraints on
the semantics of the third. For example, consider a boolean
formula F (a, b) = F1(a, b) ∨ F2(a, b) where F1 and F2

are arbitrary propositional formulae over the variables a, b.
Then clearly if we know that F implies that a is true but F1

does not, then F2 must imply that a is true. More generally,
if F belongs to some equivalence class e0 and F1 belongs
to a different class e1, we want the continuous representa-
tion of F2 to reflect that there are strong constraints on the
equivalence class of F2.

Subexpression autoencoding encourages abstraction by em-
ploying an autoencoder with a bottleneck, thereby remov-
ing irrelevant information from the representations, and en-
courages reversibility by autoencoding the parent and child
representations together, to encourage dependence in the
representations of parents and children. More specifically,
given any node p in the tree with children c0 . . . ck, we can
define a parent-children tuple [rc0 , . . . , rck , rp] containing
the (computed) SEMVECs of the children and parent nodes.
What SUBEXPAE does is to autoencode this representation
tuple into a low-dimensional space with a denoising autoen-
coder. We then seek to minimize the reconstruction error of
the child representations (r̃c0 , . . . , r̃ck ) as well as the recon-
structed parent representation r̃p that can be computed from
the reconstructed children. More formally, we minimize
the return value of SUBEXPAE in Figure 1c where n is a
binary noise vector with κ percent of its elements set to
zero. Note that the encoder is specific to the parent node
type τp. Although our SUBEXPAE may seem similar to the
recursive autoencoders of Socher et al. (2011), it differs

in two major ways. First, SUBEXPAE autoencodes on the
entire parent-children representation tuple, rather than the
child representations alone. Second, the encoding is not
used to compute the parent representation, but only serves
as a regularizer.

Subexpression autoencoding has several desirable effects.
First, it forces each parent-children tuple to lie in a low-
dimensional space, requiring the network to compress infor-
mation from the individual subexpressions. Second, because
the denoising autoencoder is reconstructing parent and child
representations together, this encourages child representa-
tions to be predictable from parents and siblings. Putting
these two together, the goal is that the information discarded
by the autoencoder bottleneck will be more syntactic than
semantic, assuming that the semantics of child node is more
predictable from its parent and sibling than its syntactic
realization. The goal is to nudge the network to learn con-
sistent, reversible semantics. Additionally, subexpression
autoencoding has the potential to gradually unify distant
representations that belong to the same equivalence class.
To illustrate this point, imagine two semantically equiv-
alent c′0 and c′′0 child nodes of different expressions that
have distant SEMVECs, i.e.

∥∥rc′0 − rc′′0
∥∥
2
� ε although

COMBINE(rc′0 , . . . ) ≈ COMBINE(rc′′0 , . . . ). In some cases
due to the autoencoder noise, the differences between the in-
put tuple x′,x′′ that contain rc′0 and rc′′0 will be non-existent
and the decoder will predict a single location r̃c0 (possibly
different from rc′0 and rc′′0 ). Then, when minimizing the
reconstruction error, both rc′0 and rc′′0 will be attracted to
r̃c0 and eventually should merge.

2.2. Training

We train EQNETs from a dataset of expressions whose
semantic equivalence is known. Given a training set
T = {T1 . . . TN} of parse trees of expressions, we assume
that the training set is partitioned into equivalence classes
E = {e1 . . . eJ}. We use a supervised objective similar
to classification; the difference between classification and
our setting is that whereas standard classification problems
consider a fixed set of class labels, in our setting the number
of equivalence classes in the training set will vary with N .
Given an expression tree T that belongs to the equivalence
class ei ∈ E , we compute the probability

P (ei|T ) =
exp

(
TREENN(T )>qei + bi

)∑
j exp

(
TREENN(T )>qej + bj

) (1)

where qei are model parameters that we can interpret as
representations of each equivalence class that appears in the
training class, and bi are scalar bias terms. Note that in this
work, we only use information about the equivalence class
of the whole expression T , ignoring available information
about subexpressions. This is without loss of generality,
because if we do know the equivalence class of a subex-
pression of T , we can simply add that subexpression to
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the training set. To train the model, we use a max-margin
objective that maximizes classification accuracy, i.e.

LACC(T, ei) = max

(
0, arg max
ej 6=ei,ej∈E

log
P (ej |T )

P (ei|T )
+m

)
(2)

where m > 0 is a scalar margin. And therefore the op-
timized loss function for a single expression tree T that
belongs to equivalence class ei ∈ E is

L(T, ei) = LACC(T, ei) +
µ

|Q|
∑
n∈Q

SUBEXPAE(ch(n), n)

(3)

where Q = {n ∈ T : | ch(n)| > 0}, i.e. contains the non-
leaf nodes of T and µ ∈ (0, 1] a scalar weight. We found
that subexpression autoencoding is counterproductive early
in training, before the SEMVECs begin to represent aspects
of semantics. So, for each epoch t, we set µ = 1− 10−νt

with ν ≥ 0. Instead of the supervised objective that we
propose, an alternative option for training EQNET would be
a Siamese objective (Chopra et al., 2005) that learns about
similarities (rather than equivalence) between expressions.
In practice, we found the optimization to be very unstable,
yielding suboptimal performance. We believe that this has
to do with the compositional and recursive nature of the task
that creates unstable dynamics and the fact that equivalence
is a stronger property than similarity.

3. Evaluation
Datasets. We generate datasets of expressions grouped
into equivalence classes from two domains. The datasets
from the BOOL domain contain boolean expressions and
the POLY datasets contain polynomial expressions. In both
domains, an expression is either a variable, a binary operator
that combines two expressions, or a unary operator applied
to a single expression. When defining equivalence, we in-
terpret distinct variables as referring to different entities in
the domain, so that, e.g., the polynomials c · (a · a+ b) and
f ·(d·d+e) are not equivalent. For each domain, we generate
“simple” datasets which use a smaller set of possible opera-
tors and “standard” datasets which use a larger set of more
complex operators. We generate each dataset by exhaus-
tively generating all parse trees up to a maximum tree size.
All expressions are symbolically simplified into a canonical
from in order to determine their equivalence class and are
grouped accordingly. Table 1 shows the datasets we gener-
ated. In the supplementary material we present some sample
expressions. For the polynomial domain, we also generated
ONEV-POLY datasets, which are polynomials over a single
variable, since they are similar to the setting considered by
Zaremba et al. (2014) — although ONEV-POLY is still a lit-
tle more general because it is not restricted to homogeneous
polynomials. Learning SEMVECs for boolean expressions

is already a hard problem; with n boolean variables, there
are 22

n

equivalence classes (i.e. one for each possible truth
table). We split the datasets into training, validation and test
sets. We create two test sets, one to measure generalization
performance on equivalence classes that were seen in the
training data (SEENEQCLASS), and one to measure general-
ization to unseen equivalence classes (UNSEENEQCLASS).
It is easiest to describe UNSEENEQCLASS first. To cre-
ate the UNSEENEQCLASS, we randomly select 20% of all
the equivalence classes, and place all of their expressions
in the test set. We select equivalence classes only if they
contain at least two expressions but less than three times
the average number of expressions per equivalence class.
We thus avoid selecting very common (and hence trivial
to learn) equivalence classes in the testset. Then, to create
SEENEQCLASS, we take the remaining 80% of the equiv-
alence classes, and randomly split the expressions in each
class into training, validation, SEENEQCLASS test in the
proportions 60%–15%–25%. We provide the datasets online
at groups.inf.ed.ac.uk/cup/semvec.

Baselines. To compare the performance of our model, we
train the following baselines. TF-IDF: learns a representa-
tion given the expression tokens (variables, operators and
parentheses). This captures topical/declarative knowledge
but is unable to capture procedural knowledge. GRU refers
to the token-level gated recurrent unit encoder of Bahdanau
et al. (2015) that encodes the token-sequence of an expres-
sion into a distributed representation. Stack-augmented
RNN refers to the work of Joulin & Mikolov (2015) which
was used to learn algorithmic patterns and uses a stack as
a memory and operates on the expression tokens. We also
include two recursive neural networks (TREENN). The 1-
layer TREENN which is the original TREENN also used by
Zaremba et al. (2014). We also include a 2-layer TREENN,
where COMBINE is a classic two-layer MLP without resid-
ual connections. This shows the effect of SEMVEC normal-
ization and subexpression autoencoder.

Hyperparameters. We tune the hyperparameters of all
models using Bayesian optimization (Snoek et al., 2012)
on a boolean dataset with 5 variables and maximum tree
size of 7 (not shown in Table 1) using the average k-NN
(k = 1, . . . , 15) statistics (described next). The selected
hyperparameters are detailed in the supplementary material.

3.1. Quantitative Evaluation

Metrics. To evaluate the quality of the learned represen-
tations we count the proportion of k nearest neighbors of
each expression (using cosine similarity) that belong to the
same equivalence class. More formally, given a test query
expression q in an equivalence class c we find the k nearest
neighbors Nk(q) of q across all expressions, and define the

http://groups.inf.ed.ac.uk/cup/semvec
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Table 1. Dataset statistics and results. SIMP datasets contain simple operators (“∧, ∨, ¬” for BOOL and “+, −” for POLY) while the rest
contain all operators (i.e. “∧, ∨, ¬, ⊕,⇒” for BOOL and “+, −, ·” for POLY). ⊕ is the XOR operator. The number in the dataset name
indicates its expressions’ maximum tree size. L refers to a “larger” number of 10 variables. H is the entropy of equivalence classes.

Dataset # # Equiv # H score5 (%) in UNSEENEQCLASS
Vars Classes Exprs tf-idf GRU StackRNN 1L TREENN 2L TREENN EQNET

SIMPBOOL8 3 120 39,048 5.6 17.4 30.9 26.7 27.4 25.5 97.4
SIMPBOOL10S 3 191 26,304 7.2 6.2 11.0 7.6 25.0 93.4 99.1
BOOL5 3 95 1,239 5.6 34.9 35.8 12.4 16.4 26.0 65.8
BOOL8 3 232 257,784 6.2 10.7 17.2 16.0 15.7 15.4 58.1
BOOL10S 10 256 51,299 8.0 5.0 5.1 3.9 10.8 20.2 71.4
SIMPBOOLL5 10 1,342 10,050 9.9 53.1 40.2 50.5 3.48 19.9 85.0
BOOLL5 10 7,312 36,050 11.8 31.1 20.7 11.5 0.1 0.5 75.2
SIMPPOLY5 3 47 237 5.0 21.9 6.3 1.0 40.6 27.1 65.6
SIMPPOLY8 3 104 3,477 5.8 36.1 14.6 5.8 12.5 13.1 98.9
SIMPPOLY10 3 195 57,909 6.3 25.9 11.0 6.6 19.9 7.1 99.3
ONEV-POLY10 1 83 1,291 5.4 43.5 10.9 5.3 10.9 8.5 81.3
ONEV-POLY13 1 677 107,725 7.1 3.2 4.7 2.2 10.0 56.2 90.4
POLY5 3 150 516 6.7 37.8 34.1 2.2 46.8 59.1 55.3
POLY8 3 1,102 11,451 9.0 13.9 5.7 2.4 10.4 14.8 86.2

S dataset contains all equivalence classes but at most 200 uniformly sampled (without replacement) expressions per equivalence class.

score as

scorek(q) =
|Nk(q) ∩ c|
min(k, |c|) . (4)

To report results for a given testset, we simply average
scorek(q) for all expressions q in the testset. We also report
the precision-recall curves for the problem of clustering the
SEMVECs into their appropriate equivalence classes.

Evaluation. Figure 2 presents the average per-model
precision-recall curves across the datasets. Table 1 shows
score5 of UNSEENEQCLASS. Detailed plots are found in
the supplementary material. EQNET performs better for all
datasets, by a large margin. The only exception is POLY5,
where the 2-L TREENN performs better. However, this may
have to do with the small size of the dataset. The reader
may observe that the simple datasets (containing fewer op-
erations and variables) are easier to learn. Understandably,
introducing more variables increases the size of the rep-
resented space reducing performance. The tf-idf method
performs better in settings with more variables, because
it captures well the variables and operations used. Simi-
lar observations can be made for sequence models. The
one and two layer TREENNs have mixed performance; we
believe that this has to do with exploding and diminish-
ing gradients due to the deep and highly compositional
nature of TREENNs. Although Zaremba et al. (2014) con-
sider a different problem to us, they use data similar to the
ONEV-POLY datasets with a traditional TREENN architec-
ture. Our evaluation suggests that EQNETs perform much
better within the ONEV-POLY setting.

Evaluation of Compositionality. We evaluate whether
EQNETs successfully learn to compute compositional rep-
resentations, rather than overfitting to expression trees of

a small size. To do this we consider a type of transfer set-
ting, in which we train on simpler datasets, but test on more
complex ones; for example, training on the training set of
BOOL5 but testing on the testset of BOOL8. We average
over 11 different train-test pairs (full list in supplementary
material) and show the results in Figure 3a and Figure 3b.
These graphs again show that EQNETs are better than any
of the other methods, and indeed, performance is only a bit
worse than in the non-transfer setting.

Impact of EQNET Components EQNETs differ from
traditional TREENNs in two major ways, which we ana-
lyze here. First, SUBEXPAE improves performance. When
training the network with and without SUBEXPAE, on av-
erage, the area under the curve (AUC) of scorek decreases
by 16.8% on the SEENEQCLASS and 19.7% on the UN-
SEENEQCLASS. This difference is smaller in the transfer
setting, where AUC decreases by 8.8% on average. How-
ever, even in this setting we observe that SUBEXPAE helps
more in large and diverse datasets. The second key differ-
ence to traditional TREENNs is the output normalization
and the residual connections. Comparing our model to the
one-layer and two-layer TREENNs again, we find that out-
put normalization results in important improvements (the
two-layer TREENNs have on average 60.9% smaller AUC).
We note that only the combination of the residual connec-
tions and the output normalization improve the performance,
whereas when used separately, there are no significant im-
provements over the two-layer TREENNs.

3.2. Qualitative Evaluation

Table 2 shows expressions whose SEMVEC nearest neighbor
is of an expression of another equivalence class. Manually
inspecting boolean expressions, we find that EQNET confu-
sions happen more when a XOR or implication operator is
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Figure 2. Precision-Recall Curves averaged across datasets.

Table 2. Non semantically equivalent first nearest-neighbors from BOOL8 and POLY8. A checkmark indicates that the method correctly
results in the nearest neighbor being from the same equivalence class.

Expr a ∧ (a ∧ (a ∧ (¬c))) a ∧ (a ∧ (c⇒ (¬c))) (a ∧ a) ∧ (c⇒ (¬c)) a+ (c · (a+ c)) ((a+ c) · c) + a (b · b)− b

tfidf c ∧ ((a ∧ a) ∧ (¬a)) c⇒ (¬((c ∧ a) ∧ a)) c⇒ (¬((c ∧ a) ∧ a)) a+ (c+ a) · c (c · a) + (a+ c) b · (b− b)
GRU X a ∧ (a ∧ (c ∧ (¬c))) (a ∧ a) ∧ (c⇒ (¬c)) b+ (c · (a+ c)) ((b+ c) · c) + a (b+ b) · b− b
1L-TREENN a ∧ (a ∧ (a ∧ (¬b))) a ∧ (a ∧ (c⇒ (¬b))) (a ∧ a) ∧ (c⇒ (¬b)) a+ (c · (b+ c)) ((b+ c) · c) + a (a− c) · b− b
EQNET X X (¬(b⇒ (b ∨ c))) ∧ a X X (b · b) · b− b
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Figure 3. Evaluation of compositionality; training set simpler than
test set. Average scorek (y-axis in log-scale). Markers are shown
every three ticks for clarity. TREENN refers to Socher et al. (2012).

involved. In fact, we fail to find any confused expressions
for EQNET not involving these operations in BOOL5 and
in the top 100 expressions in BOOL10. As expected, tf-idf
confuses expressions with others that contain the same op-
erators and variables ignoring order. In contrast, GRU and
TREENN tend to confuse expressions with very similar sym-
bolic representations, i.e. that differ in one or two deeply
nested variables or operators. In contrast, EQNET tends
to confuse fewer expressions (as we previously showed)
and the confused expressions tend to be more syntactically
diverse and semantically related.

Figure 4 shows a visualization of score5 for each node in
the expression tree. One may see that as EQNET knows how

¬(c ⊕ (a ∧ ((a ⊕ c) ∧ b))) ((c ∨ (¬b))⇒ a) ∧ (a ⇒ a)

((b ⊕ (¬c)) ∧ b)⊕ (a ∨ b) ((b · a)− a) · b

a − ((a + b) · a) ((c · b) · c) · a b + ((b · b) · b)

Figure 4. Visualization of score5 for all expression nodes for three
BOOL10 and four POLY8 test sample expressions using EQNET.
The darker the color, the lower the score, i.e. white implies a score
of 1 and dark red a score of 0.

to compose expressions that achieve good score, even if the
subexpressions achieve a worse score. This suggests that
for common expressions, (e.g. single variables and monomi-
als) the network tends to select a unique location, without
merging the equivalence classes or affecting the upstream
performance of the network. Larger scale interactive t-SNE
visualizations can be found online.

Figure 5 presents two PCA visualizations of the SEMVECs
of simple expressions and their negations/negatives. It can
be discerned that the black dots and their negations (in
red) are discriminated in the semantic representation space.
Figure 5b shows this property in a clear manner: left-right
discriminates between polynomials with 1 and −a, top-
bottom between polynomials with−b and b and the diagonal
parellelt to y = −x between c and−c. We observe a similar
behavior in Figure 5a for boolean expressions.

4. Related Work
Researchers have proposed compilation schemes that can
transform any given program or expression to an equivalent
neural network (Gruau et al., 1995; Neto et al., 2003; Siegel-

http://groups.inf.ed.ac.uk/cup/semvec
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Figure 5. A PCA visualization of some simple non-equivalent boolean and polynomial expressions (black-square) and their negations
(red-circle). The lines connect the negated expressions.

mann, 1994). One can consider a serialized version of the
resulting neural network as a representation of the expres-
sion. However, it is not clear how we could compare the
serialized representations corresponding to two expressions
and whether this mapping preserves semantic distances.

Recursive neural networks (TREENN) (Socher et al., 2012;
2013) have been successfully used in NLP with multiple
applications. Socher et al. (2012) show that TREENNs can
learn to compute the values of some simple propositional
statements. EQNET’s SUBEXPAE may resemble recursive
autoencoders (Socher et al., 2011) but differs in form and
function, encoding the whole parent-children tuple to force
a clustering behavior. In addition, when encoding each
expression our architecture does not use a pooling layer but
directly produces a single representation for the expression.

Mou et al. (2016) design tree convolutional networks to clas-
sify code into student submission tasks. Although they learn
representations of the student tasks, these representations
capture task-specific syntactic features rather than code se-
mantics. Piech et al. (2015) also learn distributed matrix
representations of student code submissions. However, to
learn the representations, they use input and output program
states and do not test for program equivalence. Additionally,
these representations do not necessarily represent program
equivalence, since they do not learn the representations over
all possible input-outputs. Allamanis et al. (2016) learn
variable-sized representations of source code snippets to
summarize them with a short function-like name but aim
learn summarization features in code rather than representa-
tions of symbolic expression equivalence.

More closely related is the work of Zaremba et al. (2014)
who use a TREENN to guide the search for more efficient
mathematical identities, limited to homogeneous single-
variable polynomial expressions. In contrast, EQNETs con-
sider at a much wider set of expressions, employ subexpres-
sion autoencoding to guide the learned SEMVECs to better

represent equivalence, and do not use search when looking
for equivalent expressions. Alemi et al. (2016) use RNNs
and convolutional neural networks to detect features within
mathematical expressions to speed the search for premise
selection in automated theorem proving but do not explicitly
account for semantic equivalence. In the future, SEMVECs
may be useful within this area.

Our work is also related to recent work on neural network
architectures that learn controllers/programs (Gruau et al.,
1995; Graves et al., 2014; Joulin & Mikolov, 2015; Grefen-
stette et al., 2015; Dyer et al., 2015; Reed & de Freitas,
2016; Neelakantan et al., 2015; Kaiser & Sutskever, 2016).
In contrast to this work, we do not aim to learn how to eval-
uate expressions or execute programs with neural network
architectures but to learn continuous semantic representa-
tions (SEMVECs) of expression semantics irrespectively of
how they are syntactically expressed or evaluated.

5. Discussion & Conclusions
In this work, we presented EQNETs, a first step in learning
continuous semantic representations (SEMVECs) of proce-
dural knowledge. SEMVECs have the potential of bridging
continuous representations with symbolic representations,
useful in multiple applications in artificial intelligence, ma-
chine learning and programming languages.

We show that EQNETs perform significantly better than
state-of-the-art alternatives. But further improvements are
needed, especially for more robust training of compositional
models. In addition, even for relatively small symbolic ex-
pressions, we have an exponential explosion of the semantic
space to be represented. Fixed-sized SEMVECs, like the
ones used in EQNET, eventually limit the capacity that is
available to represent procedural knowledge. In the future,
to represent more complex procedures, variable-sized repre-
sentations would seem to be required.
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