Natasha: Faster Non-Convex Stochastic Optimization
via Strongly Non-Convex Parameter

Zeyuan Allen-Zhu !

Abstract

Given a non-convex function f(x) that is an av-
erage of n smooth functions, we design stochas-
tic first-order methods to find its approximate
stationary points. The performance of our new
methods depend on the smallest (negative) eigen-
value —o of the Hessian. This parameter o
captures how strongly non-convex f(z) is, and
is analogous to the strong convexity parameter
for convex optimization. At least in theory, our
methods outperform known results for a range of
parameter o, and can also be used to find approx-
imate local minima. Our result implies an inter-
esting dichotomy: there exists a threshold o so
that the (currently) fastest methods for ¢ > o
and for 0 < o have different behaviors: the for-

mer scales with n2/3 and the latter scales with
3/4
n3/4,

1 Introduction

We study the problem of composite non-convex minimiza-
tion:

min { F(z) = (2) + f(2) = b(x) + % > s}

zER?

(1.1)
where each f;(z) is nonconvex but smooth, and ¢(-) is
proper convex, possibly nonsmooth, but relatively simple.
We are interested in finding a point z that is an approximate
local minimum of F(z).

e The finite-sum structure f(z) = =>7" | fi(x) arises
prominently in large-scale machine learning tasks. In
particular, when minimizing loss over a training set,
each example ¢ corresponds to one loss function f;(-)
in the summation. This finite-sum structure allows one

to perform stochastic gradient descent with respect to a

Future version of this paper shall be found at http://
arxiv.org/abs/1702.00763. 'Microsoft Research. Cor-
respondence to: Zeyuan Allen-Zhu <zeyuan@csail.mit.edu>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

random V f;(z).

e The so-called proximal term v (x) adds more general-
ity to the model. For instance, if ¢(x) is the indicator
function of a convex set, then problem (1.1) becomes
constraint minimization; if ¢)(x) = ||z||1, then we can
allow problem (1.1) to perform feature selection. In
general, ¥(x) has to be a simple function where the
projection operation arg min_{¢(z) + ﬁ”x — z0|%}
is efficiently computable. At a first reading of this pa-
per, one can assume (x) = 0 for simplicity.

Many non-convex machine learning problems fall into
problem (1.1). Most notably, training deep neural networks
and classifications with sigmoid loss correspond to (1.1)
where neither f;(x) or f(x) is convex. However, our un-
derstanding to this challenging non-convex problem is very
limited.

1.1 Strongly Non-Convex Optimization

Let L be the smoothness parameter for each f;(z), meaning
all the eigenvalues of V2 f;(x) lie in [~ L, L].!

We denote by o € [0, L] the strong-nonconvexity parameter
of f(z) = L 3" | fi(x), meaning that

n

all the eigenvalues of V2 f(x) lie in [0, L].

We emphasize that parameter o is analogous to the strong-
convexity parameter p for convex optimization, where all
the eigenvalues of V2 f(z) lie in [y, L] for some p > 0.

We wish to find an e-approximate stationary point (a.k.a.
critical point) of F'(x), that is

a point z satisfying ||G(z)]| < &

where G(x) is the so-called gradient mapping of F'(z) (see
Section 2 for a formal definition). In the special case of
¥(-) = 0, gradient mapping G(z) is the same as gradient
V f(x), so x satisfies |V f(x)|| <.

Since f(+) is o-strongly nonconvex, any e-approximate sta-
tionary point is automatically also an (e, o)-approximate
local minimum — meaning that the Hessian of the output
point V2 f(z) = —ol is approximately positive semidefi-
nite (PSD).

'This definition also applies to functions f(z) that are not
twice differentiable, see Section 2 for details.
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1.2 Motivations and Remarks

e We focus on strongly non-convex optimization because
introducing this parameter o allows us to perform a
more refined study of non-convex optimization. If o
equals L then L-strongly nonconvex optimization is
equivalent to the general non-convex optimization.

e We focus only on finding stationary points as op-
posed to local minima, because in a recent study —
see Appendix A— researchers have shown that finding
(e, d)-approximate local minima reduces to finding e-
approximate stationary points in an O(J)-strongly non-
convex function.

e Parameter o is often not constant and can be much
smaller than L. For instance, second-order methods of-
ten find (e, v/¢)-approximate local minima (Nesterov,
2008) and this corresponds to o = /.

1.3 Known Results

Despite the widespread use of nonconvex models in ma-
chine learning and related fields, our understanding to non-
convex optimization is still very limited. Until recently,
nearly all research papers have been mostly focusing on ei-
theroc =0oro = L:

e If 0 = 0, the accelerated SVRG method (Shalev-
Shwartz, 2016; Allen-Zhu & Yuan, 2016) finds x sat-
isfying F(z) — F(z*) < e, in gradient complexity
O(n + n®*\/L/e)2 This result is irrelevant to this
paper because f(x) is simply convex.

e If o = L, the SVRG method (Allen-Zhu & Hazan,
2016) finds an e-approximate stationary point of F'(x)
in gradient complexity O(n + n?/3L/e?).

o If 0 = L, gradient descent finds an e-approximate sta-
tionary point in gradient complexity O(nL/e?).

e If 0 = L, stochastic gradient descent finds an -approx.
stationary point in gradient complexity O(L?/e%).

Throughout this paper, we refer to gradient complexity
as the total number of stochastic gradient computations
V fi(x) and proximal computations y <— Proxy ,(z) =
arg min, {y)(y) + 5;lly — =}

Very recently, it was observed by two independent
groups (Agarwal et al., 2017; Carmon et al., 2016) —
although implicitly, see Section 2.1— that for solving the
o-strongly nonconvex problem, one can repeatedly regu-
larize F'(x) to make it o-strongly convex, and then apply
the accelerated SVRG method to minimize this regularized

>We use O to hide poly-logarithmic factors in n, L, 1 /.

*Some authors also refer to them as incremental first-order or-
acle (IFO) and proximal oracle (PO) calls. In most machine learn-
ing applications, each IFO and PO call can be implemented to run
in time O(d) where d is the dimension of the model, or even in
time O(s) if s is the average sparsity of the data vectors.
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Figure 1: Comparison to prior works

function. Under mild assumption o > €2, this approach

e finds an e-approximate stationary point in gradient

complexity O ( ”"*”2%) .

We call this method repeatSVRG in this paper. Unfortu-

nately, repeatSVRG is even slower than the vanilla SVRG
for ¢ = L by a factor n'/3, see Figure 1.

Remark on SGD. Stochastic gradient descent (SGD) has
a slower convergence rate (i.e., in terms of 1/ ¢%) than other
cited first-order methods (i.e., in terms of 1/ €?), see for
instance (Ghadimi & Lan, 2015). However, the complexity
of SGD does not depend on n and thus is incomparable to
gradient descent, SVRG, or repeatSVRG.4 This is one of
the main motivations to study how to reduce the complexity
of non-SGD methods, especially in terms of n.

1.4 Our New Results

In this paper, we identify an interesting dichotomy with re-
spect to the spectrum of the nonconvexity parameter o €
[0, L]. In particular, we showed that if ¢ > L/\/n, then
our new method Natasha finds an e-approximate station-
ary point of F'(x) in gradient complexity
2/3(72,\1/3
Ofnlog + M) |
€ €
In other words, together with repeatSVRG, we have im-
proved the gradient complexity for o-stringly nonconvex
optimization to’
~/ . (n¥Y Lo n2/3(L20)'/3
0] ( min { 5 5 })
€ €
and the first term in the min is smaller if o < L/y/n and
the second term is smaller if o > L//n. We illustrate our

*In practice, there are examples in non-convex empirical risk
minimization (Allen-Zhu & Hazan, 2016) and in training neural
networks (Allen-Zhu & Hazan, 2016; Reddi et al., 2016) where
SVRG can outperform SGD. Of course, for deep learning tasks,
SGD remains to be the best practical method of choice.

>We remark here that this is under mild assumptions for & be-
ing sufficiently small. For instance, the result of (Agarwal et al.,
2017; Carmon et al., 2016) requires g2 < o. In our result, the
term n log é disappears when £° < L% /n.
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performance improvement in Figure 1. Our result matches
that of SVRG for ¢ = L, and has a much simpler analysis.

Additional Results. One can take a step further and ask
what if each function f;(z) is (¢1, ¢3)-smooth for parame-
ters /1, /> > o, meaning that all the eigenvalues of V2 f;()
lie in [7627 61}

We show that a variant of our method, which we call

Natasha®!' solves this more refined problem of (1.1) with

/: /:
total gradient complexity O(n log% + %) as

long as % <n?

Remark 1.1. In applications, ¢1 and ¢5 can be of very dif-
ferent magnitudes. The most influential example is finding
the leading eigenvector of a symmetric matrix. Using the
so-called shift-and-invert reduction (Garber et al., 2016),
computing the leading eigenvector reduces to the con-
vex version of problem (1.1), where each f;(x) is (A, 1)-
smooth for A < 1. Other examples include all the ap-
plications that are built on shift-and-invert, including high
rank SVD/PCA (Allen-Zhu & Li, 2016), canonical compo-
nent analysis (Allen-Zhu & Li, 2017a), online matrix learn-
ing (Allen-Zhu & Li, 2017b), and approximate local min-
ima algorithms (Agarwal et al., 2017; Carmon et al., 2016).

Mini-Batch. Our result generalizes trivially to the mini-
batch stochastic setting, where in each iteration one com-
putes V f;(x) for b random choices of index i € [n] and av-
erage them. The stated gradient complexities of Natasha
and Natasha™" can be adjusted so that the factor n?/3 is
replaced with n2/3p'/3,

1.5 Our Techniques

Let us first recall the main idea behind stochastic variance-
reduced methods, such as SVRG (Johnson & Zhang, 2013).

The SVRG method divides iterations into epochs, each of
length n. It maintains a snapshot point X for each epoch,
and computes the full gradient V f(X) only for snapshots.
Then, in ea~ch iteration ¢ at point z;, SVRG defines gradient
estimator V = V f;(z;) — V f;(X) + V f(X) which satisfies
E;[V] = Vf(z), and performs proximal update z,, <

Proxy, (mt — aV) for some learning rate «. (Recall that
if ¢(-) = 0 then we would have z; 1 « x; — aV.)

In nearly all the aforementioned results for noncon-
vex optimization, researchers have either directly applied
SVRG (Allen-Zhu & Hazan, 2016) (for the case o = L),
or repeatedly applied SVRG (Agarwal et al., 2017; Carmon
et al., 2016) (for general o € [0, L]). This puts some lim-
itation in the algorithmic design, because SVRG requires
each epoch to be of length exactly n.°

The epoch length of SVRG is always 7 (or a constant mul-
tiple of n in practice), because this ensures the computation of
V is of amortized gradient complexity O(1). The per-iteration
complexity of SVRG is thus the same as the traditional stochastic

Our New Idea. In this paper, we propose Natasha and
Natashaf! two methods that are no longer black-box re-
ductions to SVRG. Both of them still divide iterations into
epochs of length n, and compute gradient estimators V the
same way as SVRG. However, we do not apply compute
z; — oV directly.

e In our base algorithm Natasha, we divide each epoch
into p sub-epochs, each with a starting vector X. Our
theory suggests the choice p ~ ( Z—zn)l/ 3. Then, we
replace the use of V with V + 20(z; — X). This is
equivalent to replacing f(x) with its regularized version
f(x)+ol|x —X]||?, where the center X varies across sub-
epochs. We provide pseudocode in Algorithm 1 and il-
lustrate it in Figure 2.

We view this additional term 20 (x; — X) as a type of
retraction, which stabilizes the algorithm by moving
the vector a bit in the backward direction towards X.

e In our full algorithm Natasha™", we add one more in-

gredient on top of Natasha. That is, we perform up-
dates z;41 < Proxy o (2 — aV) with respect to a dif-
ferent sequence {z;}, and then define z; = %zt + %5(\
and compute gradient estimators V at points x;. We
provide pseudocode in Algorithm 2 in the appendix.

We view this averaging x; = %zt + %i as another type
of retraction, which stabilizes the algorithm by mov-
ing towards X. The technique of computing gradients at
points z; but moving a different sequence of points z; is
related to the Katyusha momentum recently developed
for convex optimization (Allen-Zhu, 2017).

1.6 Other Related Work

Methods based on variance-reduced stochastic gradients
were first introduced for convex optimization. The first
such method is SAG by Schmidt et al (Schmidt et al.,
2013). The two most popular choices for gradient estima-
tors are the SVRG-like one we adopted in this paper (inde-
pendently introduced by (Johnson & Zhang, 2013; Zhang
et al., 2013), and the SAGA-like one introduced by (De-
fazio et al., 2014). In nearly all applications, the results
proven for SVRG-like estimators and SAGA-like estima-
tors are simply exchangeable (therefore, the results of this
paper naturally generalize to SAGA-like estimators).

The first “non-convex use” of variance reduction is by
Shalev-Shwartz (Shalev-Shwartz, 2016) who assumes that
each f;(z) is non-convex but their average f(x) is still con-
vex. This result has been slightly improved to several more
refined settings (Allen-Zhu & Yuan, 2016). The first truly
non-convex use of variance reduction (i.e., for f(z) being
also non-convex) is independently by (Allen-Zhu & Hazan,
2016) and (Reddi et al., 2016). First-order methods only

gradient descent (SGD).
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Figure 2: One full epoch of Natasha. The n iterations are divided into p sub-epochs, each consisting of m = n/p steps.

find stationary points (unless there is extra assumption on
the randomness of the data), and converge no faster than
1/€2.

When the second-order Hessian information is used, one
can (1) find local minima instead of stationary points, and
(2) improve the 1/e? rate to 1/¢!-5. The first such re-
sult is by cubic-regularized Newton’s method (Nesterov,
2008); however, its per-iteration complexity is very high.
Very recently, two independent groups of authors tackled
this problem from a somewhat similar viewpoint (Carmon
et al., 2016; Agarwal et al., 2017): if the computation of
Hessian-vector multiplications (i.e., (V2f;(z))v) is on the
same order of the computation of gradients V f;(z).” then
one can obtain a (e, /2)-approximate local minimum in
gradient complexity 6(6% + %) if we use big-O to
also hide dependencies on the smoothness parameters.

Other related papers include Ge et al. (Ge et al., 2015)
where the authors showed that a noise-injected version of
SGD converges to local minima instead of critical points,
as long as the underlying function is “strict-saddle.” Their
theoretical running time is a large polynomial in the dimen-
sion. Lee et al. (Lee et al., 2016) showed that gradient
descent, starting from a random point, almost surely con-
verges to a local minimum if the function is “strict-saddle”.
The rate of convergence required is somewhat unknown.

2 Preliminaries

Throughout this paper, we denote by || - || the Euclidean
norm. We use i € [n] to denote that 4 is generated from
[n] = {1,2,...,n} uniformly at random. We denote by
V f(z) the full gradient of function f if it is differentiable,
and Jf(x) any subgradient if f is only Lipschitz continu-
ous at point . We let 2* be any minimizer of F'(z).

Recall some definitions on strong convexity (SC), strongly
nonconvexity, and smoothness.

Definition 2.1. For a function f: R — R,

A lot of interesting problems satisfy this property, including
training neural nets.

o fis o-strongly convex if Va,y € RY, it satisfies
) = f(@) + (0f @)y — )+ S~ yl* .
o fis o-strongly nonconvex if Va,y € R?, it satisfies
F) = f@) + 0f @),y —2) = Zlla —y|* .
o fis ({1,0ls)-smooth if Vx,y € RY, it satisfies
f@) +(Vf(z),y —a) + Fllz —yl* = f(y)

1
> [(@)+ (VI @)y —2) — L~y
e fis L-smooth if it is (L, L)-smooth.

The (¢1,¢3)-smoothness parameters were introduced
in (Allen-Zhu & Yuan, 2016) to tackle the convex setting
of problem (1.1). The notion of strong nonconvexity is
also known as “almost convexity (Carmon et al., 2016)”
or “lower smoothness (Allen-Zhu & Yuan, 2016).” We re-
frain from using the name “almost convexity” because it
coincides with several other non-equivalent definitions in
optimization literatures.

Definition 2.2. Given a parameter n > 0, the gradient
mapping of F'(-) in (1.1) at point x is

o,
Gy(x) := 5(36—95)

where o = argmin, {8(y) +(V £(2),5) + £ lly —all?}.
In particular, if Y(-) = 0, then G,(x) = V f(x).

The following theorem for the SVRG method can be found
for instance in (Allen-Zhu & Yuan, 2016), which is built on
top of the results (Shalev-Shwartz, 2016; Lin et al., 2015;
Frostig et al., 2015):

Theorem 2.3 (SVRG). Let G(y) :=(y)+ = >0, g:(y)
be o-strongly convex, then the SVRG method finds a point
y satisfying G(y) — G(y*) < ¢
e with gradient complexity O((n + ﬁ—j) log %), if each
gi(+) is L-smooth (for L > o); or

e with gradient complexity O((n + %) log %), if each
gi(+) is (L1, £2)-smooth (for £1,{5 > o).
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If one performs acceleration, the running times become

O(n +n3*\/L]o) and O(n + n®*(£1420)/4).
2.1 RepeatSVRG

We recall the idea behind a simple algorithm —that we call
repeatSVRG— which finds the c-approximate stationary
points for problem (1.1) when f(z) is o-strongly noncon-
vex. The algorithm is divided into stages. In each stage ¢,
consider a modified function Fy(x) := F(x)+o||x — x|
It is easy to see that F}(x) is o-strongly convex, so one can
apply the accelerated SVRG method to minimize F;(z).
Let ;41 be any sufficiently accurate approximate mini-
mizer of Fy(x).8

Now, one can prove (c.f. Section4) that z;; is an
O(o||zt — x441]|)-approximate stationary point for F'(z).
Therefore, if o||x: — x41|| < € we can stop the algorithm
because we have already found an O(e)-approximate sta-
tionary point. If o||lxy — xiy1|| > €, then it must sat-
isfy that F'(z;) — F(z441) > ollzy — 2441 |> > Q(2 /o),
but this cannot happen for more than 7' = O( % (F (zo) —
F*) stages. Therefore, the total gradient complexity is
T multiplied with the complexity of accelerated SVRG
in each stage (which is O(n + n3/4\/L/c) according to
Theorem 2.3).

Remark 2.4. The complexity of repeatSVRG can be in-
ferred from (Agarwal et al., 2017; Carmon et al., 2016), but
is not explicitly stated. For instance, the paper (Carmon
et al., 2016) does not allow F'(z) to have a non-smooth
proximal term v (x), and applies accelerated gradient de-
scent instead of accelerated SVRG.

3 Our Algorithms

We introduce two variants of our algorithms: (1) the base
method Natasha targets on the simple regime when f(x)
and each f;(x) are both L-smooth, and (2) the full method
Natasha™!' targets on the more refined regime when f(z)
is L-smooth but each f;(x) is ({1, {3)-smooth.

Both methods follow the general idea of variance-reduced
stochastic gradient descent: in each inner-most iteration,
they compute a gradient estimator V that is of the form
V = Vf(X)=V fi(X)+V fi(x) and satisfies E;c ., [V] =
Vf(x). Here, X is a snapshot point that is changed once
every n iterations (i.e., for each different k = 1,2,...,T"
in the pseudocode), and we call it a full epoch for every
distinct k. Notice that the amortized gradient complexity
for computing V is O(1) per-iteration.

Base Method. In Natasha (see Algorithm 1), as illus-
trated by Figure 2, we divide each full epoch into p sub-
epochs s = 0,1,...,p — 1, each of length m = n/p. In

8Since the accelerated SVRG method has a linear convergence
rate for strongly convex functions, the complexity to find such
z¢+1 only depends logarithmically on this accuracy.

each sub-epoch s, we start with a point zy = X, and replace
f(x) with its regularized version f*(z) := f(z) + oljz —
X||%. Then, in each iteration ¢ of the sub-epoch s, we

e compute gradient estimator V with respect to f*(z¢),

e perform update z,,; = argmin, {¢(y) + (V,y) +
o|ly — a;||*} with learning rate c.

Effectively, the introduction of the regularizer o||z — X||?
makes sure that when performing update z; < z4;1, we
also move a bit towards point X (i.e., retraction by regular-
ization). Finally, when the sub-epoch is done, we define X
to be a random one from {xq, ..., Tm_1}.

Full Method. In Natasha™! (see full version), we also
divide each full epoch into p sub-epochs. In each sub-epoch
s, we start with a point £y = 2o = X and define f*(z) :=
f(x) + o||z — X||>. However, this time in each iteration ¢,
we

e compute gradient estimator V with respect to f* (z4),

e perform update z;1; = argmin, {¢(y) + (V,y) +
>y — z¢||*} with learning rate c, and

e choose Ty 41 = $2441 + 3X.

Effectively, the regularizer o||z —x]|?> makes sure that when
performing updates, we move a bit towards point X (i.e.,
retraction by regularization); at the same time, the choice
Ti41 = 3241 + 53X also helps us move towards point X
(i.e., retraction by the so-called “Katyusha momentum’?).
Finally, when the sub-epoch is over, we define X to be a
random one from the set {xq, ..., Zm_1}, and move to the
next sub-epoch.

4 A Sufficient Stopping Criterion

In this section, we present a sufficient condition for finding
approximate stationary points in a o-strongly nonconvex
function. Lemma 4.1 below states that, if we regularize the
original function and define G(x) := F(z) + o||z — X||?
for an arbitrary point X, then the minimizer of G(z) is an
approximate saddle-point for F'(x).

Lemma 4.1. Suppose G(y) = F(y) +o|ly —X||* for some
given point X, and let ©* be the minimizer of G(y). If we
minimize G(y) and obtain a point x satisfying

G(x) — G(z*) < %0,
then for every 1 € (0, sy we have the gradient
mapping
Gy (@)II* < 120°[|2* —X||* + O(6?) .

Notice that when 1 (2) = 0 this lemma is trivial, and can
be found for instance in (Carmon et al., 2016). The main

°The idea for this second kind of retraction, and the idea of
having the updates on a sequence z; but computing gradients at
points x4, is largely motivated by our recent work on the Katyusha
momentum and the Katyusha acceleration (Allen-Zhu, 2017).
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Algorithm 1 Natasha(z?,p, T', a)

Input: starting vector 2
Output: vector x°.
I: X 2%, m«n/p; X « [|;
2: fork < 1to T’ do
3: X+ X p— V),

4 fors < Otop—1do

5: zo X X + [X,X];

6: fort < 0tom — 1do

7: i < arandom choice from {1,--- ;n}.

8 V - Vi) = V) + p+ 20(z: - )

9: Typ1 = argmingcga {v@) + o5 lly — ) +
10: end for

11: X <« arandom choice from {xg, z1,...,Zm—1};
12: end for

13: end for

14: X < arandom vector in X;
15: z°"* +— an approximate minimizer of G(y) :=
16: return z°"t.

, sub-epoch count p € [n], epoch count 7", learning rate o > 0.

o T’ full epochs

& p sub-epochs in each epoch

& m iterations in each sub-epoch

o EfV) = V(f(@) + olle —%I%)]

Tt

(V.y)}

< for practitioners, choose the average

& for practitioners, choose the last

F(y) + o|ly — x||? using SVRG.

o it suffices to run SVRG for O(n log é) iterations.

technical difficulty arises in order to deal with ¢(z) # 0.
The proof is included in the full version.

S Base Method: Analysis for One Full Epoch

In this section, we consider problem (1.1) where each f;(x)
is L-smooth and F'(x) is o-strongly nonconvex. We use
our base method Natasha to minimize F'(z), and analyze
its behavior for one full epoch in this section. We assume
o < L without loss of generality, because any L-smooth
function is also L-strongly nonconvex.

Notations. We introduce the following notations for anal-
ysis purpose only.
e Let X® be the vector X at the beginning of sub-epoch s.
e Let z} be the vector z; in sub-epoch s.

e Let i be the index ¢ € [n] in sub-epoch s at iteration ¢.

o Let f5(z) := f(z) + ollz = X*|]%, F*(x) := F(z) +
ollx —%*||?, and x¢ := arg min, { F*(z)}.
o Let Vfs(af) := Vfi(z$) =V (X)+Vf(X)+20(z,—

X) where i = .

o Let Vf(z5) := Vfias) —

y — oS
1 =1j.

Vfi(x) + Vf(X) where

We obviously have that f*(z) and F'*(x) are o-strongly
convex, and f*(z) is (L 4 20)-smooth.
5.1 Variance Upper Bound

The following lemma gives an upper bound on the variance
of the gradient estimator V f*(z3):

Lemma 5.1. We have E;: [ Vs (zg) — VIs@))?] <
pL2||z; — |2 + pL? i, IRF — 112

Proof. We have

Ei; [V (21) = V£ @)°] = B [IV£(a3) — VF@)]
= Eic o) [ (V£i(@3) = VER) — (VF(5) - VEED) ]
< Eie o [|V£i (@) = VAR
< DB i [V fil) — V)]

- VAR

7S(\k+1||2 .

+ 240 Bienln [|| V£i(%Y)
X|* + pL? 35, X
Above, inequality @ is because for any random vector ¢ €
RY, it holds that E||¢ —E¢||? = E||¢||* — ||E¢||?; inequality
@ is because X° = X and for any p vectors ay, ag, . . ., a, €
R, it holds that fla +- -+ a, |2 < pllar |2+ - +play||*:
and inequality ® is because each f;(-) is L-smooth.

)
< pLP||zf —

5.2 Analysis for One Sub-Epoch

The following inequality is classically known as the “re-
gret inequality” for mirror descent (Allen-Zhu & Orecchia,
2017), and its proof is classical (see full version):

Fact 5.2. (Vf*(x),2i,y — u) + d(aj,) — v(u) <
lzs—ull®>  lzipa—ul®  llzja =] for every u € RY
2a 2a 2a ry :

The following lemma is our main contribution for the base
method Natasha.

Lemma 5.3. As long as a < we have

E[(F @) - F*(a2))]

Fe(x®) — Fo(a3) 2 (N 1ok
E[ ) 4 apL (
ocam/2 +op I;)”X

2L+4<7

<

_S(\k+1||2>} .



Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter

Proof. We first compute that

Fo(atn) = F*(u) = () = () + 9(ai) — p(w)
< (@) + (V5 @) atn — o) + 52l — P
= [ (u) + (@in) — (u)
I R T
AV (@), 2 =)+ (i) — () G0

Above, inequality @ uses the fact that f*(-) is (L + 20)-
smooth; and inequality @ uses the convexity of f*(-). Now,
we take expectation with respect to 77 on both sides of (5.1),
and derive that:

i [F*(2541)] — F*(u)

2 V4 ~
< By [(V17(@) = V@), 2i = aii) + (VL @), af —w)
L+20, s .
+——l — 2|2+ () 7¢(U)}
@ S psy s s/ s s s 5 —u 2
<E; [<Vf (x) = VI (x]), xf — i) + %
loi —wul® 1 L4209 o oo
_HT—(%_ 5 )||:rt+1—xt“]
< v z; — ul? 5., — ul|?
< Eq [aHVf @) - V)| + [ P 1>l fa - I
@ s—1
2By [apLlal -7 + apl? 3 R — R
k=0
o7 —ul®  [lzfa —uH?] o)
2a 20 . .

Above, inequality @ is follows from (5.1) together with
the fact that E;: [V f*(z})] = V f*(x}) implies

E;; [(st(mf),mf+1 —a) + (V[ (xF),z] — u)]
= By [(Vf* (@) =V (@7), 2f —aisn) RV (@), 251 —u)] 5
inequality @ uses Fact 5.2; inequality @ uses o < ﬁ
together with Young’s inequality (a,b) < 1|a/? + 3|
and inequality @ uses Lemma 5.1.

Finally, choosing © = z3 to be the (unique) minimizer of

F#(-) = f5(-) + 9(-), and telescoping inequality (5.2) for
=0,1,...,m — 1, we have
m—1
B[S (F (i) - F*(a2) ]
t=1
[ 2
<E[ 3 + (apL lzf —X°]
« t=0
s—1
+apl? Y IR 4’“*1”2)]
k=0
F*(R°) — F*(22) 2N ok k2
< — .
B[ raml (R &)

Above, the second inequality uses the fact that X**+! is cho-
sen from {xf, ..., 25, _;} uniformly at random, as well as

the o-strong convexity of F*(-).

i

Dividing both sides by m and rearranging the terms (using
— > 1), we have

2(7
[ P /\e+1 g(xi))]
B[ CELEED (S -x)] . O

k=0

5.3 Analysis for One Full Epoch

One can telescope Lemma 5.3 for an entire epoch and ar-
rive at the following lemma (see full version):

Lemma 54. Ifa < azﬁandozg
have

iﬁhwwamm}wﬂﬂ%—ﬂ%
s=0

o
2L+4 , p2Lz We

6 Base Method: Final Theorem

We are now ready to state and prove our main convergence
theorem for Natasha:

Theorem 1. Suppose in (1.1), each f;(x) is L-smooth
and F(x) is o-strongly nonconvex for o < L. Then, if

2 2
L <np=0((%n)"?) anda = O(557z ). our base
method Natasha outputs a point x°" satisfying

E[lG, (@*")|1?] < 0 (™™= ) - (F(@®) — F*) .

T'n
for every n € (O, m} In other words, to obtain
E[||G,(z°"")||?] < €2, we need gradient complexity

2,11/3,,2/3
(L20) Pn* (F(z9) —F*)) .

1
O(nlog7+ 3
€ €

In the above theorem, we have assumed o < L without
loss of generality because any L-smooth function is also
L-strongly nonconvex. Also, we have assumed L <n
and if this inequality does not hold, then one should apply
repeatSVRG for a faster running time (see Figure 1).

Proof of Theorem 1. We choose p = )1/3

(3zzm) " m =
n/p,and o = -2 = i < ﬁ, so we can apply
Lemma 5.4. If we telescope Lemma 5.4 for the entire al-
gorithm (which has T" full epochs), and use the fact that
XP of the previous epoch equals X° of the next epoch, we
conclude that if we choose a random epoch and a random

subepoch s, we will have
E[FS (X5 s e
[Fo) ~ Fa)] < -
By the o-strong convex1ty of F*(-), we have
2i|?] € 5 (F(2?) = F7).
Now, F*(x) = F(z)+ ol||z —X*||? satisfies the assumption

of G(x) in Lemma 4.1. If we use the SVRG method (see
Theorem 2.3) to minimize the convex function F*(x), we

2

Fox (F(2?) - F*) .

Elo|x* —
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get an output x°"t satisfying F'*(z°"t) — F*(25) < €20 in
gradient complexity O ((n + %) log1) <O(nlog?).
We can therefore apply Lemma 4.1 and conclude that this
output 2°"* satisfies

g

EIG,(+*)I) < 075 ) - (F(a®) ~ F)

= O( L) (F(a®) — F)
In other words, we obtain E[||G,, (z°"*)||?] < £? using
L2g)1/3p2/3 .

T'n = O(n+ E2o) P (Fa?) - F ))
computations of the stochastic gradients. Here, the additive
term n is because 77 > 1.

Finally, adding this with O(n log %), the gradient complex-

ity for the application of SVRG in the last line of Natasha,
we finish the proof of the total gradient complexity.

7 Full Method: Final Theorem

We analyze and state the main theorems for our full method
Natasha™!' in the full version of this paper.

8 Conclusion

Stochastic gradient descent and gradient descent (including
alternating minimization) have become the canonical meth-
ods for solving non-convex machine learning tasks. How-
ever, can we design new non-convex methods to run even
faster than SGD or GD?

This present paper tries to tackle this general question, by
providing a new Natasha method which is intrinsically dif-
ferent from GD or SGD. It runs faster than GD and SVRG-
based methods at least in theory. We hope that this could
be a non-negligible step towards our better understanding
of non-convex optimization.

Finally, our results give rise to an interesting dichotomy in
the best-known complexity of first-order non-convex opti-
mization: the complexity scales with n%/4 for ¢ < L/\/n
and with n%/3 for o > L/+/n. It remains open to investi-
gate whether this dichotomy is intrinsic, or we can design
a more efficient algorithm that outperforms both.
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