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Abstract
We study k-GenEV, the problem of finding the
top k generalized eigenvectors, and k-CCA, the
problem of finding the top k vectors in canonical-
correlation analysis. We propose algorithms
LazyEV and LazyCCA to solve the two problems
with running times linearly dependent on the in-
put size and on k. Furthermore, our algorithms
are doubly-accelerated: our running times de-
pend only on the square root of the matrix condi-
tion number, and on the square root of the eigen-
gap. This is the first such result for both k-
GenEV or k-CCA. We also provide the first gap-
free results, which provide running times that de-
pend on 1/

√
ε rather than the eigengap.

1 Introduction
The Generalized Eigenvector (GenEV) problem and the
Canonical Correlation Analysis (CCA) are two fundamen-
tal problems in scientific computing, machine learning, op-
erations research, and statistics. Algorithms solving these
problems are often used to extract features to compare
large-scale datasets, as well as used for problems in regres-
sion (Kakade & Foster, 2007), clustering (Chaudhuri et al.,
2009), classification (Karampatziakis & Mineiro, 2014),
word embeddings (Dhillon et al., 2011), and many others.

GenEV. Given two symmetric matrices A,B ∈ Rd×d
whereB is positive definite. The GenEV problem is to find
generalized eigenvectors v1, . . . , vd where each vi satisfies

vi ∈ arg max
v∈Rd

∣∣v>Av∣∣ s.t.
{
v>Bv = 1
v>Bvj = 0 ∀j ∈ [i− 1]

The values λi
def
= v>i Avi are known as the generalized

eigenvalues, and it satisfies |λ1| ≥ · · · |λd|. Following the
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tradition of (Wang et al., 2016; Garber & Hazan, 2015), we

assume without loss of generality that λi ∈ [−1, 1].

CCA. Given matrices X ∈ Rn×dx , Y ∈ Rn×dy and de-
noting by Sxx = 1

nX
>X , Sxy = 1

nX
>Y , Syy = 1

nY
>Y ,

the CCA problem is to find canonical-correlation vectors
{(φi, ψi)}ri=1 where r = min{dx, dy} and each pair

(φi, ψi) ∈ arg max
φ∈Rdx ,ψ∈Rdy

{
φ>Sxyψ

}
such that

{
φ>Sxxφ = 1 ∧ φ>Sxxφj = 0 ∀j ∈ [i− 1]
ψ>Syyψ = 1 ∧ ψ>Syyψj = 0 ∀j ∈ [i− 1]

The values σi
def
= φ>i Sxyψi ≥ 0 are known as the

canonical-correlation coefficients, and

1 ≥ σ1 ≥ · · · ≥ σr ≥ 0 is always satisfied.

It is a fact that solving CCA exactly can be reduced to solv-
ing GenEV exactly, if one defines B = diag{Sxx, Syy} ∈
Rd×d andA = [[0, Sxy]; [S>xy, 0]] ∈ Rd×d for d def

= dx+dy;
see Lemma 2.3. (This reduction does not always hold if
the generalized eigenvectors are computed only approxi-
mately.)

Despite the fundamental importance and the frequent ne-
cessity in applications, there are few results on obtaining
provably efficient algorithms for GenEV and CCA until
very recently. In the breakthrough result of Ma, Lu and
Foster (Ma et al., 2015), they proposed to study algorithms
to find top k generalized eigenvectors (k-GenEV) or top k
canonical-correlation vectors (k-CCA). They designed an
alternating minimization algorithm whose running time is
only linear in the input matrix sparsity and nearly-linear in
k. Such algorithms are very appealing because in real-life
applications, it is often only relevant to obtain top correla-
tion vectors, as opposed to the less meaningful vectors in
the directions where the datasets do not correlate. Unfortu-
nately, the method of Ma, Lu and Foster has a running time
that linearly scales with κ and 1/gap, where

• κ ≥ 1 is the condition number of matrix B in GenEV,
or of matrices X>X,Y >Y in CCA; and

• gap ∈ [0, 1) is the eigengap λk−λk+1

λk
in GenEV, or

σk−σk+1

σk
in CCA.

These parameters are usually not constants and scale with
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the problem size.

Challenge 1: Acceleration
For many easier scientific computing problems, we are able
to design algorithms that have accelerated dependencies on
κ and 1/gap. As two concrete examples, k-PCA can be
solved with a running time linearly in 1/

√
gap as opposed

to 1/gap (Golub & Van Loan, 2012); computing B−1w
for a vector w can be solved in time linearly in

√
κ as

opposed to κ, where κ is the condition number of matrix
B (Shewchuk, 1994; Axelsson, 1985; Nesterov, 1983).

Therefore, can we obtain doubly-accelerated methods for
k-GenEV and k-CCA, meaning that the running times lin-
early scale with both

√
κ and 1/

√
gap? Before this paper,

for the general case k > 1, the method of Ge et al. (Ge
et al., 2016) made acceleration possible for parameter κ,
but not for parameter 1/gap (see Table 1).

Challenge 2: Gap-Freeness
Since gap can be even zero in the extreme case, can we
design algorithms that do not scale with 1/gap? Recall
that this is possible for the easier task of k-PCA. The block
Krylov method (Musco & Musco, 2015) runs in time linear
in 1/

√
ε as opposed to 1/

√
gap, where ε is the approxima-

tion ratio. There is no gap-free result previously known for
k-GenEV or k-CCA even for k = 1.

Challenge 3: Stochasticity
For matrix-related problems, one can usually obtain
stochastic running times which requires some notations to
describe.

Consider a simple task of computing B−1w for some vec-
tor w, where accelerated methods solve it in time linearly
in
√
κ for κ being the condition number of B. If B =

1
nX
>X is given in the form of a covariance matrix where

X ∈ Rn×d, then (accelerated) stochastic methods compute
B−1w in a time linearly in (1 +

√
κ′/n) instead of

√
κ,

where κ′ =
maxi∈[n]{‖Xi‖2}

λmin(B) ∈
[
κ, nκ

]
and Xi is the i-th

row of X . (See Lemma 2.6.) Since 1 +
√
κ′/n ≤ O(

√
κ),

stochastic methods are no slower than non-stochastic ones.

So, can we obtain a similar but doubly-accelerated
stochastic method for k-CCA?1 Note that, if the doubly-
accelerated requirement is dropped, this task is easier and
indeed possible, see Ge et al. (Ge et al., 2016). However,
since their stochastic method is not doubly-accelerated, in
certain parameter regimes, it runs even slower than non-
stochastic ones (even for k = 1, see Table 2).

Remark. In general, if designed properly, for worst case
running time:

• Accelerated results are usually better because they are

1 Note that a similar problem can be also asked for k-GenEV
when A and B are both given in their covariance matrix forms.
We refrain from doing it in this paper for notational simplicity.

no slower than non-accelerated ones in the worst-case.

• Gap-free results are better because they imply gap-
dependent ones.2

• Stochastic results are usually better because they are no
slower than non-stochastic ones in the worst-case.

1.1 Our Main Results

We provide algorithms LazyEV and LazyCCA that are
doubly-accelerated, gap-free, and stochastic.3

For the general k-GenEV problem, our LazyEV can be im-
plemented to run in time4

Õ
(knnz(B)

√
κ

√
gap

+
knnz(A) + k2d
√
gap

)
or

Õ
(knnz(B)

√
κ√

ε
+
knnz(A) + k2d√

ε

)
in the gap-dependent and gap-free cases respectively. Since
our running time only linearly depends on

√
κ and

√
gap

(resp.
√
ε), our algorithm LazyEV is doubly-accelerated.

For the general k-CCA problem, our LazyCCA can be im-
plemented to run in time

Õ
(knnz(X,Y ) ·

(
1 +

√
κ′/n

)
+ k2d

√
gap

)
or

Õ
(knnz(X,Y ) ·

(
1 +

√
κ′/n

)
+ k2d

√
ε

)
in the gap-dependent and gap-free cases respectively.
Here, nnz(X,Y ) = nnz(X) + nnz(Y ) and κ′ =
2 maxi{‖Xi‖2,‖Yi‖2}
λmin(diag{Sxx,Syy}) where Xi or Yi is the i-th row vector
of X or Y . Therefore, our algorithm LazyCCA is doubly-
accelerated and stochastic.

We fully compare our results with prior work in Table 2
(for k = 1) and Table 1 (for k ≥ 1), and summarize our
main contributions:

• For k > 1, we outperform all relevant prior works (see
Table 1). Moreover, no known method was doubly-
accelerated even in the non-stochastic setting.

• For k ≥ 1, we obtain the first gap-free running time.

• Even for k = 1, we outperform most of the state-of-
the-arts (see Table 2).

Note that for CCA with k > 1, previous result CCALin
only outputs the subspace spanned by the top k correlation
vectors but does not identify which vector gives the highest
correlation and so on. Our LazyCCA provides per-vector

2If a method depends on 1/ε then one can choose ε = gap
and this translates to a gap-dependent running time.

3Recalling Footnote 1, for notational simplicity, we only state
our k-GenEV result in non-stochastic running time.

4Throughout the paper, we use the Õ notation to hide poly-
logarithmic factors with respect to κ, 1/gap, 1/ε, d, n. We use
nnz(M) to denote the time needed to multiply M to a vector.
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Problem Paper Running time (× for outperformed) gap-free? negative EV?

k-GenEV

GenELin (Ge et al., 2016) Õ
( knnz(B)

√
κB

gap
+ knnz(A)+k2d

gap

)
× no no

LazyEV Theorem 4.3 Õ
( knnz(B)

√
κB√

gap
+ knnz(A)+k2d√

gap

)
no yes

LazyEV Theorem 4.4 Õ
( knnz(B)

√
κB√

ε
+ knnz(A)+k2d√

ε

)
yes yes

Problem Paper Running time (× for outperformed) gap-free? stochastic?

k-CCA

AppGrad (Ma et al., 2015) Õ
( knnz(X,Y )·κ+k2d

gap

)
(local conv.) × no no

CCALin (Ge et al., 2016) Õ
( knnz(X,Y )·

√
κ+k2d

gap

)
× no no

CCALin (Ge et al., 2016) Õ
( knnz(X,Y )·

(
1+
√
κ′/n

)
+k2d

gap

)
× no yes

LazyCCA (arXiv version) Õ
( knnz(X,Y )·

(
1+
√
κ′/n

)
+k2d

√
gap

)
no yes

LazyCCA (arXiv version) Õ
( knnz(X,Y )·

(
1+
√
κ′/n

)
+k2d

√
ε

)
yes yes

LazyCCA (arXiv version) Õ
(
knnz(X,Y ) ·

(
1 +

√
κ′√

gap·σk·(nnz(X,Y )/kd)1/4

))
no doubly

LazyCCA (arXiv version) Õ
(
knnz(X,Y ) ·

(
1 +

√
κ′√

ε·σk·(nnz(X,Y )/kd)1/4

))
yes doubly

Table 1: Performance comparison on k-GenEV and k-CCA.
In GenEV, gap =

λk−λk+1

λk
∈ [0, 1] and κB = λmax(B)

λmin(B)
> 1.

In CCA, gap =
σk−σk+1

σk
∈ [0, 1], κ =

λmax(diag{Sxx,Syy})
λmin(diag{Sxx,Syy}) > 1, κ′ = 2maxi{‖Xi‖2,‖Yi‖2}

λmin(diag{Sxx,Syy}) ∈ [κ, 2nκ], and σk ∈ [0, 1].

Remark 1. Stochastic methods depend on a modified condition number κ′. The reason κ′ ∈ [κ, 2nκ] is in Fact 2.5.

Remark 2. All non-stochastic CCA methods in this table have been outperformed because 1 +
√
κ′/n ≤ O(κ).

Remark 3. Doubly-stochastic methods are not necessarily interesting. We discuss them in Section 1.2.

guarantees on all the top k correlation vectors.

1.2 Our Side Results on Doubly-Stochastic Methods

Recall that when considering acceleration, there are two
parameters κ and 1/gap. One can also design stochas-
tic methods with respect to both parameters κ and 1/gap,
meaning that

with a running time proportional to 1 +

√
κ′/nc

√
gap

instead of 1+
√
κ′/n

√
gap (stochastic) or

√
κ√
gap (non-stochastic).

The constant c is usually 1/2. We call such methods
doubly-stochastic.

Unfortunately, doubly-stochastic methods are usually
slower than stochastic ones. Take 1-CCA as an example.
The best stochastic running time (obtained exclusively by

us) for 1-CCA is nnz(X,Y ) · Õ
( 1+
√
κ′/n

√
gap

)
. In contrast,

if one uses a doubly-stochastic method —either (Wang
et al., 2016) or our LazyCCA— the running time becomes
nnz(X,Y ) · Õ

(
1 +

√
κ′/n1/4

√
gap·σ1

)
. Therefore, for 1-CCA,

doubly-stochastic methods are faster than stochastic ones

only when κ′

σ1
≤ o(n1/2) .

The above condition is usually not satisfied. For instance,

• κ′ is usually around n for most interesting data-sets, cf.

the experiments of (Shalev-Shwartz & Zhang, 2014);

• κ′ is between n1/2 and 100n in all the CCA experi-
ments of (Wang et al., 2016); and

• by Fact 2.5 it satisfies κ′ ≥ d so κ′ cannot be smaller
than o(n1/2) unless d� n1/2.5 Even worse, parameter
σ1 ∈ [0, 1] is usually much smaller than 1. Note that σ1

is scaling invariant: even if one scales X and Y up by
the same factor, σ1 remains unchanged.

Nevertheless, to compare our LazyCCA with all relevant
prior works, we obtain doubly-stochastic running times for
k-CCA as well. Our running time matches that of (Wang
et al., 2016) when k = 1, and no doubly-stochastic running
time for k > 1 was known before our work.

1.3 Other Related Works

For the easier task of PCA and SVD, the first gap-free
result was obtained by Musco and Musco (Musco &
Musco, 2015), the first stochastic result was obtained by
Shamir (Shamir, 2015), and the first accelerated stochas-
tic result was obtained by Garber et al. (Garber & Hazan,
2015; Garber et al., 2016). The shift-and-invert precondi-
tioning technique of Garber et al. is also used in this paper.

For another related problem PCR (principle compo-

5Note that item (3) κ′ ≥ d may not hold in the more general
setting of CCA, see Remark A.1.
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Problem Paper Running time (× for outperformed) gap-free? negative EV?

1-GenEV

GenELin (Ge et al., 2016) Õ
( nnz(B)

√
κB

gap
+ nnz(A)

gap

)
× no no

LazyEV Theorem 4.3 Õ
( nnz(B)

√
κB√

gap
+ nnz(A)√

gap

)
no yes

LazyEV Theorem 4.4 Õ
( nnz(B)

√
κB√

ε
+ nnz(A)√

ε

)
yes yes

Problem Paper Running time (× for outperformed) gap-free? stochastic?

1-CCA

AppGrad (Ma et al., 2015) nnz(X,Y ) · Õ
(
κ
gap

)
× no no

CCALin (Ge et al., 2016) nnz(X,Y ) · Õ
(√

κ
gap

)
× no no

ALS (Wang et al., 2016) nnz(X,Y ) · Õ
( √

κ
gap2

)
× no no

SI (Wang et al., 2016) nnz(X,Y ) · Õ
( √

κ√
gap·σ1

)
× no no

CCALin (Ge et al., 2016) nnz(X,Y ) · Õ
( 1+√κ′/n

gap

)
× no yes

ALS (Wang et al., 2016) nnz(X,Y ) · Õ
( 1+√κ′/n

gap2

)
× no yes

LazyCCA (arXiv version) nnz(X,Y ) · Õ
( 1+√κ′/n
√
gap

)
no yes

LazyCCA (arXiv version) nnz(X,Y ) · Õ
( 1+√κ′/n

√
ε

)
yes yes

SI (Wang et al., 2016)
nnz(X,Y ) · Õ

(
1 +

√
κ′/n1/4
√
gap·σ1

)
(see Remark 3)

no doubly

LazyCCA (arXiv version) nnz(X,Y ) · Õ
(
1 +

√
κ′/n1/4
√
gap·σ1

)
no doubly

LazyCCA (arXiv version) nnz(X,Y ) · Õ
(
1 +

√
κ′/n1/4
√
ε·σ1

)
yes doubly

Table 2: Performance comparison on 1-GenEV and 1-CCA.
In GenEV, gap = λ1−λ2

λ1
∈ [0, 1] and κB = λmax(B)

λmin(B)
> 1.

In CCA, gap = σ1−σ2
σ1

∈ [0, 1], κ =
λmax(diag{Sxx,Syy})
λmin(diag{Sxx,Syy}) > 1, κ′ = 2maxi{‖Xi‖2,‖Yi‖2}

λmin(diag{Sxx,Syy}) ∈ [κ, 2nκ], and σ1 ∈ [0, 1].

Remark 1. Stochastic methods depend on modified condition number κ′; the reason κ′ ∈ [κ, 2nκ] is in Def. 2.4.

Remark 2. All non-stochastic CCA methods in this table have been outperformed because 1 +
√
κ′/n ≤ O(κ).

Remark 3. Doubly-stochastic methods are not necessarily interesting. We discuss them in Section 1.2.

Remark 4. Some CCA methods have a running time dependency on σ1 ∈ [0, 1], and this is intrinsic and cannot be removed.
In particular, if we scale the data matrix X and Y , the value σ1 stays the same.

Remark 5. The only (non-doubly-stochastic) doubly-accelerated method before our work is SI (Wang et al., 2016) (for 1-CCA
only). Our LazyEV is faster than theirs by a factor Ω(

√
nκ/κ′ ×

√
1/σ1). Here, nκ/κ′ ≥ 1/2 and 1/σ1 ≥ 1 are two

scaling-invariant quantities usually much greater than 1.

nent regression), we recently obtained an accelerated
method (Allen-Zhu & Li, 2017) as opposed the previously
non-accelerated one (Frostig et al., 2016); however, the ac-
celeration techniques there are not relevant to this paper.

For GenEV and CCA, many scalable algorithms have been
designed recently (Ma et al., 2015; Wang & Livescu, 2015;
Michaeli et al., 2015; Witten et al., 2009; Lu & Foster,
2014). However, as summarized by the authors of CCALin,
these cited methods are more or less heuristics and do not
have provable guarantees. Furthermore, for k > 1, the
AppGrad method (Ma et al., 2015) only provides local con-
vergence guarantees and thus requires a warm-start whose

computational complexity is not discussed in their paper.

Finally, our algorithms on GenEV and CCA are based on
finding vectors one-by-one, which is advantageous in prac-
tice because one does not need k to be known and can stop
the algorithm whenever the eigenvalues (or correlation val-
ues) are too small. Known approaches for k > 1 cases
(such as GenELin, CCALin, AppGrad) find all k vectors at
once, therefore requiring k to be known beforehand. As a
separate note, these known approaches do not need the user
to know the desired accuracy a priori but our LazyEV and
LazyCCA algorithms do.
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2 Preliminaries
We denote by ‖x‖ or ‖x‖2 the Euclidean norm of vector
x. We denote by ‖A‖2, ‖A‖F , and ‖A‖Sq respectively the
spectral, Frobenius, and Schatten q-norm of matrix A (for
q ≥ 1). We write A � B if A,B are symmetric and A−B
is positive semi-definite (PSD), and write A � B if A,B
are symmetric but A − B is positive definite (PD). We de-
note by λmax(M) and λmin(M) the largest and smallest
eigenvalue of a symmetric matrix M , and by κM the con-
dition number λmax(M)/λmin(M) of a PSD matrix M .

Throughout this paper, we use nnz(M) to denote the time
to multiply matrix M to any arbitrary vector. For two ma-
tricesX,Y , we denote by nnz(X,Y ) = nnz(X)+nnz(Y ),
and by Xi or Yi the i-th row vector of X or Y . We
also use poly(x1, x2, . . . , xt) to represent a quantity that
is asymptotically at most polynomial in terms of vari-
ables x1, . . . , xt. Given a column orthonormal matrix
U ∈ Rn×k, we denote by U⊥ ∈ Rn×(n−k) the column
orthonormal matrix consisting of an arbitrary basis in the
space orthogonal to the span of U ’s columns.

Given a PSD matrixB and a vector v, v>Bv is theB-semi-
norm of v. Two vectors v, w are B-orthogonal if v>Bw =
0. We denote by B−1 the Moore-Penrose pseudoinverse
of B if B is not invertible, and by B1/2 the matrix square
root of B (satisfying B1/2 � 0). All occurrences of B−1,
B1/2 and B−1/2 are for analysis purpose only. Our final
algorithms only require multiplications of B to vectors.

Definition 2.1 (GenEV). Given symmetric matrices
A,B ∈ Rd×d where B is positive definite. The general-
ized eigenvectors ofA with respect toB are v1, . . . , vd,
where each vi is

vi ∈ arg max
v∈Rd

{∣∣v>Av∣∣ s.t.
v>Bv = 1
v>Bvj = 0 ∀j ∈ [i− 1]

}
The generalized eigenvalues λ1, . . . , λd satisfy λi =
v>i Avi which can be negative.

Following (Wang et al., 2016; Garber & Hazan, 2015), we
assume without loss of generality that λi ∈ [−1, 1].

Definition 2.2 (CCA). Given X ∈ Rn×dx , Y ∈ Rn×dy ,
letting Sxx = 1

nX
>X , Sxy = 1

nX
>Y , Syy = 1

nY
>Y ,

the canonical-correlation vectors are {(φi, ψi)}ri=1

where r = min{dx, dy} and for all i ∈ [r]:

(φi, ψi) ∈ arg max
φ∈Rdx ,ψ∈Rdy

{
φ>Sxyψ such that

{ φ>Sxxφ = 1 ∧ φ>Sxxφj = 0 ∀j ∈ [i− 1]
ψ>Syyψ = 1 ∧ ψ>Syyψj = 0 ∀j ∈ [i− 1]

}}
The corresponding canonical-correlation coefficients
σ1, . . . , σr satisfy σi = φ>i Sxyψi ∈ [0, 1].

We emphasize that σi always lies in [0, 1] and is scaling-
invariant. When dealing with a CCA problem, we also de-
note by d = dx + dy .

Lemma 2.3 (CCA to GenEV). Given a CCA problem with
matrices X ∈ Rn×dx , Y ∈ Rn×dy , let the canonical-
correlation vectors and coefficients be {(φi, ψi, σi)}ri=1

where r = min{dx, dy}. Define A =
(

0 Sxy

S>xy 0

)
and

B =
(
Sxx 0

0 Syy

)
. Then, the GenEV problem of A with re-

spect to B has 2r eigenvalues {±σi}ri=1 and correspond-

ing generalized eigenvectors
{(

φi

ψi

)
,
(
−φi

ψi

)}n
i=1

. The re-

maining dx + dy − 2r eigenvalues are zeros.

Definition 2.4. In CCA, let A and B be as defined in
Lemma 2.3. We define condition numbers

κ
def
= κB = λmax(B)

λmin(B) and κ′ def
= 2 maxi{‖Xi‖2,‖Yi‖2}

λmin(B) .

Fact 2.5. κ′ ∈ [κ, 2nκ] and κ′ ≥ d. (See full version.)

Lemma 2.6. Given matrices X ∈ Rn×dx , Y ∈ Rn×dy ,
let A and B be as defined in Lemma 2.3. For every w ∈
Rd, the Katyusha method (Allen-Zhu, 2017) finds a vector
w′ ∈ Rd satisfying ‖w′ −B−1Aw‖ ≤ ε in time

O
(
nnz(X,Y ) ·

(
1 +

√
κ′/n

)
· log

κ‖w‖2

ε

)
.

3 Leading Eigenvector via Two-Sided
Shift-and-Invert

We introduce AppxPCA±, the multiplicative approximation
algorithm for computing the two-sided leading eigenvector
of a symmetric matrix. AppxPCA± uses the shift-and-invert
framework (Garber & Hazan, 2015; Garber et al., 2016),
and shall become our building block for the LazyEV and
LazyCCA algorithms in the subsequent sections.

Our pseudo-code Algorithm 1 is a modification of Algo-
rithm 5 in (Garber & Hazan, 2015), and reduces the eigen-
vector problem to oracle calls to an arbitrary matrix inver-
sion oracle A. The main differences between AppxPCA±

and (Garber & Hazan, 2015) are two-fold.

First, given a symmetric matrix M , AppxPCA± simultane-
ously considers an upper-bounding shift together with a
lower-bounding shift, and try to perform power methods
with respect to (λI − M)−1 and (λI + M)−1. This al-
lows us to determine approximately how close λ is to the
largest and the smallest eigenvalues of M , and decrease λ
accordingly. In the end, AppxPCA± outputs an approximate
eigenvector of M that corresponds to a negative eigenvalue
if needed. Second, we provide a multiplicative-error guar-
antee rather than additive as appeared in (Garber & Hazan,
2015). Without such guarantee, our final running time will
depend on 1

gap·λmax(M) rather than 1
gap .6

6This is why the SI method of (Wang et al., 2016) also uses
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Algorithm 1 AppxPCA±(A,M, δ×, ε, p)

Input: A, an approximate matrix inversion method; M ∈ Rd×d, a symmetric matrix satisfying −I � M � I; δ× ∈
(0, 0.5], a multiplicative error; ε ∈ (0, 1), a numerical accuracy parameter; and p ∈ (0, 1), the confidence parameter.

1: ŵ0 ← RanInit(d); s← 0; λ(0) ← 1 + δ×; � ŵ0 is a random unit vector, see Def. 3.2
2: m1 ←

⌈
4 log

(
288dθ
p2

)⌉
, m2 ←

⌈
log
(

36dθ
p2ε

)⌉
; � θ is the parameter of RanInit, see Def. 3.2

3: ε̃1 ← 1
64m1

( δ×
48

)m1 and ε̃2 ← ε
8m2

( δ×
48

)m2

4: repeat � m1 = TPM(8, 1/32, p) and m2 = TPM(2, ε/4, p), see Lemma B.1
5: s← s+ 1;
6: for t = 1 to m1 do
7: Apply A to find ŵt satisfying

∥∥ŵt − (λ(s−1)I −M)−1ŵt−1

∥∥ ≤ ε̃1;

8: wa ← ŵm1
/‖ŵm1

‖; � wa is roughly (λ(s−1)I −M)−m1 ŵ0 then normalized
9: Apply A to find va satisfying

∥∥va − (λ(s−1)I −M)−1wa
∥∥ ≤ ε̃1;

10: for t = 1 to m1 do
11: Apply A to find ŵt satisfying

∥∥ŵt − (λ(s−1)I +M)−1ŵt−1

∥∥ ≤ ε̃1;

12: wb ← ŵm1
/‖ŵm1

‖; � wb is roughly (λ(s−1)I +M)−m1 ŵ0 then normalized
13: Apply A to find vb satisfying

∥∥vb − (λ(s−1)I +M)−1wb
∥∥ ≤ ε̃1;

14: ∆(s) ← 1
2 ·

1
max{w>a va,w>b vb}−ε̃1

and λ(s) ← λ(s−1) − ∆(s)

2 ;

15: until ∆(s) ≤ δ×λ
(s)

12
16: f ← s;
17: if the last w>a va ≥ w>b vb then
18: for t = 1 to m2 do
19: Apply A to find ŵt satisfying

∥∥ŵt − (λ(f)I −M)−1ŵt−1

∥∥ ≤ ε̃2;

20: return (+, w) where w def
= ŵm2

/‖ŵm2
‖.

21: else
22: for t = 1 to m2 do
23: Apply A to find ŵt satisfying

∥∥ŵt − (λ(f)I +M)−1ŵt−1

∥∥ ≤ ε̃2;

24: return (−, w) where w def
= ŵm2

/‖ŵm2
‖.

25: end if

We prove in full version the following theorem:

Theorem 3.1 (AppxPCA±, informal). Let M ∈ Rd×d be a
symmetric matrix with eigenvalues 1 ≥ λ1 ≥ · · · ≥ λd ≥
−1 and eigenvectors u1, . . . , ud. Let λ∗ = max{λ1,−λd}.
With probability at least 1− p, AppxPCA± produces a pair
(sgn,w) satisfying

• if sgn = +, then w is an approx. positive eigenvector:

w>Mw ≥
(

1− δ×
2

)
λ∗
∧ ∑

i∈[d]
λi≤(1−δ×/2)λ∗

(w>ui)
2 ≤ ε

• if sgn = −, then w is an approx. negative eigenvector:

w>Mw ≤ −
(

1−δ×
2

)
λ∗
∧ ∑

i∈[d]
λi≥−(1−δ×/2)λ∗

(w>ui)
2 ≤ ε

The number of oracle calls toA is Õ(log(1/δ×)), and each
time we call A it satisfies

shift-and-invert but depends on 1
gap·σ1

in Table 2.

• λmax(λ(s)I−M)
λmin(λ(s)I−M)

, λmax(λ(s)I+M)
λmin(λ(s)I+M)

∈ [1, 96
δ×

] and

• 1
λmin(λ(s)I−M)

, 1
λmin(λ(s)I+M)

≤ 48
δ×λ∗

.

We remark here that, unlike the original shift-and-invert
method which chooses a random (Gaussian) unit vector in
Line 1 of AppxPCA±, we have allowed this initial vector to
be generated from an arbitrary θ-conditioned random vec-
tor generator (for later use), defined as follows:

Definition 3.2. An algorithm RanInit(d) is a θ-
conditioned random vector generator if w = RanInit(d)
is a d-dimensional unit vector and, for every p ∈ (0, 1),
every unit vector u ∈ Rd, with probability at least 1− p, it
satisfies (u>w)2 ≤ p2θ

9d .

This modification is needed in order to obtain our efficient
implementations of GenEV and CCA. One can construct a
θ-conditioned random vector generator as follows:

Proposition 3.3. Given a PSD matrix B ∈ Rd×d, if we set
RanInit(d)

def
= B1/2v

(v>Bv)0.5
where v is a random Gaussian

vector, then RanInit(d) is a θ-conditioned random vector
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generator for θ = κB .

4 LazyEV: Generalized Eigendecomposition
In this section, we construct an algorithm LazyEV that,
given symmetric matrix M ∈ Rd×d, computes approxi-
mately the k leading eigenvectors ofM that have the largest
absolute eigenvalues. Then, for the original k-GenEV
problem, we set M = B−1/2AB−1/2 and run LazyEV.
This is our plan to find the top k leading generalized eigen-
vectors of A with respect to B.

Our algorithm LazyEV is formally stated in Algorithm 2.
The algorithm applies k times AppxPCA±, each time com-
puting an approximate leading eigenvector of M with a
multiplicative error δ×/2, and projects the matrix M into
the orthogonal space with respect to the obtained leading
eigenvector. We state our main approximation theorem be-
low.

Theorem 4.1 (informal). Let M ∈ Rd×d be a symmetric
matrix with eigenvalues λ1, . . . , λd ∈ [−1, 1] and corre-
sponding eigenvectors u1, . . . , ud, and |λ1| ≥ · · · ≥ |λd|.
If εpca is sufficiently small,7 LazyEV outputs a (column) or-
thonormal matrix Vk = (v1, . . . , vk) ∈ Rd×k which, with
probability at least 1− p, satisfies:

(a) ‖V >k U‖2 ≤ ε where U = (uj , . . . , ud) and j is the
smallest index satisfying |λj | ≤ (1− δ×)λk.

(b) For every i ∈ [k], (1−δ×)|λi| ≤ |v>i Mvi| ≤ 1
1−δ× |λi|.

Above, property (a) ensures the k columns of Vk have neg-
ligible correlation with the eigenvectors of M whose ab-
solute eigenvalues are ≤ (1− δ×)λk; property (b) ensures
the Rayleigh quotients v>i Mvi are all correct up to a 1±δ×
error. We in fact have shown two more useful properties in
the full version that may be of independent interest.

The next theorem states that, if M = B−1/2AB−1/2, our
LazyEV can be implemented without the necessity to com-
pute B1/2 or B−1/2.

Theorem 4.2 (running time). Let A,B ∈ Rd×d be two
symmetric matrices satisfying B � 0 and −B � A � B.
Suppose M = B−1/2AB−1/2 and RanInit(d) is defined
in Proposition 3.3 with respect to B. Then, the computa-
tion of V ← B−1/2LazyEV(A,M, k, δ×, εpca, p) can be
implemented to run in time

• Õ
(
knnz(B)+k2d+kΥ√

δ×

)
where Υ is the time to multiply

B−1A to a vector, or

• Õ
(
k
√
κBnnz(B)+knnz(A)+k2d√

δ×

)
if we use Conjugate gra-

dient to multiply B−1A to a vector.

7Meaning εpca ≤ O
(
poly(ε, δ×,

|λ1|
|λk+1|

, 1
d
)
)
. The complete

specifications of εpca is included in the full version. Since our final
running time only depends on log(1/εpca), we have not attempted
to improve the constants in this polynomial dependency.

Choosing parameter δ× as either gap or ε, our two main
theorems above immediately imply the following results
for the k-GenEV problem: (proved in full version)

Theorem 4.3 (gap-dependent GenEV, informal). Let
A,B ∈ Rd×d be two symmetric matrices satisfying B �
0 and −B � A � B. Suppose the generalized eigen-
value and eigenvector pairs of A with respect to B are
{(λi, ui)}di=1, and it satisfies 1 ≥ |λ1| ≥ · · · ≥ |λd|.
Then, LazyEV outputs V k ∈ Rd×k satisfying

V
>
k BV k = I and ‖V >k BW‖2 ≤ ε

in time Õ
(k√κBnnz(B) + knnz(A) + k2d

√
gap

)
Here, W = (uk+1, . . . , ud) and gap = |λk|−|λk+1|

|λk| .

Theorem 4.4 (gap-free GenEV, informal). In the same
setting as Theorem 4.3, our LazyEV outputs V k =

(v1, . . . , vk) ∈ Rd×k satisfying V
>
k BV k = I and

∀s ∈ [k] :
∣∣v>s Avs∣∣ ∈ [(1− ε)|λs|, |λs|1− ε

]
in time Õ

(k√κBnnz(B) + knnz(A) + k2d√
ε

)
.

5 Ideas Behind Theorems 4.1 and 4.2
In Section 5.1 we discuss how to ensure accuracy: that is,
why does LazyEV guarantee to approximately find the top
eigenvectors ofM . In the full version of this paper, we also
discuss how to implement LazyEV without compute B1/2

explicitly, thus proving Theorem 4.2.

5.1 Ideas Behind Theorem 4.1

Our approximation guarantee in Theorem 4.1 is a nat-
ural generalization of the recent work on fast iterative
methods to find the top k eigenvectors of a PSD ma-
trix M (Allen-Zhu & Li, 2016). That method is called
LazySVD and we summarize it as follows.

At a high level, LazySVD finds the top k eigenvectors one-
by-one and approximately. Starting with M0 = M , in the
s-th iteration where s ∈ [k], LazySVD computes approxi-
mately the leading eigenvector of matrix Ms−1 and call it
vs. Then, LazySVD projects Ms ← (I − vsv>s )Ms−1(I −
vsv
>
s ) and proceeds to the next iteration.

While the algorithmic idea of LazySVD is simple, the anal-
ysis requires some careful linear algebraic lemmas. Most
notably, if vs is an approximate leading eigenvector of
Ms−1, then one needs to prove that the small eigenvectors
of Ms−1 somehow still “embed” into that of Ms after pro-
jection. This is achieved by a gap-free variant of the Wedin
theorem plus a few other technical lemmas, and we rec-
ommend interested readers to see the high-level overview
section of (Allen-Zhu & Li, 2016).
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Algorithm 2 LazyEV(A,M, k, δ×, εpca, p)

Input: A, an approximate matrix inversion method; M ∈ Rd×d, a matrix satisfying −I � M � I; k ∈ [d], the desired
rank; δ× ∈ (0, 1), a multiplicative error; εpca ∈ (0, 1), a numerical accuracy; and p ∈ (0, 1), a confidence parameter.

1: M0 ←M ; V0 = [];
2: for s = 1 to k do
3: (∼, v′s)← AppxPCA±(A,Ms−1, δ×/2, εpca, p/k); � v′s is an approximate two-sided leading eigenvector of Ms−1

4: vs ←
(
(I − Vs−1V

>
s−1)v′s

)
/
∥∥(I − Vs−1V

>
s−1)v′s

∥∥; � project v′s to V ⊥s−1

5: Vs ← [Vs−1, vs];
6: Ms ← (I − vsv>s )Ms−1(I − vsv>s ) � we also have Ms = (I − VsV >s )M(I − VsV >s )

7: end for
8: return Vk.

In this paper, to relax the assumption thatM is PSD, and to
find leading eigenvectors whose absolute eigenvalues are
large, we have to make several non-trivial changes. On
the algorithm side, LazyEV uses our two-sided shift-and-
invert method in Section 3 to find the leading eigenvector
of Ms−1 with largest absolute eigenvalue. On the analysis
side, we have to make sure all lemmas properly deal with
negative eigenvalues. For instance:

• If we perform a projection M ′ ← (I − vv>)M(I −
vv>) where v correlates by at most ε with all eigenvec-
tors ofM whose absolute eigenvalues are smaller than a
threshold µ, then, after the projection, we need to prove
that these eigenvectors can be approximately “embed-
ded” into the eigenspace spanned by all eigenvectors of
M ′ whose absolute eigenvalues are smaller than µ+ τ .
The approximation of this embedding should depend on
ε, µ and τ .

The full proof of Theorem 4.1 is in the arXiv version. It re-
lies on a few matrix algebraic lemmas (including the afore-
mentioned “embedding lemma”).

6 Conclusion
In this paper we propose new iterative methods to solve
the generalized eigenvector and the canonical correlation
analysis problems. Our methods find the most significant k
eigenvectors or correlation vectors, and have running times
that linearly scales with k.

Most importantly, our methods are doubly-accelerated: the
running times have square-root dependencies both with re-
spect to the condition number of the matrix (i.e., κ) and
with respect to the eigengap (i.e., gap). They are the first
doubly-accelerated iterative methods at least for k > 1.
They can also be made gap-free, and are the first gap-free
iterative methods even for 1-GenEV or 1-CCA.

Although this is a theory paper, we believe that if imple-
mented carefully, our methods can outperform not only
previous iterative methods (such as GenELin, AppGrad,
CCALin), but also the commercial mathematics libraries
for sparse matrices of dimension more than 10, 000. We

leave it a future work for such careful comparisons.

References
Allen-Zhu, Zeyuan. Katyusha: The First Direct Accelera-

tion of Stochastic Gradient Methods. In STOC, 2017.

Allen-Zhu, Zeyuan and Li, Yuanzhi. LazySVD: Even
Faster SVD Decomposition Yet Without Agonizing
Pain. In NIPS, 2016.

Allen-Zhu, Zeyuan and Li, Yuanzhi. Faster Principal Com-
ponent Regression and Stable Matrix Chebyshev Ap-
proximation. In Proceedings of the 34th International
Conference on Machine Learning, ICML ’17, 2017.

Allen-Zhu, Zeyuan and Orecchia, Lorenzo. Linear Cou-
pling: An Ultimate Unification of Gradient and Mirror
Descent. In Proceedings of the 8th Innovations in Theo-
retical Computer Science, ITCS ’17, 2017.

Allen-Zhu, Zeyuan and Yuan, Yang. Improved SVRG
for Non-Strongly-Convex or Sum-of-Non-Convex Ob-
jectives. In ICML, 2016.
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