A Simple Multi-Class Boosting Framework — Supplement

Ron Appel,

Pietro Perona

Claim 11:  (|v],1)

>1

Proof: Reformulate as a constrained minimization prob-
lem, with x € RY:

min{(x,1)} suchthat: ||x|*=1, x>0
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To have unit norm, X must contain at least one non-zero el-
ement. Without loss of generality, we assume x; > 0; and
hence: p; =0
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QED.

Claim 12: max{(1-2§,V)*} > for N >4
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Proof: Reformulate as a constrained minimization prob-
lem with x € RY. Without loss of generality, assume
that (x,1) > 0 and that its first element z; is a minimal
element (i.e. 1 < x, Vn).

min{(x,1-28)} suchthat: ||x||> =1, x>z;1
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Note that if z,, > z; then u, =0, andif z,, = z; then
(1—pn) = —1. Let M be the number of unique indices
n > 2 for which x,, = x;.
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QED.



