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Abstract
The Gumbel trick is a method to sample from a

discrete probability distribution, or to estimate its

normalizing partition function. The method re-

lies on repeatedly applying a random perturba-

tion to the distribution in a particular way, each

time solving for the most likely configuration.

We derive an entire family of related methods,

of which the Gumbel trick is one member, and

show that the new methods have superior prop-

erties in several settings with minimal additional

computational cost. In particular, for the Gum-

bel trick to yield computational benefits for dis-

crete graphical models, Gumbel perturbations on

all configurations are typically replaced with so-

called low-rank perturbations. We show how a

subfamily of our new methods adapts to this set-

ting, proving new upper and lower bounds on the

log partition function and deriving a family of se-

quential samplers for the Gibbs distribution. Fi-

nally, we balance the discussion by showing how

the simpler analytical form of the Gumbel trick

enables additional theoretical results.

1. Introduction
In this work we are concerned with the fundamental prob-

lem of sampling from a discrete probability distribution and

evaluating its normalizing constant. A probability distribu-

tion p on a discrete sample space X is provided in terms

of its potential function � : X ! [�1,1), correspond-

ing to log-unnormalized probabilities via p(x) = e�(x)/Z,

where the normalizing constant Z is the partition function.

In this context, p is the Gibbs distribution on X associated

with the potential function �. The challenges of sampling

from such a discrete probability distribution and estimating

the partition function are fundamental problems with ubiq-
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uitous applications in machine learning, classical statistics

and statistical physics (see, e.g., Lauritzen, 1996).

Perturb-and-MAP methods (Papandreou & Yuille, 2010)

constitute a class of randomized algorithms for estimating

partition functions and sampling from Gibbs distributions,

which operate by randomly perturbing the corresponding

potential functions and employing maximum a posteriori

(MAP) solvers on the perturbed models to find a maximum

probability configuration. This MAP problem is NP-hard

in general; however, substantial research effort has led to

the development of solvers which can efficiently compute

or estimate the MAP solution on many problems that occur

in practice (e.g., Boykov et al., 2001; Kolmogorov, 2006;

Darbon, 2009). Evaluating the partition function is a harder

problem, containing for instance #P-hard counting prob-

lems. The general aim of perturb-and-MAP methods is

to reduce the problem of partition function evaluation, or

the problem of sampling from the Gibbs distribution, to re-

peated instances of the MAP problem (where each instance

is on a different random perturbation of the original model).

The Gumbel trick (Papandreou & Yuille, 2011) relies on

adding Gumbel-distributed noise to each configuration’s

potential �(x). We derive a wider family of perturb-and-

MAP methods that can be seen as perturbing the model in

different ways – in particular using the Weibull and Fr´echet

distributions alongside the Gumbel. We show that the new

methods can be implemented with essentially no additional

computational cost by simply averaging existing Gumbel

MAP perturbations in different spaces, and that they can

lead to more accurate estimators of the partition function.

Evaluating or perturbing each configuration’s potential

with i.i.d. Gumbel noise can be computationally expensive.

One way to mitigate this is to cleverly prune computation

in regions where the maximum perturbed potential is un-

likely to be found (Maddison et al., 2014; Chen & Ghahra-

mani, 2016). Another approach exploits the product struc-

ture of the sample space in discrete graphical models, re-

placing i.i.d. Gumbel noise with a “low-rank” approxima-

tion. Hazan & Jaakkola (2012); Hazan et al. (2013) showed

that from such an approximation, upper and lower bounds

on the partition function and a sequential sampler for the

Gibbs distribution can still be recovered. We show that a

subfamily of our new methods, consisting of Fr´echet, Ex-

ponential and Weibull tricks, can also be used with low-
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rank perturbations, and use these tricks to derive new upper

and lower bounds on the partition function, and to construct

new sequential samplers for the Gibbs distribution.

Our main contributions are as follows:

1. A family of tricks that can be implemented by simply

averaging Gumbel perturbations in different spaces, and

which can lead to more accurate or more sample effi-

cient estimators of Z (Section 2).

2. New upper and lower bounds on the partition function of

a discrete graphical model computable using low-rank

perturbations, and a corresponding family of sequential

samplers for the Gibbs distribution (Section 3).

3. Discussion of advantages of the simpler analytical form

of the Gumbel trick including new links between the er-

rors of estimating Z, sampling, and entropy estimation

using low-rank Gumbel perturbations (Section 4).

Background and Related work The idea of perturbing

the potential function of a discrete graphical model in or-

der to sample from its associated Gibbs distribution was in-

troduced by Papandreou & Yuille (2011), inspired by their

previous work on reducing the sampling problem for Gaus-

sian Markov random fields to the problem of finding the

mean, using independent local perturbations of each Gaus-

sian factor (Papandreou & Yuille, 2010). Tarlow et al.

(2012) extended this perturb-and-MAP approach to sam-

pling, in particular by considering more general structured

prediction problems. Hazan & Jaakkola (2012) pointed out

that MAP perturbations are useful not only for sampling the

Gibbs distribution (considering the argmax of the perturbed

model), but also for bounding and approximating the parti-

tion function (by considering the value of the max).

Afterwards, Hazan et al. (2013) derived new lower bounds

on the partition function and proposed a new sampler for

the Gibbs distribution that samples variables of a discrete

graphical model sequentially, using expected values of low-

rank MAP perturbations to construct the conditional proba-

bilities. Due to the low-rank approximation, this algorithm

has the option to reject a sample. Orabona et al. (2014)

and Hazan et al. (2016) subsequently derived measure con-

centration results for the Gumbel distribution that can be

used to control the rejection probability. Maji et al. (2014)

derived an uncertainty measure from random MAP pertur-

bations, using it within a Bayesian active learning frame-

work for interactive image boundary annotation.

Perturb-and-MAP was famously generalized to continuous

spaces by Maddison et al. (2014), replacing the Gumbel

distribution with a Gumbel process and calling the resulting

algorithm A* sampling. Maddison (2016) cast this work

into a unified framework together with adaptive rejection

sampling techniques, based on the notion of exponential

races. This recent view generally brings together perturb-

and-MAP and accept-reject samplers, exploiting the con-

nection between the Gumbel distribution and competing

exponential clocks that we also discuss in Section 2.1.

Inspired by A* sampling, Kim et al. (2016) proposed an ex-

act sampler for discrete graphical models based on lazily-

instantiated random perturbations, which uses linear pro-

gramming relaxations to prune the optimization space. Fur-

ther recent applications of perturb-and-MAP include struc-

tured prediction in computer vision (Bertasius et al., 2017)

and turning the discrete sampling problem into an opti-

mization task that can be cast as a multi-armed bandit prob-

lem (Chen & Ghahramani, 2016), see Section 5.2 below.

In addition to perturb-and-MAP methods, we are aware of

three other approaches to estimate the partition function

of a discrete graphical model via MAP solver calls. The

WISH method (weighted-integrals-and-sums-by-hashing,

Ermon et al., 2013) relies on repeated MAP inference calls

applied to the model after subjecting it to random hash con-

straints. The Frank-Wolfe method may be applied by itera-

tively updating marginals using a constrained MAP solver

and line search (Belanger et al., 2013; Krishnan et al.,

2015). Weller & Jebara (2014a) instead use just one MAP

call over a discretized mesh of marginals to approximate

the Bethe partition function, which itself is an estimate

(which often performs well) of the true partition function.

2. Relatives of the Gumbel Trick
In this section, we review the Gumbel trick and state the

mechanism by which it can be generalized into an entire

family of tricks. We show how these tricks can equivalently

be viewed as averaging standard Gumbel perturbations in

different spaces, instantiate several examples, and compare

the various tricks’ properties.

Notation Throughout this paper, let X be a finite sample

space of size N := |X |. Let p̃ : X ! [0,1) be an unnor-

malized mass function over X and let Z :=

P

x2X p̃(x) be

its normalizing partition function. Write p(x) := p̃(x)/Z
for the normalized version of p̃, and �(x) := ln p̃(x) for the

log-unnormalized probabilities, i.e. the potential function.

We write Exp(�) for the exponential distribution with rate

(inverse mean) � and Gumbel(µ) for the Gumbel distribu-

tion with location µ and scale 1. The latter has mean µ+ c,
where c ⇡ 0.5772 is the Euler-Mascheroni constant.

2.1. The Gumbel Trick

Similarly to the connection between the Gumbel trick and

the Poisson process established by Maddison (2016), we

introduce the Gumbel trick for discrete probability distri-

butions using a simple and elegant construction via com-
peting exponential clocks. Consider N independent clocks,
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Table 1: New tricks for constructing unbiased estimators of different transformations f(Z) of the partition function.

Trick g(x) Mean f(Z) Variance of g(T ) Asymptotic var. of Ẑ

Gumbel � lnx� c lnZ ⇡

2

6
⇡

2

6 Z

2

Exponential x

1
Z

1
Z

2 Z

2

Weibull ↵ x

↵

, ↵ > 0 Z

�↵�(1 + ↵) �(1+2↵)��(1+↵)2

Z

2↵
1
↵

2

⇣
�(1+2↵)
�(1+↵)2

� 1
⌘
Z

2

Fr´echet ↵ x

↵

, ↵ 2 (�1, 0) Z

�↵�(1 + ↵) �(1+2↵)��(1+↵)2

Z

2↵ for ↵ > � 1
2

1
↵

2

⇣
�(1+2↵)
�(1+↵)2

� 1
⌘
Z

2

Pareto e

x

Z

Z�1 for Z > 1 a

Z

(Z�1)2(Z�2)
for Z > 2 Z

2

(Z�2)2

Tail t 1{x>t} e

�tZ

e

�tZ(1� e

�tZ) (1�e

�tZ)2

t

2

started simultaneously, such that the j-th clock rings after

a random time T
j

⇠ Exp(�
j

). Then it is easy to show that

(1) the time until some clock rings has Exp(

P

N

j=1

�
j

) dis-

tribution, and (2) the probability of the j-th clock ringing

first is proportional to its rate �
j

. These properties are also

widely used in survival analysis (Cox & Oakes, 1984).

Consider N competing exponential clocks {T
x

}
x2X , in-

dexed by elements of X , with respective rates �
x

= p̃(x).
Property (1) of competing exponential clocks tells us that

min

x2X
{T

x

} ⇠ Exp(Z). (1)

Property (2) says that the random variable argmin

x

T
x

, tak-

ing values in X , is distributed according to p:

argmin

x2X
{T

x

} ⇠ p. (2)

The Gumbel trick is obtained by applying the function

g(x) = � lnx � c to the equalities in distribution (1)

and (2). When g is applied to an Exp(�) random vari-

able, the result follows the Gumbel(�c + ln�) distribu-

tion, which can also be represented as ln� + �, where

� ⇠ Gumbel(�c). Defining {�(x)}
x2X

i.i.d.⇠ Gumbel(�c)
and noting that g is strictly decreasing, applying the func-

tion g to equalities in distribution (1) and (2), we obtain:

max

x2X
{�(x) + �(x)} ⇠ Gumbel(�c+ lnZ), (1’)

argmax

x2X
{�(x) + �(x)} ⇠ p, (2’)

where we have recalled that �(x) = ln�
x

= ln p̃(x). The

distribution Gumbel(�c + lnZ) has mean lnZ, and thus

the log partition function can be estimated by averaging

samples (Hazan & Jaakkola, 2012).

2.2. Constructing New Tricks

Given the equality in distribution (1), we can treat the prob-

lem of estimating the partition function Z as a parameter

estimation problem for the exponential distribution. Ap-

plying the function g(x) = � lnx � c as in the Gumbel

trick to obtain a Gumbel(�c+ lnZ) random variable, and

estimating its mean to obtain an unbiased estimator of lnZ,

is just one way of inferring information about Z.

We consider applying different functions g to (1); par-

ticularly those functions g that transform the exponential

distribution to another distribution with known mean. As

the original exponential distribution has rate Z, the trans-

formed distribution will have mean f(Z), where f will in

general no longer be the logarithm function. Since we often

are interested in estimating various transformations f(Z)

of Z, this provides us a with a collection of unbiased es-

timators from which to choose. Moreover, further trans-

forming these estimators yields a collection of (biased) es-

timators for other transformations of Z, including Z itself.

Example 1 (Weibull tricks). For any ↵ > 0, applying

the function g(x) = x↵

to an Exp(�) random variable

yields a random variable with the Weibull(��↵,↵�1

) dis-

tribution with scale ��↵

and shape ↵�1

, which has mean

��↵

�(1 + ↵) and can be also represented as ��↵W ,

where W ⇠ Weibull(1,↵�1

). Defining {W (x)}
x2X

i.i.d.⇠
Weibull(1,↵�1

) and noting that g is increasing, applying

g to the equality in distribution (1) gives

min

x2X
{p̃�↵W (x)} ⇠Weibull(Z�↵,↵�1

). (1”)

Estimating the mean of Weibull(Z�↵,↵�1

) yields an un-

biased estimator of Z�↵

�(1 + ↵). The special case ↵ = 1

corresponds to the identity function g(x) = x; we call the

resulting trick the Exponential trick.

Table 1 lists several examples of tricks derived this way.

As Example 1 shows, these tricks may not involve addi-

tive perturbation of the potential function �(x); the Weibull

tricks multiplicatively perturb exponentiated unnormalized

probabilities p̃�↵

with Weibull noise. As models of inter-

est are often specified in terms of potential functions, to be

able to reuse existing MAP solvers in a black-box manner

with the new tricks, we seek an equivalent formulation in

terms of the potential function. The following Proposition

shows that by not passing the function g through the mini-

mization in equation (1), the new tricks can be equivalently

formulated as averaging additive Gumbel perturbations of

the potential function in different spaces.
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Figure 1: Analytically computed MSE and variance of Gumbel

and Exponential trick estimators of Z (left) and lnZ (right). The

MSEs are dominated by the variance, so the dashed and solid lines

mostly overlap. See Section 2.3.2 for details.

Proposition 2. For any function g : [0,1)! R such that
f(Z) = E

T⇠Exp(Z)

[g(T )] exists, we have

f(Z) = E
�



g

✓

e�c

exp

✓

�max

x2X
{�(x) + �(x)}

◆◆�

,

where {�(x)}
x2X

i.i.d.⇠ Gumbel(�c).

Proof. As max

x

{�(x) + �(x)} ⇠ Gumbel(�c + lnZ),

we have e�c

exp(max

x

{�(x)+�(x)}) ⇠ Exp(Z) and the

result follows by the assumption relating f and g.

Proposition 2 shows that the new tricks can be implemented

by solving the same MAP problems max

x

{�(x)+�(x)} as

in the Gumbel trick, and then merely passing the solutions

through the function x 7! g(e�c

exp(x)) before averaging

them to approximate the expectation.

2.3. Comparing Tricks

2.3.1. ASYMPTOTIC EFFICIENCY

The Delta method (Casella & Berger, 2002) is a simple

technique for assessing the asymptotic variance of esti-

mators that are obtained by a differentiable transforma-

tion of an estimator with known variance. The last col-

umn in Table 1 lists asymptotic variances of correspond-

ing tricks when unbiased estimators of f(Z) are passed

through the function f�1

to yield (biased, but consistent

and non-negative) estimators of Z itself. It is interesting

to examine the constants that multiply Z2

in some of the

obtained asymptotic variance expressions for the different

tricks. For example, it can be shown using Gurland’s ra-

tio (Gurland, 1956) that this constant is at least 1 for the

Weibull and Fr´echet tricks, which is precisely the value

achieved by the Exponential trick (which corresponds to

↵ = 1). Moreover, the Gumbel trick constant ⇡2/6 can be

shown to be the limit as ↵ ! 0 of the Weibull and Fr´echet

trick constants. In particular, the constant of the Exponen-

tial trick is strictly better than that of the standard Gumbel

trick: 1 < ⇡2/6 ⇡ 1.65. This motivates us to compare the

Gumbel and Exponential tricks in more detail.

Figure 2: MSE of estimators of Z (left) and lnZ (right) stem-

ming from Fr´echet (� 1
2 < ↵ < 0), Gumbel (↵ = 0) and Weibull

tricks (↵ > 0). See Section 2.3.2 for details.

2.3.2. MEAN SQUARED ERROR (MSE)

For estimators Y , their MSE(Y ) = var(Y ) + bias(Y )

2

is

a commonly used comparison metric. When the Gumbel or

Exponential tricks are used to estimate either Z or lnZ, the

biases, variances, and MSEs of the estimators can be com-

puted analytically using standard methods (Appendix A).

For example, the unbiased estimator of lnZ from the Gum-

bel trick can be turned into a consistent non-negative esti-

mator of Z by exponentiation: Y = exp(

1

M

P

M

m=1

X
m

),

where X
1

, . . . , X
M

i.i.d.⇠ Gumbel(�c + lnZ) are obtained

using equation (1’). The bias and variance of Y can be

computed using independence and the moment generating

functions of the X
m

’s, see Appendix A for details.

Perhaps surprisingly, all estimator properties only depend

on the true value of Z and not on the structure of the model

(distribution p), since the estimators rely only on i.i.d. sam-

ples of a Gumbel(�c + lnZ) random variable. Figure 1

shows the analytically computed estimator variances and

MSEs. For estimating Z itself (left), the Exponential trick

outperforms the Gumbel trick in terms of MSE for all sam-

ple sizes M � 3 (for M 2 {1, 2}, both estimators have

infinite variance and MSE). The ratio of MSEs quickly ap-

proaches ⇡2/6, and in this regime the Exponential trick re-

quires 1 � 6/⇡2 ⇡ 39% fewer samples than the Gumbel

trick to reach the same MSE. Also, for estimating lnZ,

(Figure 1, right), the Exponential trick provides a lower

MSE estimator for sample sizes M � 2; only for M = 1

the Gumbel trick provides a better estimator.

Note that as biases are available analytically, the estima-

tors can be easily debiased (by subtracting their bias). One

then obtain estimators with MSEs equal to the variances of

the original estimators, shown dashed in Figure 1. The Ex-

ponential trick would then always outperform the Gumbel

trick when estimating lnZ, even with sample size M = 1.

For Weibull tricks with ↵ 6= 1 and Fr´echet tricks, we esti-

mated the biases and variances of estimators of Z and lnZ
by constructing K = 100, 000 estimators in each case and

evaluating their bias and variance. Figure 2 shows the re-

sults for varying ↵ and several sample sizes M . We plot the
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analytically computed value for the Gumbel trick at ↵ = 0,

as we observe that the Weibull trick interpolates between

the Gumbel trick and the Exponential trick as ↵ increases

from 0 to 1. We note that the minimum MSE estimator is

obtained by choosing a value of ↵ that is close to 1, i.e.

the Exponential trick. This agrees with the finding from

Section 2.3.1 that ↵ = 1 is optimal as M !1.

2.4. Bayesian Perspective

A Bayesian approach exposes two choices when construct-

ing estimators of Z, or of its transformations f(Z):

1. A choice of prior distribution p
0

(Z), encoding prior

beliefs about the value of Z before any observations.

2. A choice of how to summarize the posterior distribu-

tion p
M

(Z|X
1

, . . . , X
M

) given M samples.

Taking the Jeffrey’s prior p
0

(Z) / Z�1

, an improper prior

that it is invariant under reparametrization, observing M

samples X
1

, . . . , X
M

i.i.d.⇠ Exp(Z) yields the posterior:

p
M

(Z|X
1

, . . . , X
M

) / ZM�1e�Z

P
M

m=1 X

m .

Recognizing the density of a Gamma(M,
P

M

m=1

X
m

) ran-

dom variable, the posterior mean is

E[Z|X
1

, . . . , X
M

] =

M
P

M

m=1

X
m

=

 

1

M

M

X

m=1

X
m

!�1

,

coinciding with the Exponential trick estimator of Z.

3. Low-rank Perturbations
One way of exploiting perturb-and-MAP to yield com-

putational savings is to replace independent perturbations

of each configuration’s potential with an approximation.

Such approximations are available e.g. in discrete graphical

models, where the sampling space X has a product space

structure X = X
1

⇥ · · · ⇥ X
n

, with X
i

the state space of

the i-th variable.

Definition 3 ( (Hazan & Jaakkola, 2012)). The sum-unary
perturbation MAP value is the random variable

U := max

x2X

n

�(x) +

n

X

i=1

�
i

(x
i

)

o

,

where {�
i

(x
i

) | x
i

2 X
i

, 1  i  n} i.i.d⇠ Gumbel(�c).

This definition involves |X
1

|+ · · ·+ |X
n

| i.i.d. Gumbel ran-

dom variables, rather than |X |. (With n = 1 this coincides

with full-rank perturbations and U ⇠ Gumbel(�c+lnZ).)

For n > 2 the distribution of U is not available analytically.

One can similarly define the pairwise (or higher-order) per-
turbations, where independent Gumbel noise is added to

each pairwise (or higher-order) potential.

Unary perturbations provide the upper bound lnZ  E[U ]

on the log partition function (Hazan & Jaakkola, 2012), can

be used to construct a sequential sampler for the Gibbs dis-

tribution (Hazan et al., 2013), and, if the perturbations are

scaled down by a factor of n, a lower bound on lnZ can

also be recovered (Hazan et al., 2013). In this section we

show that a subfamily of tricks introduced in Section 2,

consisting of Fr´echet and Weibull (and Exponential) tricks,

is applicable in the low-rank perturbation setting and use

them to derive new families of upper and lower bounds

on lnZ and sequential samplers for the Gibbs distribution.

Please note full proofs are deferred to Appendix B and C.

3.1. Upper Bounds on the Partition Function

The following family of upper bounds on lnZ can be de-

rived from the Fr´echet and Weibull tricks.

Proposition 4. For any ↵ 2 (�1, 0) [ (0,1), the upper
bound lnZ  U(↵) holds with

U(↵) := n
ln�(1 + ↵)

↵
+ nc� 1

↵
lnE

�

⇥

e�↵U

⇤

.

Proof. (Sketch.) By induction on n, with the induction step

provided by our Clamping Lemma (Lemma 7) below.

To evaluate these bounds in practice, E[e�↵U

] is estimated

using samples of U . Corollary 9 of Hazan et al. (2016) can

be used to show that var(e�↵U

) is finite for ↵ > � 1

2

p
n

,

and so then the estimation is well-behaved.

A natural question is how these new bounds relate to the

Gumbel trick upper bound lnZ  E[U ] by Hazan &

Jaakkola (2012). The following result aims to answers this:

Proposition 5. The limit of U(↵) as ↵ ! 0 exists and
equals U(0) := E[U ], i.e. the Gumbel trick upper bound.

The question remains: When is it advantageous to use a

value ↵ 6= 0 to obtain a tighter bound on lnZ than the

Gumbel trick bound? The next result can provide guidance:

Proposition 6. The function U(↵) is differentiable at ↵ =

0 and the derivative equals

d

d↵
U(↵)

�

�

�

�

↵=0

=

1

2

✓

n
⇡2

6

� var(U)

◆

.

While the variance of U is generally not tractable, in prac-

tice one obtains samples from U to estimate the expectation

in U(↵) and these samples can be reused to assess var(U).

Interestingly, var(U) equals n⇡2/6 for both the uniform

distribution and the distribution concentrated on a single

configuration, and in our empirical investigations always

var(U)  n⇡2/6. Then the derivative at 0 is non-negative

and Fr´echet tricks provide tighter bounds on lnZ. How-

ever, as U(↵) is estimated with samples, the question of
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estimator variance arises. We investigate the trade-off be-

tween tightness of the bound lnZ  U(↵) and the variance

incurred in estimating U(↵) empirically in Section 5.3.

3.2. Clamping

Consider the partial sum-unary perturbation MAP values,

where the values of the first j�1 variables have been fixed,

and only the rest are perturbed:

U
j

(x
1

, . . . , x
j�1

) := max

x

j

,...,x

n

8

<

:

�(x) +

n

X

i=j

�
i

(x
i

)

9

=

;

.

The following lemma involving the U
j

’s serves three pur-

poses: (I.) it provides the induction step for Proposition 4,

(II.) it shows that clamping never hurts partition function

estimation with Fr´echet and Weibull tricks, and (III.) it will

be used to show that a sequential sampler constructed in

Section 3.3 below is well-defined.

Lemma 7 (Clamping Lemma). For any j 2 {1, . . . , n}
and (x

1

, . . . , x
j�1

) 2 X
1

⇥ · · · ⇥ X
j�1

, the following in-
equality holds with any ↵ 2 (�1, 0) [ (0,1):

X

x

j

2X
j

E
�

h

e�(n�j) ln�(1+↵)�↵(n�j)c)e�↵U

j+1

i�1/↵

 E
�

h

e�(n�(j�1)) ln�(1+↵)�↵(n�(j�1))c)e�↵U

j

i�1/↵

Proof. This follows directly from the Fr´echet trick (↵ 2
(�1, 0)) or the Weibull trick (↵ > 0) and representing the

Fr´echet resp. Weibull random variables in terms of Gumbel

random variables. See Appendix B.1 for more details.

Corollary 8. Clamping never hurts lnZ estimation using
any of the Fréchet or Weibull upper bounds U(↵).

Proof. Applying the function x 7! ln(x) to both sides of

the Clamping Lemma 7 with j = 1, the right-hand side

equals U(↵), while the left-hand side is the estimate of lnZ
after clamping variable x

1

.

This was shown previously in restricted settings (Hazan

et al., 2013; Zhao et al., 2016). Similar results showing

that clamping improves partition function estimation have

been obtained for the mean field and TRW approxima-

tions (Weller & Domke, 2016), and in certain settings for

the Bethe approximation (Weller & Jebara, 2014b) and L-

FIELD (Zhao et al., 2016).

3.3. Sequential Sampling

Hazan et al. (2013) derived a sequential sampling proce-

dure for the Gibbs distribution by exploiting the U(0) Gum-

bel trick upper bound on lnZ. In the same spirit, one

can derive sequential sampling procedures from the Fr´echet

and Weibull tricks, leading to the following algorithm.

Algorithm 1 Sequential sampler for Gibbs distribution

Input: ↵ 2 (�1, 0) [ (0,1), potential function � on X
Output: a sample x from the Gibbs distribution / e�(x)

1: for j = 1 to n do
2: for x

j

2 X
j

do

3: p
j

(x
j

) e

�c

�(1+↵)

1/↵

E
�

[

e

�↵U

j+1(x1,...,x

j

)
]

�1/↵

E
�

[

e

�↵U

j

(x1,...,x

j�1)
]

�1/↵

4: p
j

(reject) 1�
P

x

j

2X
j

p
j

(x
j

)

5: x
j

 sample according to p
j

6: if x
j

== reject then
7: RESTART (goto 1)

This algorithm is well-defined if p
j

(reject) � 0 for all j,

which can be shown by canceling terms in the Clamping

Lemma 7. We discuss correctness in Appendix B.2. As for

the Gumbel sequential sampler of Hazan et al. (2013), the

expected number of restarts (and hence the running time)

only depend on the quality of the upper bound (U(↵) �
lnZ), and not on the ordering of variables.

3.4. Lower Bounds on the Partition Function

Similarly as in the Gumbel trick case (Hazan et al., 2013),

one can derive lower bounds on lnZ by perturbing an arbi-

trary subset S of variables.

Proposition 9. Let X = X
1

⇥ · · · X
n

be a product space
and � a potential function on X . Let ↵ 2 (�1, 0)[ (0,1).
For any subset S ✓ {1, . . . , n} of the variables x

1

, . . . , x
n

we have lnZ �

c+
ln�(1 + ↵)

↵
� 1

↵
lnE

h

e�↵max

x

{�(x)+�

S

(x

S

)}
i

,

where x

S

:= {x
i

: i 2 S} and �
S

(x

S

) ⇠ Gumbel(�c)
independently for each setting of x

S

.

By averaging n such lower bounds corresponding to single-

ton sets S = {i} together, we obtain a lower bound on lnZ
that involves the average-unary perturbation MAP value

L := max

x2X

(

�(x) +
1

n

n

X

i=1

�
i

(x
i

)

)

.

Corollary 10. For any ↵ 2 (�1, 0) [ (0,1), we have the
lower bound lnZ � L(↵), where

L(↵) := c+
ln�(1 + ↵)

↵
� 1

n↵
lnE [exp (�n↵L)] .

Again, L(0) := E[L] can be defined by continuity, where

E[L]  lnZ is the Gumbel trick lower bound by Hazan

et al. (2013).
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4. Advantages of the Gumbel Trick
We have seen how the Gumbel trick can be embedded into

a continuous family of tricks, consisting of Fr´echet, Expo-

nential, and Weibull tricks. We showed that the new tricks

can provide more efficient estimators of the partition func-

tion in the full-rank perturbation setting (Section 2), and

in the low-rank perturbation setting lead to sequential sam-

plers and new bounds on lnZ, which can be also more ef-

ficient, as we investigate in Section 5.3. To balance the

discussion of merits of different tricks, in this section we

briefly highlight advantages of the Gumbel trick that stem

from its simpler analytical form.

First, by consulting Table 1 we see that the function g(x) =
� lnx�c has the property that the variance of the resulting

estimator (of lnZ) does not depend on the value of Z; the

function g is a variance stabilizing transformation for the

Exponential distribution.

Second, exploiting the fact that the logarithm function leads

to additive perturbations, Maji et al. (2014) showed that the

entropy of x⇤
, the configuration with maximum potential

after sum-unary perturbation in the sense of Definition 3,

can be bounded as H(x⇤
)  B(p) :=

P

n

i=1

E
�

i

[�
i

(x⇤
i

)].

We extend this result to show how the errors of bounding

lnZ, sampling, and entropy estimation are related:

Proposition 11. Writing p for the Gibbs distribution and
B(p) := E

�

i

[�
i

(x⇤
i

)] for the entropy bound, we have

(U(0)� lnZ)

| {z }

error in lnZ bound

+KL(x⇤ k p)
| {z }

sampling error

= B(p)�H(x⇤
)

| {z }

error in entropy estimation

.

Third, the additive character of the Gumbel perturbations

can also be used to derive a new result relating the error of

the lower bound L(0) and of sampling x⇤⇤
as the configu-

ration achieving the maximum average-unary perturbation

value L, instead of sampling from the Gibbs distribution p:

Proposition 12. Writing p for the Gibbs distribution,

lnZ � L(0)
| {z }

error in lnZ bound

� KL(x⇤⇤ k p)
| {z }

sampling error

� 0.

Remark. While we knew from Hazan et al. (2013) that

lnZ � L(0) � 0, this is a stronger result showing that

the size of the gap is an upper bound on the KL divergence

between the approximate sampling distribution of x⇤⇤
and

the Gibbs distribution p.

Proofs of the new results appear in Appendix B.3 and C.2.

Fourth, viewed as a function of the Gumbel perturbations

�, the random variable U has a bounded gradient, allowing

earlier measure concentration results (Orabona et al., 2014;

Hazan et al., 2016). Proving similar measure concentration

results for the expectations E[e�↵U

] appearing in U(↵) for

↵ 6= 0 may be more challenging.

5. Experiments
We conducted experiments with the following aims:

1. To show that the higher efficiency of the Exponential

trick in the full-rank perturbation setting is useful in

practice, we compared it to the Gumbel trick in A*

sampling (Maddison et al., 2014) (Section 5.1) and in

the large-scale discrete sampling setting of Chen &

Ghahramani (2016) (Section 5.2).

2. To show that non-zero values of ↵ can lead to bet-

ter estimators of lnZ in the low-rank perturbation set-

ting as well, we compare the Fr´echet and Weibull trick

bounds U(↵) to the Gumbel trick bound U(0) on a

common discrete graphical model with different cou-

pling strengths; see Section 5.3.

5.1. A* Sampling

A* sampling (Maddison et al., 2014) is a sampling algo-

rithm for continuous distributions that perturbs the log-

unnormalized density � with a continuous generalization

of the Gumbel trick, called the Gumbel process, and uses

a variant of A* search to find the location of the maxi-

mum of the perturbed �. Returning the location yields an

exact sample from the original distribution, as in the dis-

crete Gumbel trick. Moreover, the corresponding maxi-

mum value also has the Gumbel(�c + lnZ) distribution

(Maddison et al., 2014). Our analysis in Section 2.3 tells

us that the Exponential trick yields an estimator with lower

MSE than the Gumbel trick; we briefly verified this on

the Robust Bayesian Regression experiment of Maddison

et al. (2014). We constructed estimators of lnZ from the

Gumbel and Exponential tricks (debiased version, see Sec-

tion 2.3.2), and assessed their variances by constructing

each estimator K = 1000 times and looking at the sam-

ple variance. Figure 3a shows that the Exponential trick

requires up to 40% fewer samples to reach a given MSE.

5.2. Scalable Partition Function Estimation

Chen & Ghahramani (2016) considered sampling from a

discrete distribution of the form p(x) / f
0

(x)
Q

S

s=1

f
s

(x)
when the number of factors S is large relative to the sam-

ple space size |X |. Computing i.i.d. Gumbel perturbations

�(x) for each x 2 X is then relatively cheap compared to

evaluating all potentials �(x) = f
0

(x) +
P

S

s=1

ln f
s

(x).
Chen & Ghahramani (2016) observed that each (perturbed)

potential can be estimated by subsampling the factors, and

potentials that appear unlikely to yield the MAP value can

be pruned off from the search early on. The authors for-

malized the problem as a Multi-armed bandit problem with

a finite reward population and derived approximate algo-

rithms for efficiently finding the maximum perturbed po-

tential with a probabilistic guarantee.
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(a)

(b)

Figure 3: (a) Sample size M required to reach a given MSE using

Gumbel and Exponential trick estimators of lnZ, using samples

from A

⇤ sampling (see Section 5.1) on a Robust Bayesian Re-

gression task. The Exponential trick is more efficient, requiring

up to 40% fewer samples to reach a given MSE. (b) MSE of lnZ
estimators for different values of ↵, using M = 100 samples

from the approximate MAP algorithm discussed in Section 5.2,

with different error bounds �. For small �, the Exponential trick

is close to optimal, matching the analysis of Section 2.3.2. For

larger �, the Weibull trick interpolation between the Gumbel and

Exponential tricks can provide an estimator with lower MSE.

While Chen & Ghahramani (2016) considered sampling,

by modifying their procedure to return the value of the

maximum perturbed potential rather than the argmax (cf

equations (1) and (2)), we can estimate the partition func-

tion instead. However, the approximate algorithm only

guarantees to find the MAP configuration with a proba-

bility 1 � �. Figure 3b shows the results of running the

Racing-Normal algorithm of Chen & Ghahramani (2016)

on the synthetic dataset considered by the authors with the

“very hard” noise setting � = 0.1. For low error bounds �
the Exponential trick remained close to optimal, but for a

larger error bound the Weibull trick interpolation between

the Gumbel and Exponential tricks proved useful to provide

an estimator with lower MSE.

5.3. Low-rank Perturbation Bounds on lnZ

Hazan & Jaakkola (2012) evaluated tightness of the Gum-

bel trick upper bound U(0) � lnZ on 10⇥ 10 binary spin

glass models. We show one can obtain more accurate es-

timates of lnZ on such models by choosing ↵ 6= 0. To

account for the fact that in practice an expectation in U(↵)
is replaced with a sample average, we treat U(↵) as an esti-

mator of lnZ with asymptotic bias equal to the bound gap

(U(↵)� lnZ), and estimate its MSE.

Figure 4 shows the MSEs of U(↵) as estimators of lnZ on

10⇥ 10 (n = 100) binary pairwise grid models with unary

potentials sampled uniformly from [�1, 1] and pairwise po-

tentials from [0, C] (attractive models) or from [�C,C]

(mixed models), for varying coupling strengths C. We re-

placed the expectations in U(↵)’s with sample averages of

size M = 100, using libDAI (Mooij, 2010) to solve the

MAP problems yielding these samples. We constructed

each estimator 1000 times to assess its variance.

Figure 4: MSEs of U(↵) as estimators of lnZ on 10 ⇥ 10 at-

tractive (left, middle) and mixed (right) spin glass model with dif-

ferent coupling strengths C (see Section 5.3). We also show the

percentage of samples saved by using the best ↵ in place of the

Gumbel trick estimator U(0), assuming the asymptotic regime.

For this we only considered ↵ > �1/(2
p
n) = �0.05, where

variance is provably finite, see Section 3.1. The MAP problems

were solved using the exact junction tree algorithm (JCT, left and

right), or approximate belief propagation (BP, middle). In all

cases, when coupling is very low, ↵ close to 0 is optimal. This

also holds for BP when coupling is high. In other regimes, upper

bounds for the Fr´echet trick, i.e. ↵ < 0, provide more accurate

estimators.

6. Discussion
By casting partition function evaluation as a parameter esti-

mation problem for the exponential distribution, we derived

a family of methods of which the Gumbel trick is a special

case. These methods can be equivalently seen as (1) per-

turbing models using different distributions, or as (2) av-

eraging standard Gumbel perturbations in different spaces,

allowing implementations with little additional cost.

We showed that in the full-rank perturbation setting, the

new Exponential trick provides an estimator with lower

MSE, or instead allows using up to 40% fewer samples than

the Gumbel trick estimator to reach the same MSE.

In the low-rank perturbation setting, we used our Fr´echet,

Exponential and Weibull tricks to derive new bounds on

lnZ and sequential samplers for the Gibbs distribution, and

showed that these can also behave better than the corre-

sponding Gumbel trick results. However, the optimal trick

to use (as specified by ↵) depends on the model, sample

size, and MAP solver used (if approximate). Since in prac-

tice the dominant computational cost is carried by solving

repeated instances of the MAP problem, one can try and as-

sess different values of ↵ on the problem at hand. That said,

we believe that investigating when different tricks yield

better results is an interesting avenue for future work.

Finally, we balanced the discussion by pointing out that the

Gumbel trick has a simpler analytical form which can be

exploited to derive more interesting theoretical statements

in the low-rank perturbation setting. Beyond existing re-

sults, we derived new connections between errors of differ-

ent procedures using low-rank Gumbel perturbations.
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