
Supplementary Material to “Dynamic Word Embeddings”

Robert Bamler 1 Stephan Mandt 1

Table 1. Hyperparameters for skip-gram filtering and skip-gram
smoothing.

PARAMETER COMMENT

L=104 vocabulary size
L′=103 batch size for smoothing
d=100 embedding dimension for SoU and Twitter
d=200 embedding dimension for Google books

Ntr =5000 number of training steps for each t (filtering)
N ′tr =5000 number of pretraining steps with minibatch

sampling (smoothing; see Algorithm 2)
Ntr =1000 number of training steps without minibatch

sampling (smoothing; see Algorithm 2)
cmax =4 context window size for positive examples
η=1 ratio of negative to positive examples
γ=0.75 context exponent for negative examples
D=10−3 diffusion const. per year (Google books & SoU)
D=1 diffusion const. per year (Twitter)
σ2
0 =1 variance of overall prior
α=10−2 learning rate (filtering)
α′=10−2 learning rate during minibatch phase (smoothing)
α=10−3 learning rate after minibatch phase (smoothing)
β1 =0.9 decay rate of 1st moment estimate
β2 =0.99 decay rate of 2nd moment estimate (filtering)
β2 =0.999 decay rate of 2nd moment estimate (smoothing)
δ=10−8 regularizer of Adam optimizer

1. Dimensionality Reduction in Figure 1
To create the word-clouds in Figure 1 of the main text we
mapped the fitted word embeddings from Rd to the two-
dimensional plane using dynamic t-SNE (Rauber et al.,
2016). Dynamic t-SNE is a non-parametric dimension-
ality reduction algorithm for sequential data. The algo-
rithm finds a projection to a lower dimension by solving
a non-convex optimization problem that aims at preserving
nearest-neighbor relations at each individual time step. In
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addition, projections at neighboring time steps are aligned
with each other by a quadratic penalty with prefactor λ ≥ 0
for sudden movements.

There is a trade-off between finding good local projections
for each individual time step (λ → 0), and finding smooth
projections (large λ). Since we want to analyze the smooth-
ness of word embedding trajectories, we want to avoid
bias towards smooth projections. Unfortunately, setting
λ = 0 is not an option since, in this limit, the optimization
problem is invariant under independent rotations at each
time, rendering trajectories in the two-dimensional projec-
tion plane meaningless. To still avoid bias towards smooth
projections, we anneal λ exponentially towards zero over
the course of the optimization. We start the optimizer with
λ = 0.01, and we reduce λ by 5% with each training step.
We run 100 optimization steps in total, so that λ ≈ 6×10−6

at the end of the training procedure. We used the open-
source implementation,1 set the target perplexities to 200,
and used default values for all other parameters.

2. Hyperparemeters and Construction of n±
1:T

Table 1 lists the hyperparameters used in our experiments.
For the Google books corpus, we used the same context
window size cmax and embedding dimension d as in (Kim
et al., 2014). We reduced d for the SoU and Twitter corpora
to avoid overfitting to these much smaller data sets.

In constrast to word2vec, we construct our positive and
negative count matrices n±ij,t deterministically in a prepro-
cessing step. As detailed below, this is done such that it
resembles as closely as possible the stochastic approach in
word2vec (Mikolov et al., 2013). In every update step,
word2vec stochastically samples a context window size
uniformly in an interval [1, · · · , cmax], thus the context size
fluctuates and nearby words appear more often in the same
context than words that are far apart from each other in
the sentence. We follow a deterministic scheme that re-
sults in similar statistics. For each pair of words (w1, w2)
in a given sentence, we increase the counts n+iw1 jw2

by
max (0, 1− k/cmax), where 0 ≤ k ≤ cmax is the num-
ber of words that appear between w1 and w2, and iw1 and
jw2 are the words’ unique indices in the vocabulary.

1https://github.com/paulorauber/thesne

https://github.com/paulorauber/thesne
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Algorithm 1 Skip-gram filtering; see section 4 of the main
text.

Remark: All updates are analogous for word and con-
text vectors; we drop their indices for simplicity.
Input: number of time steps T , time stamps τ1:T , posi-
tive and negative examples n±1:T , hyperparameters.

Init. prior means µ̃ik,1 ← 0 and variances Σ̃i,1 = Id×d
Init. variational means µik,1 ← 0 and var. Σi,1 = Id×d
for t = 1 to T do

if t 6= 1 then
Update approximate Gaussian prior with params.
µ̃ik,t and Σ̃i,t using µik,t−1 and Σi,t−1, see Eq. 13.

end if
Compute entropy Eq[log q(·)] analytically.
Compute expected log Gaussian prior with parameters
µ̃ik,t and Σ̃k,t analytically.
Maximize Lt in Eq. 11, using black-box VI with the
reparametrization trick.
Obtain µik,t and Σi,t as outcome of the optimization.

end for

We also used a deterministic variant of word2vec to con-
struct the negative count matrices n−t . In word2vec, η nega-
tive samples (i, j) are drawn for each positive sample (i, j′)
by drawing η independent values for j from a distribution
P ′t (j) defined below. We define n−ij,t such that it matches
the expectation value of the number of times that word2vec
would sample the negative word-context pair (i, j). Specif-
ically, we define

Pt(i) =

∑L
j=1 n

+
ij,t∑L

i′,j=1 n
+
i′j,t

, (1)

P ′t (j) =

(
Pt(j)

)γ∑L
j′=1

(
Pt(j′)

)γ , (2)

n−ij,t =

( L∑
i′,j′=1

n+i′j′,t

)
ηPt(i)P

′
t (j). (3)

We chose γ = 0.75 as proposed in (Mikolov et al., 2013),
and we set η = 1. In practice, it is not necessary to explic-
itly construct the full matrices n−t , and it is more efficient
to keep only the distributions Pt(i) and P ′t (j) in memory.

3. Skip-gram Filtering Algorithm
The skip-gram filtering algorithm is described in section 4
of the main text. We provide a formulation in pseudocode
in Algorithm 1.

4. Skip-gram Smoothing Algorithm
In this section, we give details for the skip-gram smoothing
algorithm, see section 4 of the main text. A summary is

Algorithm 2 Skip-gram smoothing; see section 4. We drop
indices i, j, and k for word, context, end embedding dimen-
sion, respectively, when they are clear from context.

Input: number of time steps T , time stamps τ1:T , word-
context counts n+1:T , hyperparameters in Table 1

Obtain n−t ∀t using Eqs. 1–3
Initialize µu,1:T , µv,1:T ← 0
Initialize νu,1:T , νv,1:T , ωu,1:T−1, and ωv,1:T−1 such

that B>u Bu = B>v Bv = Π (see Eqs. 5 and 11)
for step = 1 to N ′tr do

Draw I ⊂ {1, . . . , L′} with |I| = L′ uniformly
Draw J ⊂ {1, . . . , L′} with |J | = L′ uniformly
for all i ∈ I do

Draw ε
[s]
ui,1:T ∼ N (0, I)

Solve Bu,ixui,1:T = εui,1:T for xui,1:T
end for
Obtain xvj,1:T by repeating last loop ∀j ∈ J
Calculate gradient estimates of L for minibatch

(I,J ) using Eqs. 10, 14, and 15
Obtain update steps d[·] for all variational parameters

using Adam optimizer with parameters in Table 1
Update µu,1:T ← µu,1:T +d[µu,1:T ], and analogously

for µv,1:T , ωu,1:T−1, and ωv,1:T−1
Update νu,1:T and νv,1:T according to Eq. 18

end for
Repeat above loop for Ntr more steps, this time without

minibatch sampling (i.e., setting L′ = L)

provided in Algorithm 2.

Variational distribution. For now, we focus on the word
embeddings, and we simplify the notation by dropping the
indices for the vocabulary and embedding dimensions. The
variational distribution for a single embedding dimension
of a single word embedding trajectory is

q(u1:T ) = N (µu,1:T , (B
>
u Bu)−1). (4)

Here, µu,1:T is the vector of mean values, and Bu is the
Cholesky decomposition of the precision matrix. We re-
strict the latter to be bidiagonal,

Bu =


νu,1 ωu,1

νu,2 ωu,2
. . . . . .

νu,T−1 ωu,T−1
νT

 (5)

with νu,t > 0 for all t ∈ {1, . . . , T}. The variational pa-
rameters are µu,1:T , νu,1:T , and ω1:T−1. The variational
distribution of the context embedding trajectories v1:T has
the same structure.
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With the above form of Bu, the variational distribution is a
Gaussian with an arbitrary tridiagonal symmetric precision
matrix B>u Bu. We chose this variational distribution be-
cause it is the exact posterior of a hidden time-series model
with a Kalman filtering prior and Gaussian noise (Blei &
Lafferty, 2006). Note that our variational distribution is a
generalization of a fully factorized (mean-field) distribu-
tion, which is obtained for ωu,t = 0 ∀t. In the general
case, ωu,t 6= 0, the variational distribution can capture cor-
relations between all time steps, with a dense covariance
matrix (B>u Bu)−1.

Gradient estimation. The skip-gram smoothing algo-
rithm uses stochastic gradient ascent to find the variational
parameters that maximize the ELBO,

L = Eq
[
log p(U1:T , V1:T , n

±
1:T )

]
− Eq

[
log q(U1:T , V1:T )

]
.

(6)

Here, the second term is the entropy, which can be evalu-
ated analytically. We obtain for each component in vocab-
ulary and embedding space,

−Eq[log q(u1:T )] = −
∑
t

log(νu,t) + const. (7)

and analogously for −Eq[log q(v1:T )].

The first term on the right-hand side of Eq. 6 cannot be eval-
uated analytically. We approximate its gradient by sam-
pling from q using the reparameterization trick (Kingma &
Welling, 2014; Rezende et al., 2014). A naive calculation
would require Ω(T 2) computing time since the derivatives
of L with respect to νu,t and ωu,t for each t depend on
the count matrices n±t′ of all t′. However, as we show next,
there is a more efficient way to obtain all gradient estimates
in Θ(T ) time.

We focus again on a single dimension of a single word em-
bedding trajectory u1:T , and we drop the indices i and k.
We draw S independent samples u[s]1:T with s ∈ {1, . . . , S}
from q(u1:T ) by parameterizing

u
[s]
1:T = µu,1:T + x

[s]
u,1:T (8)

with

x
[s]
u,1:T = B−1u ε

[s]
u,1:T where ε

[s]
u,1:T ∼ N (0, I). (9)

We obtain x[s]u,1:T in Θ(T ) time by solving the bidiagonal

linear system Bux
[s]
u,1:T = ε

[s]
u,1:T . Samples v[s]1:T for the

context embedding trajectories are obtained analogously.
Our implementation uses S = 1, i.e., we draw only a sin-
gle sample per training step. Averaging over several sam-
ples is done implicitly since we calculate the update steps

using the Adam optimizer (Kingma & Ba, 2014), which ef-
fectively averages over several gradient estimates in its first
moment estimate.

The derivatives of L with respect to µu,1:T can be obtained
using Eq. 8 and the chain rule. We find

∂L
∂µu,1:T

≈ 1

S

S∑
s=1

[
Γ
[s]
u,1:T −Πu

[s]
1:T

]
. (10)

Here, Π ∈ RT×T is the precision matrix of the prior
u1:T ∼ N (0,Π−1). It is tridiagonal and therefore the
matrix-multiplication Πu

[s]
1:T can be carried out efficiently.

The non-zero matrix elements of Π are

Π11 = σ−20 + σ−21

ΠTT = σ−20 + σ−2T−1

Πtt = σ−20 + σ−2t−1 + σ−2t ∀t ∈ {2, . . . , T − 1}
Π1,t+1 = Πt+1,1 = −σ−2t . (11)

The term Γ
[s]
u,1:T on the right-hand side of Eq. 10 comes

from the expectation value of the log-likelihood under q. It
is given by

Γ
[s]
ui,t =

L∑
j=1

[(
n+ij,t + n−ij,t

)
σ
(
−u[s]>i,t v

[s]
j,t

)
− n−ij,t

]
v
[s]
j,t

(12)

where we temporarily restored the indices i and j for words
and contexts, respectively. In deriving Eq. 12, we used the
relations ∂ log σ(x)/∂x = σ(−x) and σ(−x) = 1− σ(x).

The derivatives of L with respect to νu,t and ωu,t are
more intricate. Using the parameterization in Eqs. 8–9, the
derivatives are functions of ∂B−1u /∂νt and ∂B−1u /∂ωt, re-
spectively, where B−1u is a dense (upper triangular) T × T
matrix. An efficient way to obtain these derivatives is to
use the relation

∂B−1u
∂νt

= −B−1u
∂Bu
∂νt

B−1u (13)

and similarly for ∂B−1u /∂ωt. Using this relation and
Eqs. 8–9, we obtain the gradient estimates

∂L
∂νu,t

≈ − 1

S

S∑
s=1

y
[s]
u,tx

[s]
u,t −

1

νu,t
, (14)

∂L
∂ωu,t

≈ − 1

S

S∑
s=1

y
[s]
u,tx

[s]
u,t+1. (15)

The second term on the right-hand side of Eq. 14 is the
derivative of the entropy, Eq. 7, and

y
[s]
u,1:T = (B>u )−1

[
Γ
[s]
u,1:T −Πu

[s]
1:T

]
. (16)



Supplementary Material to “Dynamic Word Embeddings”

The values y[s]u,1:T can again be obtained in Θ(T ) time by
bringing B>u to the left-hand side and solving the corre-
sponding bidiagonal linear system of equations.

Sampling in vocabulary space. In the above paragraph,
we described an efficient strategy to obtain gradient esti-
mates in only Θ(T ) time. However, the gradient estimation
scales quadratic in the vocabulary size L because all L2 el-
ements of the positive count matrices n+t contribute to the
gradients. In order speed up the optimization, we pretrain
the model using a minibatch of size L′ < L in vocabulary
space as explained below. The computational complexity
of a single training step in this setup scales as (L′)2 rather
than L2. After N ′tr = 5000 training steps with minibatch
size L′, we switch to the full batch size of L and train the
model for another Ntr = 1000 steps.

The subsampling in vocabulary space works as follows. In
each training step, we independently draw a set I of L′

random distinct words and a set J of L′ random distinct
contexts from a uniform probability over the vocabulary.
We then estimate the gradients of L with respect to only
the variational parameters that correspond to words i ∈ I
and contexts j ∈ J . This is possible because both the prior
of our dynamic skip-gram model and the variational distri-
bution factorize in the vocabulary space. The likelihood of
the model, however, does not factorize. This affects only
the definition of Γ

[s]
uik,t in Eq. 12. We replace Γ

[s]
uik,t by an

estimate Γ
[s]′
uik,t based on only the contexts j ∈ J in the

current minibatch,

Γ
[s]
ui,t =

L

L′

∑
j∈J

[ (
n+ij,t + n−ij,t

)
σ
(
−u[s]>i,t v

[s]
j,t

)
− n−ij,t

]
v
[s]
j,t. (17)

Here, the prefactor L/L′ restores the correct ratio between
evidence and prior knowledge (Hoffman et al., 2013).

Enforcing positive definiteness. We update the varia-
tional parameters using stochastic gradient ascent with the
Adam optimizer (Kingma & Ba, 2014). The parame-
ters νu,1:T are the eigenvalues of the matrix Bu, which
is the Cholesky decomposition of the precision matrix
of q. Therefore, νu,t has to be positive for all t ∈
{1, . . . , T}. We use mirror ascent (Ben-Tal et al., 2001;
Beck & Teboulle, 2003) to enforce νu,t > 0. Specifically,
we update νt to a new value ν′t defined by

ν′u,t =
1

2
νu,td[νu,t] +

√(
1

2
νu,td[νu,t]

)2

+ ν2u,t (18)

where d[νu,t] is the step size obtained from the Adam opti-
mizer. Eq. 18 can be derived from the general mirror ascent
update rule Φ′(ν′u,t) = Φ′(νu,t) + d[νu,t] with the mirror

map Φ : x 7→ −c1 log(x) + c2x
2/2, where we set the pa-

rameters to c1 = νu,t and c2 = 1/νu,t for dimensional
reasons. The update step in Eq. 18 increases (decreases)
νu,t for positive (negative) d[νu,t], while always keeping
its value positive.

Natural basis. As a final remark, let us discuss an op-
tional extension to the skip-gram smoothing algorithm that
converges in less training steps. This extension only in-
creases the efficiency of the algorithm. It does not change
the underlying model or the choice of variational distri-
bution. Observe that the prior of the dynamic skip-gram
model connects only neighboring time-steps with each
other. Therefore, the gradient of L with respect to µu,t
depends only on the values of µu,t−1 and µu,t+1. A naive
implementation of gradient ascent would thus require T−1
update steps until a change of µu,1 affects updates of µu,T .

This problem can be avoided with a change of basis from
µu,1:T to new parameters ρu,1:T ,

µu,1:T = Aρu,1:T (19)

with an appropriately chosen invertible matrix A ∈ RT×T .
Derivatives of L with respect to ρu,1:T are given by the
chain rule, ∂L/∂ρu,1:T = (∂L/∂µu,1:T )A. A natural (but
inefficient) choice for A is to stack the eigenvectors of the
prior precision matrix Π, see Eq. 11, into a matrix. The
eigenvectors of Π are the Fourier modes of the Kalman fil-
tering prior (with a regularization due to σ0). Therefore,
there is a component ρu,t that corresponds to the zero-mode
of Π, and this component learns an average word embed-
ding over all times. Higher modes correspond to changes
of the embedding vector over time. A single update to the
zero immediately affects all elements of µu,1:T , and there-
fore changes the word embeddings at all time steps. Thus,
information propagates quickly along the time dimension.
The downside of this choice for A is that the transforma-
tion in Eq. 19 has complexity Ω(T 2), which makes update
steps slow.

As a compromise between efficiency and a natural basis,
we propose to set A in Eq. 19 to the Cholesky decomposi-
tion of the prior covariance matrix Π−1 ≡ AA>. Thus, A
is still a dense (upper triangular) matrix, and, in our experi-
ments, updates to the last component ρu,T affect all compo-
nents of µu,1:T in an approximately equal amount. Since Π
is tridiagonal, the inverse ofA is bidiagonal, and Eq. 19 can
be evaluated in Θ(T ) time by solvingAµu,1:T = ρu,1:T for
µu,1:T . This is the parameterization we used in our imple-
mentation of the skip-gram smoothing algorithm.
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