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Abstract

Generative Adversarial Networks (GANs) have
been successfully applied to the problem of pol-
icy imitation in a model-free setup. However,
the computation graph of GANSs, that include
a stochastic policy as the generative model, is
no longer differentiable end-to-end, which re-
quires the use of high-variance gradient estima-
tion. In this paper, we introduce the Model-
based Generative Adversarial Imitation Learning
(MGAIL) algorithm. We show how to use a for-
ward model to make the computation fully dif-
ferentiable, which enables training policies using
the exact gradient of the discriminator. The re-
sulting algorithm trains competent policies using
relatively fewer expert samples and interactions
with the environment. We test it on both discrete
and continuous action domains and report results
that surpass the state-of-the-art.

1. Introduction

Learning a policy from scratch is often difficult. How-
ever, in many problems, there exists an expert policy that
achieves satisfactory performance. We are interested in the
scenario of imitating an expert. Imitation is needed for sev-
eral reasons: Automation (in case the expert is human), dis-
tillation (e.g., if the expert is too expensive to run in real-
time (Rusu et al., 2015)), and initialization (using an expert
policy as an initial solution). In our setting, we assume that
trajectories {so, ag, 51, ... }1*., of an expert policy 7 are
given. Our goal is to train a new policy m which imitates
7 without access to the original reward signal r g that was
used by the expert.

There are two main approaches to solve imitation prob-
lems. The first, known as Behavioral Cloning (BC), di-
rectly learns the conditional distribution of actions over
states p(als) in a supervised learning fashion (Pomerleau,

!"Technion Institute of Technology, Israel. Correspondence to:
Nir Baram <nirb@campus.technion.ac.il>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

Oron Anschel ! Itai Caspi! Shie Mannor

1

1991). By providing constant supervision (dense reward
signal in Reinforcement Learning (RL) terminology), BC
overcomes fundamental difficulties of RL such as the credit
assignment problem (Sutton, 1984). However, BC has its
downsides as well. Contrary to temporal difference meth-
ods (Sutton, 1988) that integrate information over time,
BC methods are trained using single time-step state-action
pairs {s¢, a; }. Therefore, an agent trained using BC is un-
aware of how his choice of actions affects the future state
distribution, which makes it susceptible to compounding
errors (Ross & Bagnell, 2010; Ross et al., 2011). On top of
that, the sample complexity of BC methods is usually high,
requiring a significant amount of expert data that could be
expensive to obtain.

The second approach to imitation is comprised of two
stages. First, recovering a reward signal under which the
expert is uniquely optimal (often called inverse RL, for in-
stance see Ng, Russell, et al.):

E[Y 47 (si,a)lme] = E[Y 47 (s, ar)lx] V.
(1

After reconstructing a reward signal 7, the second step is
to train a policy that maximizes the discounted cumulative
expected reward: E.R = E.[Y/_,7'#]. The problem
with this approach stems from the fact that restoring an in-
formative reward signal, solely based on state-action obser-
vations, is an ill-posed problem (Ziebart et al., 2008). A dif-
ferent strategy could be to recover a sparser reward signal
(a more well-defined problem) and enrich it by hand. How-
ever, this requires extensive domain knowledge (Dorigo &
Colombetti, 1998).

Generative Adversarial Networks (GANs) (Goodfellow
etal., 2014) is a recent method for training generative mod-
els. It uses a second neural network (D) to guide the gener-
ative model (G) towards producing patterns similar to those
of the expert (see illustration in Figure 1).

The elegance of GANs has made it popular among a vari-
ety of problems other than creating generative models, such
as image captioning (Mirza & Osindero, 2014) and video
prediction (Mathieu et al., 2015). More recently, a work
named Generative Adversarial Imitation Learning (GAIL)
(Ho & Ermon, 2016), has successfully applied the ideas of
GANSs to imitate an expert in a model-free setup. It showed
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Figure 1. Illustration of GANs. The generative model fol-
lows the discriminating hyper-plane defined by the discriminator.
Eventually, G will produce patterns similar to the expert patterns

that this type of learning could alleviate problems such as
sample complexity or covariate shifts (Kanamori & Shi-
modaira, 2003), traditionally coupled with imitation learn-
ing.

The disadvantage of the model-free approach comes to
light when training stochastic policies. The presence of
stochastic elements breaks the flow of information (gradi-
ents) from one neural network to the other, thus prohibiting
the use of backpropagation. In this situation, a standard so-
lution is to use gradient estimation (Williams, 1992). This
tends to suffer from high variance, resulting in a need for
larger sample sizes as well as variance reduction methods.

In this work, we present a model-based imitation learning
algorithm (MGAIL), in which information propagates flu-
ently from the guiding neural network (D) to the genera-
tive model GG, which in our case represents the policy 7
we wish to train. This is achieved by (a) learning a for-
ward model that approximates the environment’s dynam-
ics, and (b) building an end-to-end differentiable computa-
tion graph that spans over multiple time-steps. The gradi-
ent in such a graph carries information from future states to
earlier time-steps, helping the policy to account for com-
pounding errors. This leads to better policies that require
fewer expert samples and interactions with the environ-
ment.

2. Background

In this section, we review the mathematical formulation of
Markov Decision Processes, as well as previous approaches

to imitation learning. Lastly, we present GANSs in detail.

2.1. Markov Decision Process

Consider an infinite-horizon discounted Markov decision
process (MDP), defined by the tuple (S, A, P, 7, po,7),
where S is a set of states, A is a set of actions, P
S x A xS — [0,1] is the transition probability dis-
tribution, r (S x A) — R is the reward function,
po S — [0,1] is the distribution over initial states, and
v € (0,1) is the discount factor. Let 7 denote a stochastic
policy m : S x A — [0,1], R(w) denote its expected dis-
counted reward: E,R = E,r[th:O 7'#4], and 7 denote a
trajectory of states and actions 7 = {so, ag, $1, a1, ... }.

2.2. Imitation Learning

Learning control policies directly from expert demonstra-
tions, has been proven very useful in practice, and has led
to satisfying performance in a wide range of applications
(Ross etal., 2011). A common approach to imitation learn-
ing is to train a policy 7 to minimize some loss function
(s, m(s)), under the discounted state distribution encoun-
tered by the expert: d(s) = (1—7) >, ¥'p(s¢). This is
possible using any standard supervised learning algorithm:
m = argmin_ . Esuq, [[(s,7(s))], where II denotes the
class of all possible policies. However, the policy’s predic-
tion affects the future state distribution, which violates the
i.i.d assumption made by most SL algorithms. A slight de-
viation in the learner’s behavior may lead it to a different
state distribution than the one encountered by the expert,
resulting in compounding errors.

To overcome this issue, Ross & Bagnell (2010) introduced
the Forward Training (FT) algorithm that trains a non-
stationary policy iteratively over time (one policy 7; for
each time-step). At time ¢, 7, is trained to mimic 7z on the
state distribution induced by the previously trained poli-
cies mg, 71, ...m¢—1. This way, 7y is trained on the actual
state distribution it will encounter at inference. However,
the FT algorithm is impractical when the time horizon T'
is large (or undefined), since it needs to train a policy at
each time-step, and cannot be stopped before completion.
The Stochastic Mixing Iterative Learning (SMILe) algo-
rithm, proposed by the same authors, solves this problem
by training a stochastic stationary policy over several iter-
ations. SMILe starts with an initial policy 7y that blindly
follows the expert’s action choice. At iteration ¢, a policy
7, is trained to mimic the expert under the trajectory distri-
bution induced by m;_1, and then updates:

7 =m_1 +a(l —a) A — o).

Overall, both the FT algorithm and SMILe gradually mod-
ify the policy from following the expert’s policy to the
learned one.
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2.3. Generative Adversarial Networks

GANSs learn a generative model using a two-player zero-
sum game:

argmin argmax Eg..,,[log D(x)]+
G De(0,1) (2)

E... [log (1 - D(G(2)))].

where p, is some noise distribution. In this game, player G
produces patterns (denoted as z), and the second one (D)
judges their authenticity. It does so by solving a binary
classification problem where G’s patterns are labeled as 0,
and expert patterns are labeled as 1. At the point when
D (the judge) can no longer discriminate between the two
distributions, the game ends since G has learned to mimic
the expert.

The two players are modeled by neural networks (with pa-
rameters 64, 0, respectively), therefore, their combination
creates an end-to-end differentiable computation graph.
For this reason, G can train by generating patterns, feed-
ing it to D, and minimize the probability that D assigns to
them:
I(2,0,) = log (1 — D(Gy, (2))).
The benefit of GANS is that it relieves us from the need to
define a loss function or to handle complex models such as
RBM’s and DBN’s (Lee et al., 2009). Instead, GANs rely
on basic ideas (binary classification), and basic algorithms
(backpropagation). The judge D trains to solve a binary
classification problem by ascending at the following gradi-
ent:
1 & : :
V‘gda Z [log Dy, (x(’)) + log (1 — Dy, (G(z(’)))] )

i=1

interchangeably while G descends at the following direc-
tion:

V@g% i log (1 — D(Gy, (z(i)))).
i=1

Ho & Ermon (2016) (GAIL) proposed to apply GANs to
an expert policy imitation task in a model-free approach.
GAIL draws a similar objective function like GANs, except
that here pp stands for the expert’s joint distribution over
state-action tuples:

argmin argmax E[log D(s,a)]+
™ De(0,1) (3)

Erp[log(l — D(s, a))] — AH(m),

where H(\) 2 E, [~ log 7(a|s)] is the entropy.

The new game defined by Eq. 3 can no longer be solved
using the standard tools mentioned above because player G
(i.e., the policy ) is now stochastic. Following this mod-
ification, the exact form of the first term in Eq. 3 is given

by Esvp. (s)Eann(.|s)[log D(s, a)], instead of the following
expression if 7 was deterministic: E,~,[log D(s,w(s))].
The resulting game depends on the stochastic properties of
the policy. So, assuming that m = 7y, it is no longer clear
how to differentiate Eq. 3 w.r.t. . A standard solution is
to use score function methods (Fu, 2006), of which RE-
INFORCE is a special case (Williams, 1992), to obtain an
unbiased gradient estimation:

VR, [log D(s,a)] = E,,[Vglogme(als)Q(s,a)], (4)

where (Q)(8, @) is the score function of the gradient:

Q(8,a) =E,,[log D(s,a)|so = 8,a0 =a]. (5)

Although unbiased, REINFORCE gradients tend to suffer
high variance, which makes it hard to work with even after
applying variance reduction techniques (Ranganath et al.,
2014; Mnih & Gregor, 2014). In the case of GANSs, the dif-
ference between using the exact gradient and REINFORCE
can be explained in the following way: with REINFORCE,
G asks D whether the pattern it generates are authentic or
not. D in return provides a brief Yes/No answer. On the
other hand, using the exact gradient, G' gets access to the
internal decision making logic of D. Thus it is better able
to understand the changes needed to fool D. Such informa-
tion is present in the Jacobian of D.

In this work, we show how a forward model utilizes the
Jacobian of D when training 7, without resorting to high-
variance gradient estimations. The challenge of this ap-
proach is that it requires learning a differentiable approx-
imation to the environment’s dynamics. Errors in the for-
ward model introduce a bias to the policy gradient which
impairs the ability of 7 to learn robust and competent poli-
cies. We share our insights regarding how to train forward
models, and in subsection 3.5 present an architecture that
was found empirically adequate in modeling complex dy-
namics.

3. Algorithm

We start this section by analyzing the characteristics of the
discriminator. Then, we explain how a forward model can
alleviate problems that arise when using GANs for policy
imitation. Afterward, we present our model-based adver-
sarial imitation algorithm. We conclude this section by pre-
senting a forward model architecture that was found empir-
ically adequate.

3.1. The discriminator network

The discriminator network is trained to predict the con-
ditional distribution: D(s,a) = p(y|s,a) where y €
{mg,7}. Putin words, D(s,a) represents the likelihood
ratio that the pair {s,a} is generated by 7 rather than by
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(b) ©

Figure 2. (a) Block-diagram of the model-free approach: given a
state s, the policy outputs p which is fed to a stochastic sampling
unit. An action a is sampled, and together with s are presented to
the discriminator network. In the backward phase, the error mes-
sage d, is blocked at the stochastic sampling unit. From there, a
high-variance gradient estimation is used (0 v ). Meanwhile, the
error message 05 is flushed. (b) Discarding §, can be disastrous
as shown in the following example. Assume some {s,a} pairs
produced by the expert and G. Let s = (z1,22), and a € R. (¢)
Assuming the expert data lies in the upper half-space (z1 > 0)
and the policy emits trajectories in the lower half-space (z1 < 0).
Perfect discrimination can be achieved by applying the following
rule: sign(1l-x1 + 0 - x2 + 0 - a). Differentiating w.r.t the three
inputs give: g—ﬁ =1, gTL; =0, %—f = 0. Discarding the partial
derivatives w.r.t. x1, x2 (the state), will result in zero information
gradients.

wg. Using Bayes rule and the law of total probability we
can write that:

p(s, alm)p(m)
D(s,a) = p(n|s,a) (5.0)
p(s, a|m)p()
p(s,alm)p(m) + p(s, alme)p(7E)
p(s,alm)
p(s;alm) + p(s,almp)’

= (6)

The last equality is correct since the discriminator is trained
on an even distribution of expert/generator examples, there-
fore: p() = p(7g) = 4. Re-arranging and factoring the
joint distribution we can rewrite D(s, a) as:

1 J—
p(swa‘ﬂ()“’j”l(s;a"’rE) o
p(s,a|m

p(s.alrs) pals,me)  pGslne)
I+ Seam 11 56  pem

D(s,a) =

Next let us define (s, a), and ¥ (s) to be:

plals,mg) p(slme)
S,a) = 77¢ S)= —F——>
(s, a) (a5, ) (s) 2(/T)
and attain the final expression for D(s, a):
1
D(s,a) = . ®)

~ 1+g(s,a) - y(s)

Inspecting the derived expression we see that (s, a) repre-
sents a policy likelihood ratio, and 1) (s) represents a state
distribution likelihood ratio. This interpretation suggests
that the discriminator makes its decisions by answering two
questions. The first relates to the state distribution: what is
the likelihood of encountering state s under the distribution
induced by 7g vs. the one induced by 7? And the second
question relates to the behavior: given a state s, how likely
is action a under g vs. w?

We reach the conclusion that effective learning requires the
learner to be mindful of two effects. First, how its choice
of actions stands against the expert? And second, how it
affects the future state distribution? The desired change in
states is given by ©¥s = 91 /0s. A careful inspection of
the partial derivatives of D reveals that this information is
present in the Jacobian of the discriminator:

Pa(s, a)ip(s)

(1+ (s, a)y(s))?’
ps(s,a)ih(s) + (s, a)is(s)

(1 +e(s,a)¥(s)> 7
which increases the motivation to use it over other high-
variance estimations. Next, we show how using a forward
model, we can build a policy gradient directly from the Ja-
cobian of the discriminator (i.e., V,D and VD).

VoD =—
€))

V.D=—

3.2. Backpropagating through stochastic units

We are interested in training stochastic policies. Stochas-
ticity is important for Policy Gradient (PG) methods since
it encourages exploration. However, it poses a challenge
for policies modeled by neural networks, considering it is
unclear how to backpropagate through the stochastic ele-
ments. This problem plays a major role in algorithms that
build differentiable computation graphs where gradients
flow from one component to another, as in the case of deep
actor-critic methods (Lillicrap et al., 2015), and GANs. In
the following, we show how to estimate the gradients of
continuous stochastic elements (for continuous action do-
mains), and categorical stochastic elements (for the discrete
case).

3.2.1. CONTINUOUS ACTION DISTRIBUTIONS

In the case of continuous action policies we use a math-
ematical tool known as “re-parametrization” (Kingma &
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Welling, 2013; Rezende et al., 2014), which enables com-
puting the derivatives of stochastic models. Assume a
stochastic policy with a Gaussian distribution!, where the
mean and variance are given by some deterministic func-
tions g and oy, respectively: mg(als) ~ N (ug(s), o3(s)).
It is possible to re-write 7 as 7wy (als) = pe(s) + op(s),
where £ ~ N(0, 1). In this way, we are able to get a Monte-
Carlo estimator of the derivative of the expected value of

D(s, a) with respect to 6:

VoEr(a)s)D(s,a) =E,)VaD(a, 5)Vemg(als) =
| M
M;VQD(S,G)VQTFQ(C”S) K

(10)

3.2.2. CATEGORICAL ACTION DISTRIBUTIONS

For the case of discrete action domains, we suggest to
follow the idea of categorical re-parametrization with
Gumbel-Softmax (Maddison et al., 2016; Jang et al.,
2016). This approach relies on the Gumbel-Max trick
(Gumbel & Lieblein, 1954); a method to draw samples
from a categorical distribution with class probabilities
m(ails), m(azls),..m(an|s):

Qargmax = argmax [gi + log 7T(ai|5)]v
1

where g; ~ Gumbel(0,1). Gumbel-Softmax provides a
differentiable approximation of the hard sampling proce-
dure in the Gumbel-Max trick, by replacing the argmax
operation with a softmax:

exp[+(gi + logm(a;]s))]
Asoftmax — %

Sk exp[L(g; +logm(ails))]

where 7 is a “temperature” hyper-parameter that trades bias
with variance. When 7 approaches zero, the softmax oper-
ator acts like argmax (Gsofimax = Gargmax) Tesulting in low
bias. However, the variance of the gradient Vgasofimax in-
creases. Alternatively, when 7 is set to a large value, the
softmax operator creates a smoothing effect. This leads
to low variance gradients, but at the cost of a high bias

(asoftmax 7£ aa.rgmax)~

We use asofimax, that is not necessarily “one-hot”, to inter-
act with the environment, which expects a single (’pure’)
action. We solve this by applying argmax over asofmax, but
use the continuous approximation in the backward pass
by using the estimation: Vgaargmax = Vo @softmax-

'A general version of the re-parametrization trick for other
distributions such as beta or gamma was recently proposed by
Ruiz et al. (2016)

3.3. Backpropagating through a Forward model

So far we showed the changes necessary to use the exact
partial derivative V,D. Incorporating the use of V3D as
well is a more involved and constitutes the crux of this
work. To understand why, we can look at the block dia-
gram of the model-free approach in Figure 2. There, s is
treated as fixed (it is given as an input), therefore VD is
discarded. On the contrary, in the model-based approach,
s¢ can be written as a function of the previous state and ac-
tion: s; = f(s4—1,a:—1), where f is the forward model.
This way, using the law of total derivatives, we get that:

0D Oa dD 0s
VeDlswa)| =505 T as o8|
oDoa| oD (ofos 01 b
da 00| s \ 0s 00| da 00|

(1)

Considering that a;—; is a function of 6, we understand
that by creating a computation graph that spans over more
than a single time-step, we can link between VD and the
policy. Put in words, during the backward pass, the error
message regarding deviations of future states (¢5), propa-
gates back in time and influences the actions of the policy
in earlier times. Figure 3 summarizes this idea.

3.4. MGAIL Algorithm

We showed that a good approach for imitation requires:
(a) to use a model, and (b) to process multi-step transi-
tions. This setup was previously suggested by Shalev-
Shwartz et al. (2016) and Heess et al. (2015), who built
a multi-step computation graph for describing the familiar
policy gradient objective, which in our case is given by:

J(0) = E{tho q/tD(st,at)‘G]. To show how to differ-

entiate J(6) over a trajectory of (s,a,s’) transitions, we
rely on the results of Heess et al. (2015):

Js = ]Ep(a\s)Ep(s’\s,a) Dy + Dg7s + fYJ:/(f‘s + faTrs) 3

(12)

Jo = Ep(a|s)Ep(s/|s,a) [Daﬁe + A/(J;/fa’]TG + Jé)‘| . (13)

The final policy gradient VyJ is calculated by applying
Eq. 12 and 13 recursively, starting from ¢ = T all the way
down to ¢ = 0. The full algorithm is presented in Algo-
rithm 1.

3.5. Forward Model Structure

The forward model prediction accuracy plays a crucial role
in the stability of the learning process. However, learning
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Figure 3. Block diagram of model-based adversarial imitation learning. This diagram describes the computation graph for training
the policy (i.e. G). The discriminator network D is fixed at this stage and is trained separately. At time ¢ of the forward pass, 7 outputs
a distribution over actions: iy = m(s¢), from which an action a; is sampled. For example, in the continuous case, this is done using the
re-parametrization trick: a; = ¢ + &€ - o, where £ ~ N(0,1). The next state s;+1 = f(s¢, at) is computed using the forward model
(which is also trained separately), and the entire process repeats for time ¢ 4+ 1. In the backward pass, the gradient of 7 is comprised of
a.) the error message d, (Green) that propagates fluently through the differentiable approximation of the sampling process. And b.) the
error message 05 (Blue) of future time-steps, that propagate back through the differentiable forward model.

Algorithm 1 Model-based Generative Adversarial Imi-
tation Learning

—_

: Input: Expert trajectories 7z, experience buffer B, ini-
tial policy and discriminator parameters 6, 04

2. for trajectory = 0 to oo do

3 fort =0to T do

4 Act on environment: a = 7(s, &; 0y)

5: Push (s, a, s") into B

6:  end for

7 train forward model f using B

8 train discriminator model Dy, using B

9:  set: ji = O,j(’,q =0

10:  for¢ =T down to 0 do

11: Jo, = [Damo, + (% faTo, +jég)H€
120 o= [De+ Damy + 930 (fs + fama, )l
13: end for

14: Apply gradient update using jj

15: end for -

an accurate forward model is a challenging problem by it-
self. We found that the performance of the forward model
can be improved by considering the following two aspects
of its functionality. First, the forward model should learn to
use the action as an operator over the state space. Actions
and states are sampled from entirely different distributions,
so it would be preferable to first represent both in a shared
space. Therefore, we first encode the state and action with
two separate neural networks and then combine them to
form a single vector. We found empirically that using a
Hadamard product to combine the encoded state and action
achieves the best performance. Additionally, predicting the
next state based on the current state alone requires the envi-
ronment to be representable as a first order MDP. Instead,
we can assume the environment to be representable as an
n’th order MDP and use multiple previous states to pre-
dict the next state. To model the multi-step dependencies,
we use a recurrent connection from the previous state by
incorporating a GRU layer (Cho et al., 2014) as part of
the state encoder. Introducing these two modifications (see
Figure 4), we found the complete model to achieve better
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Figure 4. Comparison between a vanilla forward model (Top)
and an advanced forward model (Bottom). In the vanilla for-
ward model, the state and action vectors are concatenated and then
passed through a two-layer neural network. In the advanced for-
ward model, the action and state are passed independently through
two neural networks and are then combined using Hadamard
product. The result is then passed through another neural network
to form the output.

and more stable results compared to using a vanilla feed-
forward neural network as the forward model, as seen in
Figure 5.

4. Experiments

We evaluate the proposed algorithm on three discrete con-
trol tasks (Cartpole, Mountain-Car, Acrobot), and five con-
tinuous control tasks (Hopper, Walker, Half-Cheetah, Ant,
and Humanoid) modeled by the MuJoCo physics simula-
tor (Todorov et al., 2012). These tasks involve complex
second order dynamics and direct torque control. We use
the Trust Region Policy Optimization (TRPO) algorithm
(Schulman et al., 2015) to train expert policies. For each
task, we produce datasets with a different number of trajec-
tories, where each trajectory: 7 = {sg, $1,...Sn,an } is of
length N = 1000.

The discriminator and policy neural networks are built from
two hidden layers with Relu non-linearity and are trained
using the ADAM optimizer (Kingma & Ba, 2014). Ta-
ble 1 presents the total reward over a period of N steps,
measured using three different algorithms: BC, GAIL, and
MGAIL. The results for BC and GAIL are as reported in
Ho & Ermon (2016). Our algorithm achieves the high-
est reward for most environments while exhibiting per-
formance comparable to the expert over all of them (a
Wilcoxon signed-rank test indicates superior performance
with p-value < 0.05). We also compared the performance
of MGAIL when using a basic forward model, versus using
the more advanced model as described in Section 3. Fig-

ure 5 shows that better and more stable results are obtained
when using the advanced forward model.
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Figure 5. Performance comparison between a basic forward
model (Blue), and the advanced forward model (Green).

5. Discussion

In this work, we presented a model-based algorithm for im-
itation learning. We showed how using a forward model
enables to train policies using the exact gradient of the dis-
criminator network. This way, the policy can imitate the
expert’s behavior, but also account for undesired deviations
in the distributions of future states. The downside of this
approach is the need to learn a forward model; a task that
could prove difficult in some domains. An interesting line
of future work would be to learn the system dynamics di-
rectly from raw images, as was done in Oh et al. (2015).

GANSs algorithm violates a fundamental assumption made
by all SL algorithms, which requires the data to be i.i.d.
The problem arises because the discriminator network
trains on a dynamic data distribution. For the training to
succeed, the discriminator must continually adapt to the
changes in the policy. In our context, the problem is em-
phasized even more since both the discriminator and the
forward models are trained in a SL fashion using data that
is sampled from a replay buffer B (Lin, 1993). A possible
remedy is to restart the learning multiple times along the
training period by resetting the learning rate (Loshchilov
& Hutter, 2016). We tried this solution without significant
success. However, we believe that further research in this
direction is needed.
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(a) Cartpole

(b) MountainCar

(c) Acrobot

(e) Walker (f) Half-Cheetah (g) Ant (h) Humanoid
Task Dataset size  Behavioral cloning GAIL MGAIL
Cartpole 1 72.02 £ 35.82 200.00 4 0.00 200.00 4 0.00

4 169.18 £ 59.18 200.00 = 0.00 200.00 £+ 0.00
7 188.60 £ 29.61 200.00 = 0.00 200.00 £ 0.00
10 177.19 £ 52.83 200.00 £ 0.00 200.00 4+ 0.00
Mountain Car 1 —136.76 + 34.44 —101.55 £ 10.32 —107.4 +10.89
4 —133.25 £ 29.97 —101.35 £ 10.63 —100.23 £ 11.52
7 —127.34 £ 29.15 —99.90 £+ 7.97 —104.23 £ 14.31
10 —123.14 £ 28.26 —100.83 £11.40 —99.25 £ 8.74
Acrobot 1 —130.60 £ 55.08 —77.26 £ 18.03 —85.65 = 23.74
4 —93.20 £ 35.58 —83.12 +23.31 —81.91 +£17.41
7 —96.92 4 34.51 —82.56 4 20.95 —80.74 4+ 14.02
10 —95.09 4 33.33 —78.91 & 15.76 —77.93 +14.78
Hopper 4 50.57 £ 0.95 3614.22 + 7.17 3669.53 + 6.09
11 1025.84 + 266.86 3615.00 4= 4.32 3649.98 4+ 12.36
18 1949.09 £ 500.61 3600.70 = 4.24 3661.78 &= 11.52
25 3383.96 £ 657.61 3560.85 £+ 3.09 3673.41 £ 7.73
Walker 4 32.18 £1.25 4877.98 4 2848.37 6916.34 £ 115.20
11 5946.81 +1733.73 6850.27 - 91.48 7197.63 £ 38.34
18 1263.82 + 1347.74 6964.68 £ 46.30 7128.87 £ 141.98
25 1599.36 + 1456.59 6832.01 £ 254.64 7070.45 £ 30.68
Half-Cheetah 4 —493.62 + 246.58 4515.70 4= 549.49 4891.56 4+ 654.43
11 637.57 +1708.10 4280.65 +1119.93 4844.61 4+ 138.78
18 2705.01 4 2273.00 4749.43 4+ 149.04 4876.34 + 85.74
25 3718.58 4= 1856.22 4840.07 + 95.36 4989.95 4+ 351.14
Ant 4 1611.75 £ 359.54 3186.80 £ 903.57 4645.12 +179.29
11 3065.59 £+ 635.19 3306.67 £ 988.39 4657.92 + 94.27
18 2579.22 +1366.57  3033.87 £ 1460.96 4664.44 +183.11
25 3235.73 +1186.38 4132.90 4 878.67 4637.52 + 45.66
Humanoid 80 1397.06 £ 1057.84 10200.73 £ 1324.47 10312.34 4 388.54
160 3655.14 +3714.28 10119.80 &+ 1254.73  10428.39 + 46.12
240 5660.53 4= 3600.70 10361.94 + 61.28 10470.94 + 54.35

Table 1. Policy performance, boldface indicates better results, + represents one standard deviation.
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