Globally Induced Forest: A Prepruning Compression Scheme

Jean-Michel Begon' Arnaud Joly' Pierre Geurts'

Abstract

Tree-based ensemble models are heavy memory-
wise. An undesired state of affairs consider-
ing nowadays datasets, memory-constrained en-
vironment and fitting/prediction times. In this
paper, we propose the Globally Induced Forest
(GIF) to remedy this problem. GIF is a fast
prepruning approach to build lightweight ensem-
bles by iteratively deepening the current forest. It
mixes local and global optimizations to produce
accurate predictions under memory constraints
in reasonable time. We show that the proposed
method is more than competitive with standard
tree-based ensembles under corresponding con-
straints, and can sometimes even surpass much
larger models.

1. Introduction

Decision forests, such as Random Forest (Breiman, 2001)
and Extremely Randomized Trees (Geurts et al., 2006),
are popular methods in the machine learning community.
This popularity is due to their overall good accuracy, rela-
tive ease-of-use, short learning/prediction time and inter-
pretability. However, datasets have become bigger and
bigger over the past decade. The number of instances N
has increased and the community has turned to very high-
dimensional learning problems. The former has led to
bigger trees, as the number of nodes in a tree is O(N).
The latter, on the other hand, tends to steer toward larger
forests. Indeed, the variance of individual trees tends to
increase with the dimensionality P of the problem (Joly
et al., 2012). Therefore, the adequate number of trees T’
increases with the dimensionality. Overall, this change of
focus might render tree-based ensemble techniques imprac-
tical memory-wise, as the total footprint is O(N x T(P)).

"Department of Electrical Engineering and Computer Sci-
ence University of Liege, Liege, Belgium. Correspondence
to: Jean-Michel Begon <jm.begon@ulg.ac.be>, Pierre Geurts
<p.geurts@ulg.ac.be>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

Aside from big data, other areas of machine learning suffer
from the high memory demand of tree-based methods. For
instance, low-memory devices, such as mobile phones and
embedded systems, require lightweight models. Smaller
models also implies faster predictions, which is crucial for
real-time applications. All in all, tree-based models might
benefit from lighter memory footprint in many different
ways.

In this paper, we propose the Globally Induced Forest
(GIF), an algorithm which, under a node budget constraint,
iteratively and greedily deepens multiple trees by optimiz-
ing globally the sequence of nodes to develop and their as-
sociated weights, while still choosing locally, based on the
standard local score criterion, the splitting variables and cut
points at all tree nodes.

As a pre-pruning approach, GIFs circumvent the need to
build the whole forest first, thus discarding the need for
a large temporary storage. This, in addition to the mix
of global, local and greedy optimization, results in a fast
method, able to produce lightweight, yet accurate forests
learned on the whole training set.

After a discussion of the related work in Section 2, Section
3 introduces the GIF algorithm and how it can be applied
for both regression (Section 3.1) and classification (Section
3.2). In Section 4, we show that our proposed algorithm,
with its default setting, performs well on many datasets,
sometimes even surpassing much larger models. We then
conduct an extensive analysis of its hyper-parameters (Sec-
tion 4.2). Since GIF shares some resemblance to Boost-
ing, the two approaches are compared in Section 4.3, be-
fore concluding and outlining future works in Section 5.

2. Related work

Memory constraints of tree-based ensemble methods is not
a new topic and has been tackled from various perspec-
tives, which can be partitioned into tree-agnostic and tree-
aware methods. The former set of techniques are general
purpose methods which can deal with any ensembles. We
can distinguish further between re-learning algorithms (e.g.
Domingos, 1997; Menke & Martinez, 2009), which try to
come up with a smaller, equivalent models, and ensem-
ble pruning methods. These latter methods try to eliminate

Globally Induced Forest

some of the redundant base models constituting the ensem-
ble but do not attempt to reduce the complexity of the indi-
vidual models (Tsoumakas et al., 2008; Rokach, 2016).

Tree-aware methods strive to build smaller trees by lim-
iting the total number of nodes within the forest. Sev-
eral families have been proposed. For instance, Breiman
(1999) learns the forest with a subsample of the training
data. Some authors have proposed to relax the trees into
DAGs a posteriori at first (e.g., Peterson & Martinez, 2009)
and more recently a priori (Shotton et al., 2013). Simi-
larly, techniques working on the whole dataset and yield-
ing ensemble of trees can be partitioned into pre- and post-
pruning methods. Pre-pruning methods aim at stopping the
development of uninteresting branches in the top down in-
duction procedure. On the other hand, the goal of post-
pruning methods is to discard a posteriori subtrees which
do not provide significant accuracy improvements.

Originally, pruning methods were introduced to control the
model complexity and avoid overfitting. The advent of
ensemble methods somewhat cast aside those techniques
as the averaging mechanism became responsible for re-
ducing the variance and rendered pruning mostly unnec-
essary from the point of view of accuracy. Nonetheless,
a few ensemble-wise, post-pruning methods have recently
emerged with a focus on memory minimization. In both
(Meinshausen et al., 2009) and (Joly et al., 2012), the com-
pression is formulated as a slightly different global con-
strained optimization problem. In (Ren et al., 2015), com-
pression is undertook with a sequential optimization ap-
proach by removing iteratively the least interesting leaves.
In (De Vleeschouwer et al., 2015), the authors alleviate
the leaves” memory requirements by clustering their condi-
tional distributions. After computing a wavelet coefficient
for each node, Elisha & Dekel (2016) discard all the nodes
which are not on the path to a node of sufficient coefficient.
All these methods are able to retain almost the full forest
accuracies while offering a significant memory improve-
ment, leaving their requirement for building the whole for-
est first, and consequently the high temporary memory and
computational costs, as their only major drawbacks.

Although our aim is to pre-prune random forests, the GIF
algorithm shares similarity with Boosting methods (Fried-
man, 2001), which fit additive tree ensembles based on a
global criterion and are also able to build accurate yet small
models. Whereas most Boosting methods only explore en-
sembles of fixed-size trees, GIF does not put any prior com-
plexity constraint on the individual trees but instead adapts
their shape greedily. It shares this property with Johnson &
Zhang (2014)’s regularized greedy forests (RGF), a method
proposed to overcome several limitations of standard gra-
dient boosting. The link between GIF and these methods
will be discussed further in Section 3.3.

Algorithm 1 Globally Induced Forest

1: Input: D = (x;,9:)~+, the learning set with z; € R”
and y; € R¥; A, the tree learning algorithm; L, the loss
function; B, the node budget; 7', the number of trees; CW,
the candidate window size; A, the learning rate.

: Output: An ensemble S of B tree nodes with their corre-
sponding weights.

. Algorithm:

S=0,C=0t=1

0 99() = argmin, cpre 320, L(yi, 0)

: Grow T stumps with A on D and add the left and right suc-
cessors of all stumps to C.

. repeat

C is a subset of size min{C'W, |C|} of C chosen uni-

formly at random.

9: Compute:

N
G wp) = argmin S L (3§D @) + wz (@)

JECL,wERK i=1

[\

[e BN]

10: S=SU{("wj)EC=C\{j"}
y () =y + Awze ()
11: Split j* using A to obtain children j; and j,
122 C=CU{ji,j}t=t+1
13: until budget B is met

3. Globally Induced Forest

GIFs rely on the view of a T trees forest as a linear model
in the “forest space”, a binary M -dimensional space, where
M is the total number of nodes in the whole forest (Joly
etal., 2012; Vens & Costa, 2011):

M
ym:Zme (1)

where the indicator function z;(x) is 1 if reaches node j
and 0 otherwise, and w; is % times the prediction at a node
7 if j is a leaf and O otherwise. In regression, the leaf pre-
diction would be the average value of the subset of outputs
reaching leaf j. In classification, w; € R is a vector of

dimension K, where w§-k) k=1,...,K)is % times the
probability associated to class &, typically estimated by the
proportion of samples of this class falling into leaf j.

Algorithm 1 describes the GIF training algorithm. A visual
illustration is given in Figure 1 of the supplementary ma-
terials. Starting from a constant model (step 5), it builds
an additive model in the form (1) by incrementally adding
new node indicator functions in a stagewise fashion in or-
der to grow the forest. At each step, a subset of candi-
date nodes C} is drawn uniformly at random from the to-
tal candidate list C' (step 8). For each of those nodes, the
weight is optimized globally according to some loss func-
tion L : Y x)V — R expressing the degree to which the
model predictions disagree with the ground truth (such as
the L2 norm, for instance). The node j* among those of C,
which contributes the most to a decrease of the loss is se-
lected (step 9) and introduced in the model via its indicator

Globally Induced Forest

function z;- and its optimal weight w? tempered by some
learning rate A (step 10). This node is then split locally ac-
cording to the reference tree growing strategy A (step 11)
and replaced by its two children in the candidate list (step
12). The process is stopped when the node budget B is
reached. The node budget B accounts for the total number
of nodes in the resulting forest, i.e., both internal (splitting)
and external (decision) nodes. The root nodes are only ac-
counted for when one of its children is taken into the model.

Contrary to Equation 1, each node has a non-zero weight,
since it was optimized. Note however that, as soon as both
its children are inserted, the parent node weight can be re-
moved from the sum by pushing its weight to its successors.

Node selection and weight optimization. Step 9 of Al-
gorithm 1 can be decomposed into two parts. First, the op-
timal weight for a given candidate node is computed using:

(t) = argmmZL(A) +wZJ(177)> 2)

K
weER =1

Closed-form formulas for optimal weights are derived in
Sections 3.1 and 3.2 for two losses. Second, the optimal
nod
with exhaustive search. Computing the loss gain associated
to a candidate node j can be done efficiently as it requires
to go only over the instances reaching that node j. Indeed,
finding the optimal node j; at step ¢ requires to compute:

arg max Z

JeCr T

— (t—l) (t)
Jr argercr}tln ; err err;;),
3)
v, 9 () + wizj(x;)) and
ertt™ 2 L(y;, 94 (x;)). Given that z;(x;) # 0 only
for the instances reaching node j, Equation (3) can be sim-
plified into:

where err(z) £ Ly

J; = argmax Z (errz(»t_l) - err(f)) 4)

JEC i€Z;

where Z; = {1 < i < N|z;j(x;) = 1}. Due to the par-
titioning induced by the tree, at each iteration, computing
the optimal weights for all the nodes of a given tree is at
most O(N), assuming a single weight optimization runs in
linear time in the number of instances reaching that node.
Consequently, the asymptotic complexity of the induction
algorithm is the same as the classical forest.

Note that, since the optimization is global, the candidate
node weights must be recomputed at each iteration as the
addition of the chosen node impacts the optimal weights
of all the candidates it is sharing learning instances with.
Arguably, the minimization of a global loss prevent from

building the trees in parallel. The search for the best candi-
date could, however, be run in parallel, as could the search
for the best split.

Tree learning algorithm. The tree learning algorithm is
responsible for splitting the data reaching a node. This
choice is made locally, meaning that it disregards the cur-
rent global predictions of the model. As a consequence,
the tree nodes that are selected by GIF are exactly a subset
of the nodes that would be obtained using algorithm A to
build a full ensemble. The motivation for not optimizing
these splits globally is threefold: (i) our algorithm can be
framed as a pre-pruning technique for any forest training al-
gorithm, (ii) it introduces some natural regularization, and
(iii) it leads to a very efficient algorithm as the splits in the
candidate list do not have to be re-optimized at each itera-
tion. Although any tree learning method can be used, in our
experiments, we will use the Extremely randomized trees’s
splitting rule (Geurts et al., 2006): m out of p features are
selected uniformly at random and, for each feature, a cut
point is chosen uniformly at random between the current
minimum and maximum value of this feature.

3.1. Regression

Under the L2-norm, optimization (2) becomes:

w® —argmmZ((=1 _)2 Q)
(t—1)

where r;") = y; — Q(t_l)(xi) is the residual at time ¢ —
1 for the ith training instance. The optimal weight is the
average residual:

W0 — (=)
6
w |Z|Z ®)

i€Z;

In the case of a unit learning rate (A = 1) and a single tree
(T' = 1), the model predictions coincide with the ones the
underlying tree would provide (see Supplementary mate-
rial).

Extending to the multi-output case is straightforward: one
only needs to fit a weight independently for each output.
The loss becomes the sum of the individual losses over each
output.

3.2. Classification

Binary classification can either be tackled with the square
loss, recasting the classes as {—1,+1}, or by employing
a more appropriate loss function. Indeed, the former has
the disadvantage that it will penalize correct classification
if the prediction overshoots the real value.

In multiclass classification, one has several options. A first
possibility is to build several binary classification models

Globally Induced Forest

using a binary loss function. Interestingly, this can be
done in a single learning phase by attributing one output
per model. In contrast with a pure one-versus-one or one-
versus-rest technique, the individual models would not be
independent as they share the same forest structure.

A second approach is to employ a custom multiclass loss.
An example of such a loss function is the multiclass expo-
nential loss discussed in (Zhu et al., 2009). Firstly, we must
encode the class into a K -dimensional vector so that

(k) 1, if the class of y; is k 7
K 7, otherwise

This representation agrees with the binary case and is less
demanding than a one-versus-rest approach: the negative

classes weigh the same as the correct one; Z kel y(k) 0.

With this representation, the optimization problem (2) be-
comes:

N
1
wy) — ai}gegl;nz;exp < I yr (g(t—l)(mi) + w@(%)))
3)

whose solution is not unique. In keeping with the out-
put representation (Equation 7), we can impose a zero-sum
constraint on the prediction to get a unique solution for
each component w Ma<k< K) of w() If it is im-
posed at each stage it means that

K K K
Z g(fflyk) — Z g(t’k) —0= Z w® 9)
k=1 k=1 k=1

and this is not impacted by the learning rate. The corre-
sponding analytical solution (see Supplementary material
for more details) is

i=

(t 1,k)

(t,k)
wj K Zlog (t MR (10)
where
(t-1,k) & L -1k
a; = Z exp(—K 19 (x;) | (11)
i€Zj|yi=k
Probabilities. Posterior probabilities of an example x be-

longing to class k can be derived by running the additive
model through a softmax:

eXP(790 (@))
S exp (590 (2))

In the case of a unit learning rate (A = 1) and a single tree
(IT' = 1), the probabilities thus derived coincide with the
ones the underlying tree would provide (see Supplementary
material).

PO (k|z) =

(12)

Trimmed exponential loss. Equation (10) glosses over
a crucial detail: what happens when some classes are not
represented, that is the class error a;tfl’k) is zero for some
k? To circumvent this problem, we propose to approximate

the optimal weight (Equation 10) in the following fashion:

K
K-1
wF) — o (agt 1 k) ;t 1,1)) (13)

J K
1=1
0, ifo:OOr%>ee
To(x1,22) = < —0, ifry =0o0r 22 > e? (14)
log 3L, otherwise

The thresholding function 7y acts as an implicit regulariza-
tion mechanism: it prevents some class errors from weigh-
ing too much in the final solution by imposing, through the
parameter 6, a maximum order of magnitude between the
class errors. For instance, a saturation § = 3 means that
the class errors imbalance is not allowed to count for more
than €3 ~ 20.

3.3. Discussion

GIF versus Boosting. From a conceptual point of view,
GIF is very similar to gradient Boosting (Friedman, 2001),
where, however, the set of base learners would be com-
posed of node indicator functions and would be expanded
at each iteration, while gradient boosting usually exploits
depth-constrained decision trees. Also, GIF weights can be
multidimensional to accommodate for multiclass or multi-
output problems, whereas they are usually scalar in Boost-
ing (with potentially multioutput base models). GIF’s for-
est development mechanism makes it noticeably close to
Johnson & Zhang (2014)’s RGF method that can also, in
principle, build a forest greedily by choosing at each itera-
tion the leaf to split based on a global objective function (al-
though, to reduce computing times, only the last tree added
in the forest can be further expanded in practice). As an im-
portant difference, however, splits in RGF are globally op-
timized based on the current forest predictions, while splits
in GIF are optimized locally and only the nodes and their
weights are chosen globally. This local optimization, to-
gether with the learning rate and candidate subsampling,
acts as the main regularizer for GIF, while RGF uses ex-
plicit regularization through the objective function.

Forest shape. Three parameters interact to influence the
shape of the (pruned) forest: the number of trees 7', the
candidate window size C'W and the learning rate \.

On the one hand, CW = 1 means that the forest shape
is predetermined and solely governed by the number of
trees. Few trees impose a development in depth of the for-
est, while many trees encourage in-breadth growth. Since
the selection is uniform over the candidates, it also implies

Globally Induced Forest

that well-developed trees are more likely to get developed
further, as choosing a node means replacing it in the can-
didate list by its two children (unless it is a leaf). This
aggregation effect should somewhat be slowed down when
increasing the number of trees (in-breadth development).
Note that subsampling the candidates (i.e. small value of
CW) also acts as a regularization mechanism and reduces
the computing time.

On the other hand, CW = 400 means that the algorithm
takes the time to optimize completely the node it chooses,
giving it full rein to adapt the forest shape to the problem at
hand. In that case, the learning rate plays an important role
(Figure 2). If it is low, the node will not be fully exploited
and the algorithm will look for similar nodes at subsequent
steps. In contrast, if the learning rate is high, the node will
be fully exploited and the algorithm will turn to different
nodes. As similar nodes tend to be located roughly at the
same level in trees, low (resp. high) learning rate will en-
courage in breadth (resp. in depth) development.

4. Empirical analysis

All the results presented in this section are averaged over
ten folds with different learning sample/testing sample
splits. See the Supplementary material for detailed infor-
mation on the datasets.

4.1. Default hyper-parameters

Our first experiment was to test the GIF against the Ex-
tremely randomized trees (ET). To get an estimate of the
average number of nodes per tree, we first computed ten
forests of 1000 fully-developed ET. We then examined how
GIF compared to ET for 1% and 10% of the original bud-
get. For GIF, these values were directly used as budget
constraints. For ET, we built forests of 10 (ET;¢) and 100
(ET%) trees. The supplementary materials include fur-
ther comparisons with three other local pre-pruning base-
lines, focusing more on the top of the trees. As these base-
lines tend to perform poorly, we focus our comparison be-
low to the ET;¢, and ET; (9, baselines.

The extremely randomized trees were computed with ver-
sion (.18 of Scikit-Learn (Pedregosa et al., 2011) with the
default parameters proposed in (Geurts et al., 2006). In
particular, the trees are fully-developed and the number of
features examined at each split is ,/p in classification and
p in regression, where p is the initial number of features.
For GIF, we started with 7" = 1000 stumps, a learning rate
of A\ = 1071® and CW = 1. The underlying tree building
algorithm is ET with no restriction regarding the depth and
\/p features are examined for each split, in both classifica-
tion and regression. We will refer to this parameter setting
as the default one. Note that GIF is implemented on top of

the Scikit-Learn library!.

Regression was handled with the square loss. For classifi-
cation, we tested two methods. The first one is a one-vs-rest
approach by allocating one output per class with the square
loss. The second method was to use the trimmed exponen-
tial loss with a saturation § = 3. The results are reported in
Tables 1 and 2.

Regression. As we can see from Table 1, this default
set of parameters performs quite well under heavy mem-
ory constraint (i.e. a budget of 1%). GIF;y, outperforms
significantly ET;¢, four times out of five. Moreover, on
those four datasets, GIF; ¢, is able to beat the original forest
with only 1% of its node budget. The mild constraint case
(i.e. a budget of 10%) is more contrasted. On Friedmanl,
California data housing and CT Slice, GIF, ¢, outperforms
ET,qy. For both Abalone and Hwang, GIF, g, overfits; in
both cases the errors of GIF; ¢ were better than at 10% and,
as mentioned, better than ET; ;.

Classification. Table 2 draws an interesting conclusion:
the number of classes should guide the choice of loss. In
the binary case, the trimmed exponential works well. At
1%, it loses on Musk2, and the binarized version of Vowel
and Letter to ETyo,. At 10%, it only loses on binary Vowel,
where it closes the gap somewhat.

‘When it comes to multiclassification, however, the trimmed
exponential seems to suffer. The multi-output square loss
version is sometimes able to outperform the ET version.
This is the case of both Waveform and Mnist at 1% and of
Mnist at 10%.

The binary versions of Vowel, and Mnist indicate that GIF
at 10% struggles much more with the number of classes
than with the the dimensionality of the problem and/or the
learning sample size.

Interestingly, GIF’s performance on Madelon with both
losses are better than the base ET version. This suggests
that GIF is well capable of handling irrelevant features.

Needless to say that this default parameter setting, although
performing well on average, is not optimal for all datasets.
For instance, on CT slice at 1%, we can reach 20.54 +
0.76 by enlarging the candidate window size to 10. For the
trimmed exponential loss, with A = 10~1 at 1%, we can
reach 3.74 4+ 0.31 on Twonorm and 3.54 £ 0.3 on Musk2.

4.2. Influence of the hyper-parameters

Learning rate. Figure 1 depicts a typical evolution of the
error with the budget for different learning rates in the case

'The code is readily available at https://github.com/
jm-begon/globally-induced-forest

https://github.com/jm-begon/globally-induced-forest
https://github.com/jm-begon/globally-induced-forest

Globally Induced Forest

Table 1. Average mean square error at 1% and 10% budgets (m = \/p, A = 10715, T = 1000, CW = 1).

DATASET ET100% ET10% GIF1p9 ET1o GIF; 9
FRIEDMAN1 4.89 £0.23 5.02+£0.22 2.37+£0.24 5.87+£0.27

ABALONE 4.83 £0.21 4.87 £0.21 5.20 £ 0.21 5.29 £0.27

CT SLICE 19.32 £ 1.69 19.62 £ 1.69 | 19.31 £ 0.61 36.48 +1.32
HWANG F5 x10~2 8.20 + 0.11 8.25+0.11 8.58 £0.10 8.67 +0.12

CADATA x10~2 25.45 4+ 0.65 2571 £0.62 | 21.76 £ 0.66 | 28.39 4+ 0.97

Table 2. Error rate (%) at 1% and 10% budgets (m = /p, A = 107Y5, T = 1000, CW = 1). GIFsq,. relates to the multi-output
square loss. GIFrg,. relates to the trimmed exponential loss with § = 3. The six firts datasets are binary classification. The last three

are multiclass. The three in the middle are their binary versions.

DATASET ETi00% ETi0% GIFsq.10% GIFTE 10% ETio% GIFs59 1% GlFrp 1%
RINGNORM 2.91 £0.40 3.28 +0.41 4.05 £ 0.45 3.17 £ 0.34 7.43 +0.55 5.35+£0.65
TWONORM 3.13+£0.13 3.54+£0.18 3.50 £0.24 3.35+0.22 8.00 + 0.57 3.92 £0.31
HASTIE 10.30 £ 0.46 11.78 £ 0.56 10.33 £ 0.41 7.38 £0.29 20.38 £ 0.56 7.64 £+ 0.50
Musk2 3.65 + 0.40 3.70 + 0.37 3.41 £0.34 3.14 £ 0.34 7.40 £0.38 6.65 +0.28
MADELON 9.75 £ 0.75 12.43 +0.77 9.18 £ 0.83 8.03 + 0.60 2391 £+ 1.17 12.55 +0.83
MNIST8VS9 0.99 £0.23 1.06 £ 0.23 0.86 + 0.24 0.76 £ 0.16 1.58 +0.31 2.10 + 0.35
BIN. VOWEL 1.96 + 1.04 2.28 £1.20 2.81£1.17 2.24 £1.19 12.28 +2.00 11.92 +£2.03
BIN. MNIST 1.92 +0.16 2.04 +0.21 1.76 £ 0.15 1.59 £ 0.15 3.37+£0.17 3.24 +0.20
BIN. LETTER 1.80 £ 0.20 2.00 £0.17 2.44 +0.25 2.28 £0.19 7.57 £0.38 6.65 +0.24
WAVEFORM 13.95 £ 0.58 14.47 £093 | 14.17 £0.62 14.51 +0.67 14.78 £ 0.81
VOWEL 592+ 1.29 6.08 £ 1.13 731 +1.18 15.90 + 1.35 22.91 £ 2.03 36.30 £ 2.62
MNIST 2634018 | 2.87+0.19 [W22EEOATN 4.05 +0.25 5.68 +0.31
LETTER 2.53£0.16 2.75 £0.17 2.82+£0.19 9.07 £ 0.53 8.10 + 0.55 19.87 £ 0.77
25rf Learning rate || 1.0F| Learning rate
A=10"3 A=10"°
— A=107 — A=10707
201 A=1 0.8 A=1
)
150 g 06r
5 c
2 04}
10} E
5
""" 0.2f
5+
0.0} ———
0 10000 20000 30000 40000 50000 6 200 400 600 800 10‘00
Budget Ranks

Figure 1. Friedmanl: average test set error with respect to the
budget B (CW =1, m=v/10, T" = 1000).

of Friedman! (the budget maxes out at 59900 nodes, cor-
responding to 10%). A unit learning rate will usually de-
crease the test set error rapidly but will then either saturate
or overfit. Too small a learning rate (e.g. 10~3) will pre-
vent the model from reaching its minimum in the alloted
budget. The learning rate also influences the forest shape,
provided the candidate window size is large enough. Fig-
ure 2 portrays the cumulative node distribution with respect
to the size-ranks of the trees for CW = oo, meaning that
f(x) is the ratio of nodes of the x/T smallest trees. We can
see that, for the smallest learning rate, 80% of the smallest
trees account for approximately 43% of the nodes. At the
same stage, only 17% and 13% of the nodes are covered for
the average and biggest learning rates, respectively.

Figure 2. Friedman1: cumulative node distribution with respect to
the size-ranks (CW = oo, m=1/10, T = 1000, B = 10%).

Number of features. Table 3 shows how the error varies
at 10% for CW = 1 with respect to both the learning rate
A and m, the number of features examined for a split, in
the case of CT slice and Musk2, two datasets with many
features. Interestingly, the error tends to vary continuously
over those two parameters. On both datasets, it appears
that the choice of learning rate (global parameter) is more
critical than the number of features (local parameter). The
optimal number of features remains problem-dependent,
though.

Candidate window size. Figure 3 illustrates the influ-
ence of the candidate window size on both the error and
the fitting time for several datasets with A = 10~13,
m = /p, T = 1000 and a budget=10%. Firstly, the lin-
ear dependence of the window size on the building time

Globally Induced Forest

Table 3. Average test set error with respect to m and A (CW =1,
T = 1000, B = 10%; 6 = 3). In bold is m = /p.

CT slice: mean square error

m\X [1072 1002 10 100f' 107°°

19 27280 2034 1931 = 21.97

38 2578 | 1951 18.63 20.88 | 27.62

96 2553 1974 1879 20.68 | 26.64
192 2655 2096 1992 21.62 | 26.87

288 2243 2091 2231 | 27.64

L- 2504 2311 24.17 ||29.56 |
Musk?2: error rate (%)

m\A [102 102 10 '° 10°' 10 °°
12 374 314 290 286
16 367 311 291 285
41 339 300 293 293
83 424 | 326 292 288 290
124 411 320 289 279 275
166 411 319 294 284 286

))))) Friedmanl
2 4 6 8 10 12 14 16

25.0

21.51
CT slice

18.0 L
0 20 40 60 80 100 120 140 160

_ 3.46
<
o 3.39¢
Twonorm
3.32
0 1 2 3 4 5 6 7 8
3.40 : - - —
3.250
Musk2
3.10 - - -
0 50 100 150

Fitting time [s]

Candidate window size
+ 1 » 10 e 100 = 1000

Figure 3. Average test set error (MSE for Friedman1 and CT slice,
error rate (%) for Twonorm and Musk2) and fitting time with re-
spect to CW (A = 1071%, m = vp, T = 1000, B = 10%;
0 = 3).

is clearly visible. More interestingly, the smaller window
size (CW = 1) performs best on all four datasets. All in
all, this seems to be a good regularization mechanism, al-
lowing for a dramatic decrease of computing times while
ensuring better predictions.

Although this is representative of the regression and binary
classification problems, this is not exactly the case of multi-
classification, where increasing C'W over 1 might improve
performance slightly (see Table 4).

Number of trees. The initial number of trees is an intri-
cate parameter, as it impacts model predictions, the fitting
time and the shape of the forest.

Table 5 focuses on the errors with m = ,/p and A =
10~15. Unsurprisingly, the models perform badly when
it has only 10 trees at its disposal; this leaves only little

Table 4. Error rate (%) for the trimmed exponential loss (6 = 3,
A=10""%m = /10, T = 1000, B = 10%)

DATASET Cw=1 CW=10

WAVEFORM | 14.51 £ 0.67 | 14.05 &£ 0.82
VOWEL 1590+ 1.35 | 10.87 &+ 1.61
MNIST 4.054+0.25 3.66 +0.31
LETTER 9.07 £0.53 5.88 +£0.32

Table 5. Test set error with respect to the initial number of trees 7'

(m = /p, A =10""?, same budget B = 10%; 0 = 3).
Friedmanl: mean square error

T Cw=1 CW=c0
10 7.88+£0.64 7.624+0.71
100 331+£041 3.60+0.35
1000 | 2.37+0.24 3.05+0.29
10000 | 2.26 +£0.20 3.18 £0.28
Twonorm: misclassification rate (%)
T Cw=1 CW=00
10 747+£0.73 7.054+0.29
100 344 +0.16 3.5240.13
1000 | 3.35+0.22 3434023
10000 | 3.53 £0.25 3.87+0.32

room for the learning algorithm to optimize globally. The
more trees is not always better, however. When the candi-
date window is infinitely large, this might be due to over-
fitting: there are so many candidates to choose from that
over-optimization hurts the model. When the window size
is 1, this is more directly linked to the forest shape.

Table 6 holds the normalized entropy of the node distri-
bution across trees for Friedmanl. By “normalized”, we
mean that the entropy was divided by its maximal possible
value log, 7" and then multiplied by 100. Only one value is
reported for the case CW = 1 as the forest has always the
same shape, whatever the learning rate A\. The evolution of
the entropy for a fix number of trees when CW = oo has
already been commented on (see Figure 2). It is rendered
more obvious when the initial number of trees is larger,
however, meaning that GIF is able to exploit the greater
freedom offered by the additional trees. When CW = 1,
the distribution is much closer to being uniform (entropy
close to 100) than when the learning algorithm can adapt
the forest shape. If this shape does not agree with the data,
the model might perform less well. Nevertheless, as we
saw, CW = 1 yields better result on all but the multiclass
problems, and 7" = 1000 seems to be adequate in average.

The number of trees also impacts the learning time, as de-
picted by Table 7. The linear increase in computing time in
the case of CW = oo is due to the global optimization of
the chosen node that must run through all the candidates.
In the case of CW = 1, the computing time is almost
not burdened by the number of trees. The slight increase
is actually related to the forest shape: since the distribu-
tion of node tends to be more uniform, the algorithm must
run through more examples while optimizing the weights
(higher part of the trees).

Globally Induced Forest

Table 6. Friedmanl: average normalized node distribution en-
tropy with respect to 7" and A (m = ,/p, same budget B = 10%)).

CW=1 CW=00
T\ A * 10 107° 1
100 | 99.89 | 99.84 99.24 9848
1000 | 98.15 | 94.49 8732 83.72
10000 | 97.20 | 89.12 7623 68.99

Table 7. Friedmanl: fitting time (seconds) with respect to 7" and
X (m = /p, same budget B = 10%).

CW=1 CW=00
T\ A * 1073 1
100 | 034+£0.07 | 035£0.07 032£0.07
1000 | 0.594+0.12 | 3.84+0.18 2.78+£0.54
10000 | 1.55+0.02 | 25954+ 1.05 20.69 +2.92

4.3. A preliminary comparison with Boosting

In this section, we carry out a first comparison of GIF with
Boosting. To submit Boosting to the budget constraint, we
have used stumps as base learners and have made as many
trees as were necessary to meet the constraint. We have
used the same learning rate as for GIF in Table 1. Regres-
sion has been tackled with least square Boosting (Friedman
et al., 2001) and classification with Adaboost (Freund &
Schapire, 1995), so that the same losses are used for GIF
and Boosting. Scikit-Learn was used as Boosting imple-
mentation.

Table 8 holds the errors for Boosting at 1% and 10%. In
the default setting, GIF beats Boosting on all regression
datasets except Abalone where it performs slightly less
well. Interestingly, Boosting also overfits on Abalone and
Hwang. The situation is more contrasted in classification,
where Boosting outperforms GIF on Hastie and Musk?2 for
both budget constraints. Notice that stumps are not optimal
for Hwang and CT slice, where a depth of 2 would yield
lower errors of 11.09+0.25 and 8.40+0.19 at 10% and 1%
respectively for Hwang and 33.53 4= 1.65 and 36.67 £ 1.36
at 10% and 1% respectively for CT slice. However, this
does not change the conclusions regarding the comparison
with GIF.

GIF (with CW = 1) is faster in both learning and predic-
tion than Boosting, as confirmed in Table 9. Firstly, Boost-
ing’s base learners are traditional decision trees, which are
slower to fit than ET for a given structure. Secondly, Boost-
ing’s base learners are shallow and they can thus take less
advantage of the partitioning induced by the trees.

Overall, the performances of Boosting and GIF in terms of
errors are somewhat similar. Sometimes GIF’s extra-layers
of regularization, combined with a greater variety of depths
pays off and sometimes not. However, GIF is faster in both
learning and prediction.

Table 8. Test set error (MSE/error rate (%)) for stump least-sqaure
Boosting/Adaboost under budget constraints (A = 10~ 1-).

DATASETS B =10% B=1%

FRIEDMAN1 4.53 4+0.23 3.86 £ 0.10
ABALONE 5.17 £0.20 4.83 +0.20
CT SLICE 82.44 +3.80 | 68.73 +1.92
HWANG x10—2 | 97.88 +2.33 | 88.62 +1.73
RINGNORM 5.48 £ 0.55 6.71 =0.99
TWONORM 5.09 +0.56 5.98 +0.47
HASTIE 5.65 +0.34 7.10 £ 0.41
MuUsK?2 2.70 + 0.37 4.20 £0.28
MADELON 11.30+0.68 | 11.33 £ 0.69

Table 9. Musk?2: fitting/prediction times (seconds). Stump Ad-

aboost versus GIF (trimmed loss with 8 = 3, T' = 1000,
m = /p,CW = 1) for B=10% and A = 107"
Adaboost GIF
Fitting 399.17 £ 60.91 | 1.53 £0.04
Prediction 28.39 +£5.43 0.31 +0.07

5. Conclusion and perspectives

In this paper, we introduced the Globally Induced Forest
(GIF) whose goal is to produce lightweight yet accurate
tree-based ensemble models by sequentially adding nodes
to the model. Contrary to most tree-aware techniques, our
method is framed as a pre-pruning method that does not
require the a priori building of the whole forest. Several
hyper-parameters govern the learning algorithm. We have
proposed a set of default parameters which seems to work
quite well in average, beating the baselines, under mild and
severe memory constraints. Needless to say that the setting
of these parameters can be further optimized if necessary,
although this goes against the philosophy of building di-
rectly the pruned forest. Of the most interest is the conclu-
sion that it is usually better not to optimize the choice of
nodes. In other words, letting the algorithm optimize the
forest shape is—surprisingly—harmful. Although it com-
plicates the choice of the initial number of trees, this makes
the algorithm extremely fast.

The main focus of subsequent works should be to handle
multiclass problems better. Several extensions can also be
thought of. For instance, one could consider introducing
both children at the same time at each iteration or allow for
the refitting of the already chosen nodes by leaving them
in the candidate list. Finally, we would also like to explore
further the comparison between GIF and boosting methods,
in particular Johnson & Zhang (2014)’s regularized greedy
forests, which share similar traits with GIF.

Acknowledgements

Part of this research has been carried out while Arnaud Joly
was a research fellow of the FNRS, Belgium. Compu-
tational resources have been provided by the Consortium

Globally Induced Forest

des Equipements de Calcul Intensif (CECI), funded by the
Fonds de la Recherche Scientifique de Belgique (F.R.S.-
FNRS) under Grant No. 2.5020.11. This work is also sup-
ported by the DYSCO IUAP network of the Belgian Sci-
ence Policy Office.

References

Breiman, Leo. Pasting small votes for classification in large
databases and on-line. Machine Learning, 36(1-2):85—
103, 1999.

Breiman, Leo. Random forests. Machine learning, 45(1):
5-32, 2001.

De Vleeschouwer, Christophe, Legrand, Anthony, Jacques,
Laurent, and Hebert, Martial. Mitigating memory re-
quirements for random trees/ferns. In Image Process-
ing (ICIP), 2015 IEEE International Conference on, pp.
227-231. IEEE, 2015.

Domingos, Pedro. Knowledge acquisition from examples
via multiple models. In Machine learning-international
workshop then conference, pp. 98—106. Morgan Kauf-
mann publishers, INC., 1997.

Elisha, Oren and Dekel, Shai. Wavelet decompositions of
random forests-smoothness analysis, sparse approxima-
tion and applications. Journal of Machine Learning Re-
search, 17(198):1-38, 2016.

Freund, Yoav and Schapire, Robert E. A desicion-theoretic
generalization of on-line learning and an application to
boosting. In European conference on computational
learning theory, pp. 23-37. Springer, 1995.

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert.
The elements of statistical learning, volume 1. Springer
series in statistics Springer, Berlin, 2001.

Friedman, Jerome H. Greedy function approximation: a
gradient boosting machine. Annals of statistics, pp.
1189-1232, 2001.

Geurts, Pierre, Ernst, Damien, and Wehenkel, Louis. Ex-
tremely randomized trees. Machine learning, 63(1):3—
42, 2006.

Johnson, Rie and Zhang, Tong. Learning nonlinear func-
tions using regularized greedy forest. [EEE transac-
tions on pattern analysis and machine intelligence, 36
(5):942-954, 2014.

Joly, Arnaud, Schnitzler, Francois, Geurts, Pierre, and We-
henkel, Louis. L1-based compression of random forest
models. In 20th European Symposium on Artificial Neu-
ral Networks, 2012.

Meinshausen, Nicolai et al. Forest garrote. Electronic Jour-
nal of Statistics, 3:1288-1304, 2009.

Menke, Joshua E and Martinez, Tony R. Artificial neural
network reduction through oracle learning. Intelligent
Data Analysis, 13(1):135-149, 2009.

Pedregosa, Fabian, Varoquaux, Gaél, Gramfort, Alexan-
dre, Michel, Vincent, Thirion, Bertrand, Grisel, Olivier,
Blondel, Mathieu, Prettenhofer, Peter, Weiss, Ron,
Dubourg, Vincent, et al. Scikit-learn: Machine learn-
ing in python. Journal of Machine Learning Research,
12(Oct):2825-2830, 2011.

Peterson, Adam H and Martinez, Tony R. Reducing de-
cision tree ensemble size using parallel decision dags.
International Journal on Artificial Intelligence Tools, 18
(04):613-620, 2009.

Ren, Shaoqing, Cao, Xudong, Wei, Yichen, and Sun, Jian.
Global refinement of random forest. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 723-730, 2015.

Rokach, Lior. Decision forest: Twenty years of research.
Information Fusion, 27:111-125, 2016.

Shotton, Jamie, Sharp, Toby, Kohli, Pushmeet, Nowozin,
Sebastian, Winn, John, and Criminisi, Antonio. Decision
jungles: Compact and rich models for classification. In
Advances in Neural Information Processing Systems, pp.
234-242,2013.

Tsoumakas, Grigorios, Partalas, Ioannis, and Vlahavas,
Toannis. A taxonomy and short review of ensemble se-
lection. In ECAI 2008, workshop on supervised and un-
supervised ensemble methods and their applications, pp.
41-46, 2008.

Vens, Celine and Costa, Fabrizio. Random forest based
feature induction. In Data Mining (ICDM), 2011 IEEE
11th International Conference on, pp. 744-753. IEEE,
2011.

Zhu, Ji, Zou, Hui, Rosset, Saharon, and Hastie, Trevor.
Multi-class adaboost. Statistics and its Interface, 2(3):
349-360, 2009.

