End-to-End SPENs

A. Appendix
A.1. General Learning Setup

The method described in Sections 3 and 4 provides a gradi-
ent of the loss with respect to the parameters of the model.
To update the parameters, one can use any standard opti-
mization method for neural networks. Our experiments use
Adam (Kingma & Ba, 2015) with default settings. SPENs
are vulnerable to overfitting, as the energy network is of-
ten very expressive. We reduce overfitting by performing
early stopping, by taking the model that performs best on
development data. Often, we have found that early stop-
ping with a model that has a higher capacity energy (e.g.,
higher-dimensional hidden layers in the energy network) is
superior to using a low-capacity energy.

A.2. Architectures for SRL Experiments
A.2.1. BASELINE ARC-FACTORED ARCHITECTURE

Our baseline is an arc-factored model for the conditional
probability of the predicate-argument arc labels:

P(r\x,p,a) = HiP(T’i|X7p7a)' (18)

where P(r;|x,p,a) o« exp (g(ri,x, p, a)). Here, each
conditional distribution is given by a logistic regression
model. We compute g(7;, X, p, a) using a multi-layer per-
ceptron (MLP) similar to FitzGerald et al. (2015). Its in-
puts are discrete features extracted from the argument span
and the predicate (including words, pos tags, and syntac-
tic dependents), and the dependency path and distance be-
tween the argument and the predicate. These features are
transformed to a 300-dimensional representation linearly,
where the embeddings of word types are initialized using
newswire embeddings from (Mikolov et al., 2013). We
map from 300 dimensions to 250 to 47 (the number of se-
mantic roles in CoNLL) using linear transformations sep-
arated by tanh layers. We apply dropout to the embedding
layer with rate 0.5 and a standard log loss.

A.2.2. GLOBAL ENERGY TERM FOR SPEN

From the pre-trained model Eq. (18), we define f,. as the
predicate-argument arc features, We also have predicate
features f,, and argument feature f,, given by the average
word embedding of the token spans. The hidden layers
of any MLP below are 50-dimensional. Each MLP is two
layers, with a SoftPlus in the middle. All parameters are
trained discriminatively using end-to-end training.

Lety, € A’} be the sub-tensor of y for a given predicate p
andletz, = >, y,[:, k] € [0,1]™, where z,[a] is the total
amount of mass assigned to the arc between predicate p and
argument a, obtained by summing over possible labels. We
also define w, = Y, y,[k,:] € R{. This is a length-A

vector containing how much total mass of each arc label
is assigned to predicate p. Finally, define s, = >, y[:,:
,k]. This is the total mass assigned to arc r, obtained by
summing over the possible labels that the arc can take on.

The global energy is defined by the sum of the following
terms. The first energy term scores the set of arguments
attached to each predicate. It computes a weighted average
of the features f,, for the arguments assigned to predicate p,
with weights given by z,. It then concatenates this with f;,,
and passes the result through a two-layer multi-layer per-
ceptron (MLP) that returns a single number. The total en-
ergy is the sum of the MLP output for every predicate. The
second energy term scores the labels of the arcs attached to
each predicate. We concatenate f, with w,, and pass this
through an MLP as above. The third energy term mod-
els how many arguments a predicate should take on. For
each predicate, we predict how many arguments should at-
tach to it, using a linear function applied to f,,. The energy
is set to the squared difference between this and the total
mass attached to the predicate under y, which is given by
> & Wplk]. The fourth energy term averages w,, over all p
and applies an MLP to the result. The fifth term computes a
weighted average of the arc features f,., with weights given
by s, and also applies an MLP to the result. The last two
terms capture general topical coherence of the prediction.



