
A Distributional Perspective on Reinforcement Learning

A. Related Work
To the best of our knowledge, the work closest to ours are
two papers (Morimura et al., 2010b;a) studying the distri-
butional Bellman equation from the perspective of its cu-
mulative distribution functions. The authors propose both
parametric and nonparametric solutions to learn distribu-
tions for risk-sensitive reinforcement learning. They also
provide some theoretical analysis for the policy evaluation
setting, including a consistency result in the nonparamet-
ric case. By contrast, we also analyze the control setting,
and emphasize the use of the distributional equations to im-
prove approximate reinforcement learning.

The variance of the return has been extensively stud-
ied in the risk-sensitive setting. Of note, Tamar et al.
(2016) analyze the use of linear function approximation
to learn this variance for policy evaluation, and Prashanth
& Ghavamzadeh (2013) estimate the return variance in the
design of a risk-sensitive actor-critic algorithm. Mannor
& Tsitsiklis (2011) provides negative results regarding the
computation of a variance-constrained solution to the opti-
mal control problem.

The distributional formulation also arises when modelling
uncertainty. Dearden et al. (1998) considered a Gaussian
approximation to the value distribution, and modelled the
uncertainty over the parameters of this approximation us-
ing a Normal-Gamma prior. Engel et al. (2005) leveraged
the distributional Bellman equation to define a Gaussian
process over the unknown value function. More recently,
Geist & Pietquin (2010) proposed an alternative solution to
the same problem based on unscented Kalman filters. We
believe much of the analysis we provide here, which deals
with the intrinsic randomness of the environment, can also
be applied to modelling uncertainty.

Our work here is based on a number of foundational re-
sults, in particular concerning alternative optimality crite-
ria. Early on, Jaquette (1973) showed that a moment opti-
mality criterion, which imposes a total ordering on distri-
butions, is achievable and defines a stationary optimal pol-
icy, echoing the second part of Theorem 1. Sobel (1982)
is usually cited as the first reference to Bellman equations
for the higher moments (but not the distribution) of the re-
turn. Chung & Sobel (1987) provides results concerning
the convergence of the distributional Bellman operator in
total variation distance. White (1988) studies “nonstandard
MDP criteria” from the perspective of optimizing the state-
action pair occupancy.

A number of probabilistic frameworks for reinforcement
learning have been proposed in recent years. The plan-
ning as inference approach (Toussaint & Storkey, 2006;
Hoffman et al., 2009) embeds the return into a graphical
model, and applies probabilistic inference to determine the

sequence of actions leading to maximal expected reward.
Wang et al. (2008) considered the dual formulation of re-
inforcement learning, where one optimizes the stationary
distribution subject to constraints given by the transition
function (Puterman, 1994), in particular its relationship to
linear approximation. Related to this dual is the Compress
and Control algorithm Veness et al. (2015), which describes
a value function by learning a return distribution using den-
sity models. One of the aims of this work was to address
the question left open by their work of whether one could
be design a practical distributional algorithm based on the
Bellman equation, rather than Monte Carlo estimation.

B. Proofs
Lemma 1 (Partition lemma). Let A1, A2, . . . be a set of
random variables describing a partition of Ω, i.e. Ai(ω) ∈
{0, 1} and for any ω there is exactly one Ai with Ai(ω) =
1. Let U, V be two random variables. Then

dp
(
U, V

)
≤
∑

i
dp(AiU,AiV ).

Proof. We will give the proof for p < ∞, noting that the

same applies to p = ∞. Let Yi
D
:= AiU and Zi

D
:= AiV ,

respectively. First note that

dpp(AiU,AiV ) = inf
Yi,Zi

E
[
|Yi − Zi|p

]

= inf
Yi,Zi

E
[
E
[
|Yi − Zi|p |Ai

]]
.

Now, |AiU −AiV |p = 0 whenever Ai = 0. It follows that
we can choose Yi, Zi so that also |Yi − Zi|p = 0 whenever
Ai = 0, without increasing the expected norm. Hence

dpp(AiU,AiV ) =

inf
Yi,Zi

Pr{Ai = 1}E
[
|Yi − Zi|p |Ai = 1

]
. (8)

Next, we claim that

inf
U,V

∑
i
Pr{Ai = 1}E

[∣∣AiU −AiV
∣∣p |Ai = 1

]
(9)

≤ inf
Y1,Y2,...
Z1,Z2,...

∑
i
Pr{Ai = 1}E

[
|Yi − Zi

∣∣p |Ai = 1
]
.

Specifically, the left-hand side of the equation is an infi-
mum over all r.v.’s whose cumulative distributions are FU
and FV , respectively, while the right-hand side is an in-
fimum over sequences of r.v’s Y1, Y2, . . . and Z1, Z2, . . .
whose cumulative distributions are FAiU , FAiV , respec-
tively. To prove this upper bound, consider the c.d.f. of
U :

FU (y) = Pr{U ≤ y}
=
∑

i
Pr{Ai = 1}Pr{U ≤ y |Ai = 1}

=
∑

i
Pr{Ai = 1}Pr{AiU ≤ y |Ai = 1}.
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Hence the distribution FU is equivalent, in an almost sure
sense, to one that first picks an element Ai of the partition,
then picks a value for U conditional on the choice Ai. On
the other hand, the c.d.f. of Yi

D
= AiU is

FAiU (y) = Pr{Ai = 1}Pr{AiU ≤ y |Ai = 1}
+ Pr{Ai = 0}Pr{AiU ≤ y |Ai = 0}

= Pr{Ai = 1}Pr{AiU ≤ y |Ai = 1}
+ Pr{Ai = 0}I [y ≥ 0] .

Thus the right-hand side infimum in (9) has the additional
constraint that it must preserve the conditional c.d.fs, in
particular when y ≥ 0. Put another way, instead of hav-
ing the freedom to completely reorder the mapping U :
Ω → R, we can only reorder it within each element of the
partition. We now write

dpp(U, V ) = inf
U,V
‖U − V ‖p

= inf
U,V

E
[
|U − V |p

]

(a)
= inf

U,V

∑
i
Pr{Ai = 1}E

[
|U − V |p |Ai = 1

]

= inf
U,V

∑
i
Pr{Ai = 1}E

[
|AiU −AiV |p |Ai = 1

]
,

where (a) follows because A1, A2, . . . is a partition. Using
(9), this implies

dpp(U, V )

= inf
U,V

∑
i
Pr{Ai = 1}E

[∣∣AiU −AiV
∣∣p |Ai = 1

]

≤ inf
Y1,Y2,...
Z1,Z2,...

∑
i
Pr{Ai = 1}E

[∣∣Yi − Zi
∣∣p |Ai = 1

]

(b)
=
∑

i
inf
Yi,Zi

Pr{Ai = 1}E
[∣∣Yi − Zi

∣∣p |Ai = 1
]

(c)
=
∑

i
dp(AiU,AiV ),

because in (b) the individual components of the sum are
independently minimized; and (c) from (8).

Lemma 2. d̄p is a metric over value distributions.

Proof. The only nontrivial property is the triangle inequal-
ity. For any value distribution Y ∈ Z , write

d̄p(Z1, Z2) = sup
x,a

dp(Z1(x, a), Z2(x, a))

(a)

≤ sup
x,a

[dp(Z1(x, a), Y (x, a)) + dp(Y (x, a), Z2(x, a))]

≤ sup
x,a

dp(Z1(x, a), Y (x, a)) + sup
x,a

dp(Y (x, a), Z2(x, a))

= d̄p(Z1, Y ) + d̄p(Y,Z2),

where in (a) we used the triangle inequality for dp.

Lemma 3. T π : Z → Z is a γ-contraction in d̄p.

Proof. Consider Z1, Z2 ∈ Z . By definition,

d̄p(T πZ1, T πZ2) = sup
x,a

dp(T πZ1(x, a), T πZ2(x, a)).

(10)
By the properties of dp, we have

dp(T πZ1(x, a), T πZ2(x, a))

= dp(R(x, a) + γPπZ1(x, a), R(x, a) + γPπZ2(x, a))

≤ γdp(PπZ1(x, a), PπZ2(x, a))

≤ γ sup
x′,a′

dp(Z1(x′, a′), Z2(x′, a′)),

where the last line follows from the definition of Pπ (see
(4)). Combining with (10) we obtain

d̄p(T πZ1, T πZ2) = sup
x,a

dp(T πZ1(x, a), T πZ2(x, a))

≤ γ sup
x′,a′

dp(Z1(x′, a′), Z2(x′, a′))

= γd̄p(Z1, Z2).

Proposition 1 (Sobel, 1982). Consider two value distri-
butions Z1, Z2 ∈ Z , and write V(Zi) to be the vector of
variances of Zi. Then

‖E T πZ1 − E T πZ2‖∞ ≤ γ ‖EZ1 − EZ2‖∞ , and

‖V(T πZ1)− V(T πZ2)‖∞ ≤ γ2 ‖VZ1 − VZ2‖∞ .

Proof. The first statement is standard, and its proof follows
from E T πZ = T π EZ, where the second T π denotes the
usual operator over value functions. Now, by independence
of R and PπZi:

V(T πZi(x, a)) = V
(
R(x, a) + γPπZi(x, a)

)

= V(R(x, a)) + γ2V(PπZi(x, a)).

And now

‖V(T πZ1)− V(T πZ2)‖∞
= sup

x,a

∣∣V(T πZ1(x, a))− V(T πZ2(x, a))
∣∣

= sup
x,a

γ2
∣∣ [V(PπZ1(x, a))− V(PπZ2(x, a))]

∣∣

= sup
x,a

γ2
∣∣E [V(Z1(X ′, A′))− V(Z2(X ′, A′))]

∣∣

≤ sup
x′,a′

γ2
∣∣V(Z1(x′, a′))− V(Z2(x′, a′))

∣∣

≤ γ2 ‖VZ1 − VZ2‖∞ .

Lemma 4. Let Z1, Z2 ∈ Z . Then

‖E T Z1 − E T Z2‖∞ ≤ γ ‖EZ1 − EZ2‖∞ ,

and in particular EZk → Q∗ exponentially quickly.
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Proof. The proof follows by linearity of expectation. Write
TD for the distributional operator and TE for the usual op-
erator. Then

‖E TDZ1 − E TDZ2‖∞ = ‖TE EZ1 − TE EZ2‖∞
≤ γ ‖Z1 − Z2‖∞ .

Theorem 1 (Convergence in the control setting). Let
Zk := T Zk−1 with Z0 ∈ Z . Let X be measurable and
suppose that A is finite. Then

lim
k→∞

inf
Z∗∗∈Z∗∗

dp(Zk(x, a), Z∗∗(x, a)) = 0 ∀x, a.

If X is finite, then Zk converges to Z∗∗ uniformly. Further-
more, if there is a total ordering≺ on Π∗, such that for any
Z∗ ∈ Z∗,

T Z∗ = T πZ∗ with π ∈ GZ∗ , π ≺ π′ ∀π′ ∈ GZ∗ \ {π},

then T has a unique fixed point Z∗ ∈ Z∗.

The gist of the proof of Theorem 1 consists in showing that
for every state x, there is a time k after which the greedy
policy w.r.t. Qk is mostly optimal. To clearly expose the
steps involved, we will first assume a unique (and there-
fore deterministic) optimal policy π∗, and later return to
the general case; we will denote the optimal action at x by
π∗(x). For notational convenience, we will write Qk :=
EZk and Gk := GZk

. Let B := 2 supZ∈Z ‖Z‖∞ < ∞
and let εk := γkB. We first define the set of states Xk ⊆ X
whose values must be sufficiently close to Q∗ at time k:

Xk :=
{
x : Q∗(x, π∗(x))− max

a 6=π∗(x)
Q∗(x, a) > 2εk

}
.

(11)
Indeed, by Lemma 4, we know that after k iterations

|Qk(x, a)−Q∗(x, a)| ≤ γk|Q0(x, a)−Q∗(x, a)| ≤ εk.

For x ∈ X , write a∗ := π∗(x). For any a ∈ A, we deduce
that

Qk(x, a∗)−Qk(x, a) ≥ Q∗(x, a∗)−Q∗(x, a)− 2εk.

It follows that if x ∈ Xk, then also Qk(x, a∗) > Qk(x, a′)
for all a′ 6= π∗(x): for these states, the greedy policy
πk(x) := arg maxaQk(x, a) corresponds to the optimal
policy π∗.

Lemma 5. For each x ∈ X there exists a k such
that, for all k′ ≥ k, x ∈ Xk′ , and in particular
arg maxaQk(x, a) = π∗(x).

Proof. Because A is finite, the gap

∆(x) := Q∗(x, π∗(x))− max
a 6=π∗(x)

Q∗(x, a)

is attained for some strictly positive ∆(x) > 0. By defini-
tion, there exists a k such that

εk = γkB <
∆(x)

2
,

and hence every x ∈ X must eventually be in Xk.

This lemma allows us to guarantee the existence of an
iteration k after which sufficiently many states are well-
behaved, in the sense that the greedy policy at those states
chooses the optimal action. We will call these states
“solved”. We in fact require not only these states to be
solved, but also most of their successors, and most of the
successors of those, and so on. We formalize this notion as
follows: fix some δ > 0, let Xk,0 := Xk, and define for
i > 0 the set

Xk,i :=
{
x : x ∈ Xk, P (Xk−1,i−1 |x, π∗(x)) ≥ 1− δ

}
,

As the following lemma shows, any x is eventually con-
tained in the recursively-defined sets Xk,i, for any i.

Lemma 6. For any i ∈ N and any x ∈ X , there exists a k
such that for all k′ ≥ k, x ∈ Xk′,i.

Proof. Fix i and let us suppose that Xk,i ↑ X . By Lemma
5, this is true for i = 0. We infer that for any probability
measure P on X , P (Xk,i)→ P (X ) = 1. In particular, for
a given x ∈ Xk, this implies that

P (Xk,i |x, π∗(x))→ P (X |x, π∗(x)) = 1.

Therefore, for any x, there exists a time after which it is
and remains a member ofXk,i+1, the set of states for which
P (Xk−1,i |x, π∗(x)) ≥ 1 − δ. We conclude that Xk,i+1 ↑
X also. The statement follows by induction.

Proof of Theorem 1. The proof is similar to policy
iteration-type results, but requires more care in dealing
with the metric and the possibly infinite state space.
We will write Wk(x) := Zk(x, πk(x)), define W ∗

similarly and with some overload of notation write
TWk(x) := Wk+1(x) = T Zk(x, πk+1(x)). Finally, let
Ski (x) := I [x ∈ Xk,i] and S̄ki (x) = 1− Ski (x).

Fix i > 0 and x ∈ Xk+1,i+1 ⊆ Xk. We begin by using
Lemma 1 to separate the transition from x into a solved
term and an unsolved term:

PπkWk(x) = SkiWk(X ′) + S̄kiWk(X ′),

where X ′ is the random successor from taking action
πk(x) := π∗(x), and we write Ski = Ski (X ′), S̄ki =
S̄ki (X ′) to ease the notation. Similarly,

PπkW ∗(x) = SkiW
∗(X ′) + S̄kiW

∗(X ′).
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Now

dp(Wk+1(x),W ∗(x)) = dp(TWk(x), TW ∗(x))

(a)

≤ γdp(P
πkWk(x), Pπ

∗
W ∗(x))

(b)

≤ γdp(S
k
iWk(X ′), SkiW

∗(X ′))

+ γdp(S̄
k
iWk(X ′), S̄kiW

∗(X ′)), (12)

where in (a) we used Properties P1 and P2 of the Wasser-
stein metric, and in (b) we separate states for which πk =
π∗ from the rest using Lemma 1 ({Ski , S̄ki } form a parti-
tion of Ω). Let δi := Pr{X ′ /∈ Xk,i} = E{S̄ki (X ′)} =
‖S̄ki (X ′)‖p. From property P3 of the Wasserstein metric,
we have

dp(S̄
k
iWk(X ′), S̄kiW

∗(X ′))

≤ sup
x′
dp(S̄

k
i (X ′)Wk(x′), S̄ki (X ′)W ∗(x′))

≤ ‖S̄ki (X ′)‖p sup
x′
dp(Wk(x′),W ∗(x′))

≤ δi sup
x′
dp(Wk(x′),W ∗(x′))

≤ δiB.

Recall that B < ∞ is the largest attainable ‖Z‖∞. Since
also δi < δ by our choice of x ∈ Xk+1,i+1, we can upper
bound the second term in (12) by γδB. This yields

dp(Wk+1(x),W ∗(x)) ≤
γdp(S

k
iWk(X ′), SkiW

∗(X ′)) + γδB.

By induction on i > 0, we conclude that for x ∈ Xk+i,i

and some random state X ′′ i steps forward,

dp(Wk+i(x),W ∗(x)) ≤

γidp(S
k
0Wk(X ′′), Sk0W

∗(X ′′)) +
δB

1− γ

≤ γiB +
δB

1− γ .

Hence for any x ∈ X , ε > 0, we can take δ, i, and finally k
large enough to make dp(Wk(x),W ∗(x)) < ε. The proof
then extends to Zk(x, a) by considering one additional ap-
plication of T .

We now consider the more general case where there are
multiple optimal policies. We expand the definition of Xk,i
as follows:

Xk,i :=
{
x ∈ Xk : ∀π∗ ∈ Π∗, E

a∗∼π∗(x)
P (Xk−1,i−1 |x, a∗) ≥ 1−δ

}
,

Because there are finitely many actions, Lemma 6 also
holds for this new definition. As before, take x ∈ Xk,i, but
now consider the sequence of greedy policies πk, πk−1, . . .
selected by successive applications of T , and write

T π̄k := T πkT πk−1 · · · T πk−i+1 ,

such that
Zk+1 = T π̄kZk−i+1.

Now denote by Z∗∗ the set of nonstationary optimal poli-
cies. If we take any Z∗ ∈ Z∗, we deduce that

inf
Z∗∗∈Z∗∗

dp(T π̄kZ∗(x, a), Z∗∗(x, a)) ≤ δB

1− γ ,

since Z∗ corresponds to some optimal policy π∗ and π̄k is
optimal along most of the trajectories from (x, a). In effect,
T π̄kZ∗ is close to the value distribution of the nonstation-
ary optimal policy π̄kπ∗. Now for this Z∗,

inf
Z∗∗

dp(Zk(x, a), Z∗∗(x, a))

≤ dp(Zk(x, a), T π̄kZ∗(x, a))

+ inf
Z∗∗

dp(T π̄kZ∗(x, a), Z∗∗(x, a))

≤ dp(T π̄kZk−i+1(x, a), T π̄kZ∗(x, a)) +
δB

1− γ

≤ γiB +
2δB

1− γ ,

using the same argument as before with the newly-defined
Xk,i. It follows that

inf
Z∗∗∈Z∗∗

dp(Zk(x, a), Z∗∗(x, a))→ 0.

When X is finite, there exists a fixed k after which Xk =
X . The uniform convergence result then follows.

To prove the uniqueness of the fixed point Z∗ when T se-
lects its actions according to the ordering ≺, we note that
for any optimal value distribution Z∗, its set of greedy poli-
cies is Π∗. Denote by π∗ the policy coming first in the or-
dering over Π∗. Then T = T π∗ , which has a unique fixed
point (Section 3.3).

Proposition 4. That T has a fixed point Z∗ = T Z∗ is
insufficient to guarantee the convergence of {Zk} to Z∗.

We provide here a sketch of the result. Consider a single
state x1 with two actions, a1 and a2 (Figure 8). The first
action yields a reward of 1/2, while the other either yields
0 or 1 with equal probability, and both actions are optimal.
Now take γ = 1/2 and write R0, R1, . . . for the received
rewards. Consider a stochastic policy that takes action a2

with probability p. For p = 0, the return is

Zp=0 =
1

1− γ
1

2
= 1.

For p = 1, on the other hand, the return is random and is
given by the following fractional number (in binary):

Zp=1 = R0.R1R2R3 · · · .



A Distributional Perspective on Reinforcement Learning

R = 1/2 R = 0 or 1

x1

a1 a2

Figure 8. A simple example illustrating the effect of a nonstation-
ary policy on the value distribution.

As a result, Zp=1 is uniformly distributed between 0 and 2!
In fact, note that

Zp=0 = 0.11111 · · · = 1.

For some intermediary value of p, we obtain a different
probability of the different digits, but always putting some
probability mass on all returns in [0, 2].

Now suppose we follow the nonstationary policy that takes
a1 on the first step, then a2 from there on. By inspec-
tion, the return will be uniformly distributed on the interval
[1/2, 3/2], which does not correspond to the return under
any value of p. But now we may imagine an operator T
which alternates between a1 and a2 depending on the ex-
act value distribution it is applied to, which would in turn
converge to a nonstationary optimal value distribution.

Lemma 7 (Sample Wasserstein distance). Let {Pi} be a
collection of random variables, I ∈ N a random index
independent from {Pi}, and consider the mixture random
variable P = PI . For any random variable Q independent
of I ,

dp(P,Q) ≤ E
i∼I

dp(Pi, Q),

and in general the inequality is strict and

∇Qdp(PI , Q) 6= E
i∼I
∇Qdp(Pi, Q).

Proof. We prove this using Lemma 1. Let Ai := I [I = i].
We write

dp(P,Q) = dp(PI , Q)

= dp

(∑
i
AiPi,

∑
i
AiQ

)

≤
∑

i
dp(AiPi, AiQ)

≤
∑

i
Pr{I = i}dp(Pi, Q)

= EI dP (Pi, Q).

where in the penultimate line we used the independence of
I from Pi andQ to appeal to property P3 of the Wasserstein
metric.

To show that the bound is in general strict, consider the
mixture distribution depicted in Figure 9. We will simply

consider the d1 metric between this distribution P and an-
other distribution Q. The first distribution is

P =

{
0 w.p. 1/2
1 w.p. 1/2.

In this example, i ∈ {1, 2}, P1 = 0, and P2 = 1. Now
consider the distribution with the same support but that puts
probability p on 0:

Q =

{
0 w.p. p
1 w.p. 1− p.

The distance between P and Q is

d1(P,Q) = |p− 1
2 |.

This is d1(P,Q) = 1
2 for p ∈ {0, 1}, and strictly less than

1
2 for any other values of p. On the other hand, the corre-
sponding expected distance (after sampling an outcome x1

or x2 with equal probability) is

EI d1(Pi, Q) = 1
2p+ 1

2 (1− p) = 1
2 .

Hence d1(P,Q) < EI d1(Pi, Q) for p ∈ (0, 1). This shows
that the bound is in general strict. By inspection, it is clear
that the two gradients are different.

R = 0 R = 1

x

x1 x2

½ ½

Figure 9. Example MDP in which the expected sample Wasser-
stein distance is greater than the Wasserstein distance.

Proposition 5. Fix some next-state distribution Z and pol-
icy π. Consider a parametric value distribution Zθ, and
and define the Wasserstein loss

LW (θ) := dp(Zθ(x, a), R(x, a) + γZ(X ′, π(X ′))).

Let r ∼ R(x, a) and x′ ∼ P (· |x, a) and consider the
sample loss

LW (θ, r, x′) := dp(Zθ(x, a), r + γZ(x′, π(x′)).

Its expectation is an upper bound on the loss LW :

LW (θ) ≤ E
R,P

LW (θ, r, x′),

in general with strict inequality.

The result follows directly from the previous lemma.
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# Atoms

Wasserstein

Categorical

Monte-Carlo Target

Stochastic Bellman Target

Wasserstein

Categorical

d
1
(Z

⇡
,Z

✓
)

Return

F
Z

(a) (b)

Figure 10. (a) Wasserstein distance between ground truth distribution Zπ and approximating distributions Zθ . Varying number of atoms
in approximation, training target, and loss function. (b) Approximate cumulative distributions for five representative states in CliffWalk.

C. Algorithmic Details
While our training regime closely follows that of DQN
(Mnih et al., 2015), we use Adam (Kingma & Ba, 2015)
instead of RMSProp (Tieleman & Hinton, 2012) for gra-
dient rescaling. We also performed some hyperparam-
eter tuning for our final results. Specifically, we eval-
uated two hyperparameters over our five training games
and choose the values that performed best. The hyperpa-
rameter values we considered were VMAX ∈ {3, 10, 100}
and εadam ∈ {1/L, 0.1/L, 0.01/L, 0.001/L, 0.0001/L},
where L = 32 is the minibatch size. We found VMAX = 10
and εadam = 0.01/L performed best. We used the same
step-size value as DQN (α = 0.00025).

Pseudo-code for the categorical algorithm is given in Algo-
rithm 1. We apply the Bellman update to each atom sepa-
rately, and then project it into the two nearest atoms in the
original support. Transitions to a terminal state are handled
with γt = 0.

D. Comparison of Sampled Wasserstein Loss
and Categorical Projection

Lemma 3 proves that for a fixed policy π the distributional
Bellman operator is a γ-contraction in d̄p, and therefore
that T π will converge in distribution to the true distribution
of returns Zπ . In this section, we empirically validate these
results on the CliffWalk domain shown in Figure 11. The
dynamics of the problem match those given by Sutton &
Barto (1998). We also study the convergence of the distri-
butional Bellman operator under the sampled Wasserstein
loss and the categorical projection (Equation 7) while fol-

The CliffS G

safe path

optimal path

r = -1

r = -100

Figure 11. CliffWalk Environment (Sutton & Barto, 1998).

lowing a policy that tries to take the safe path but has a 10%
chance of taking another action uniformly at random.

We compute a ground-truth distribution of returnsZπ using
10000 Monte-Carlo (MC) rollouts from each state. We then
perform two experiments, approximating the value distri-
bution at each state with our discrete distributions.

In the first experiment, we perform supervised learning us-
ing either the Wasserstein loss or categorical projection
(Equation 7) with cross-entropy loss. We use Zπ as the
supervised target and perform 5000 sweeps over all states
to ensure both approaches have converged. In the second
experiment, we use the same loss functions, but the training
target comes from the one-step distributional Bellman op-
erator with sampled transitions. We use VMIN = −100 and
VMAX = −1.4 For the sample updates we perform 10 times
as many sweeps over the state space. Fundamentally, these
experiments investigate how well the two training regimes

4Because there is a small probability of larger negative returns,
some approximation error is unavoidable. However, this effect is
relatively negligible in our experiments.



A Distributional Perspective on Reinforcement Learning

(minimizing the Wasserstein or categorical loss) minimize
the Wasserstein metric under both ideal (supervised target)
and practical (sampled one-step Bellman target) conditions.

In Figure 10a we show the final Wasserstein distance
d1(Zπ, Zθ) between the learned distributions and the
ground-truth distribution as we vary the number of atoms.
The graph shows that the categorical algorithm does indeed
minimize the Wasserstein metric in both the supervised and
sample Bellman setting. It also highlights that minimizing
the Wasserstein loss with stochastic gradient descent is in
general flawed, confirming the intuition given by Propo-
sition 5. In repeat experiments the process converged to
different values of d1(Zπ, Zθ), suggesting the presence of
local minima (more prevalent with fewer atoms).

Figure 10 provides additional insight into why the sampled
Wasserstein distance may perform poorly. Here, we see the
cumulative densities for the approximations learned under
these two losses for five different states along the safe path
in CliffWalk. The Wasserstein has converged to a fixed-
point distribution, but not one that captures the true (Monte
Carlo) distribution very well. By comparison, the categor-
ical algorithm captures the variance of the true distribution
much more accurately.

E. Supplemental Videos and Results
In Figure 13 we provide links to supplemental videos show-
ing the C51 agent during training on various Atari 2600
games. Figure 12 shows the relative performance of C51
over the course of training. Figure 14 provides a table
of evaluation results, comparing C51 to other state-of-the-
art agents. Figures 15–18 depict particularly interesting
frames.

# 
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Training Frames (millions)

C51 vs. DQN

C51 vs. HUMAN

DQN vs. HUMAN

Figure 12. Number of Atari games where an agent’s training per-
formance is greater than a baseline (fully trained DQN & human).
Error bands give standard deviations, and averages are over num-
ber of games.

GAMES VIDEO URL
Freeway http://youtu.be/97578n9kFIk
Pong http://youtu.be/vIz5P6s80qA
Q*Bert http://youtu.be/v-RbNX4uETw
Seaquest http://youtu.be/d1yz4PNFUjI
Space Invaders http://youtu.be/yFBwyPuO2Vg

Figure 13. Supplemental videos of C51 during training.
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GAMES RANDOM HUMAN DQN DDQN DUEL PRIOR. DUEL. C51
Alien 227.8 7,127.7 1,620.0 3,747.7 4,461.4 3,941.0 3,166
Amidar 5.8 1,719.5 978.0 1,793.3 2,354.5 2,296.8 1,735
Assault 222.4 742.0 4,280.4 5,393.2 4,621.0 11,477.0 7,203
Asterix 210.0 8,503.3 4,359.0 17,356.5 28,188.0 375,080.0 406,211
Asteroids 719.1 47,388.7 1,364.5 734.7 2,837.7 1,192.7 1,516
Atlantis 12,850.0 29,028.1 279,987.0 106,056.0 382,572.0 395,762.0 3,692,500
Bank Heist 14.2 753.1 455.0 1,030.6 1,611.9 1,503.1 976
Battle Zone 2,360.0 37,187.5 29,900.0 31,700.0 37,150.0 35,520.0 28,742
Beam Rider 363.9 16,926.5 8,627.5 13,772.8 12,164.0 30,276.5 14,074
Berzerk 123.7 2,630.4 585.6 1,225.4 1,472.6 3,409.0 1,645
Bowling 23.1 160.7 50.4 68.1 65.5 46.7 81.8
Boxing 0.1 12.1 88.0 91.6 99.4 98.9 97.8
Breakout 1.7 30.5 385.5 418.5 345.3 366.0 748
Centipede 2,090.9 12,017.0 4,657.7 5,409.4 7,561.4 7,687.5 9,646
Chopper Command 811.0 7,387.8 6,126.0 5,809.0 11,215.0 13,185.0 15,600
Crazy Climber 10,780.5 35,829.4 110,763.0 117,282.0 143,570.0 162,224.0 179,877
Defender 2,874.5 18,688.9 23,633.0 35,338.5 42,214.0 41,324.5 47,092
Demon Attack 152.1 1,971.0 12,149.4 58,044.2 60,813.3 72,878.6 130,955
Double Dunk -18.6 -16.4 -6.6 -5.5 0.1 -12.5 2.5
Enduro 0.0 860.5 729.0 1,211.8 2,258.2 2,306.4 3,454
Fishing Derby -91.7 -38.7 -4.9 15.5 46.4 41.3 8.9
Freeway 0.0 29.6 30.8 33.3 0.0 33.0 33.9
Frostbite 65.2 4,334.7 797.4 1,683.3 4,672.8 7,413.0 3,965
Gopher 257.6 2,412.5 8,777.4 14,840.8 15,718.4 104,368.2 33,641
Gravitar 173.0 3,351.4 473.0 412.0 588.0 238.0 440
H.E.R.O. 1,027.0 30,826.4 20,437.8 20,130.2 20,818.2 21,036.5 38,874
Ice Hockey -11.2 0.9 -1.9 -2.7 0.5 -0.4 -3.5
James Bond 29.0 302.8 768.5 1,358.0 1,312.5 812.0 1,909
Kangaroo 52.0 3,035.0 7,259.0 12,992.0 14,854.0 1,792.0 12,853
Krull 1,598.0 2,665.5 8,422.3 7,920.5 11,451.9 10,374.4 9,735
Kung-Fu Master 258.5 22,736.3 26,059.0 29,710.0 34,294.0 48,375.0 48,192
Montezuma’s Revenge 0.0 4,753.3 0.0 0.0 0.0 0.0 0.0
Ms. Pac-Man 307.3 6,951.6 3,085.6 2,711.4 6,283.5 3,327.3 3,415
Name This Game 2,292.3 8,049.0 8,207.8 10,616.0 11,971.1 15,572.5 12,542
Phoenix 761.4 7,242.6 8,485.2 12,252.5 23,092.2 70,324.3 17,490
Pitfall! -229.4 6,463.7 -286.1 -29.9 0.0 0.0 0.0
Pong -20.7 14.6 19.5 20.9 21.0 20.9 20.9
Private Eye 24.9 69,571.3 146.7 129.7 103.0 206.0 15,095
Q*Bert 163.9 13,455.0 13,117.3 15,088.5 19,220.3 18,760.3 23,784
River Raid 1,338.5 17,118.0 7,377.6 14,884.5 21,162.6 20,607.6 17,322
Road Runner 11.5 7,845.0 39,544.0 44,127.0 69,524.0 62,151.0 55,839
Robotank 2.2 11.9 63.9 65.1 65.3 27.5 52.3
Seaquest 68.4 42,054.7 5,860.6 16,452.7 50,254.2 931.6 266,434
Skiing -17,098.1 -4,336.9 -13,062.3 -9,021.8 -8,857.4 -19,949.9 -13,901
Solaris 1,236.3 12,326.7 3,482.8 3,067.8 2,250.8 133.4 8,342
Space Invaders 148.0 1,668.7 1,692.3 2,525.5 6,427.3 15,311.5 5,747
Star Gunner 664.0 10,250.0 54,282.0 60,142.0 89,238.0 125,117.0 49,095
Surround -10.0 6.5 -5.6 -2.9 4.4 1.2 6.8
Tennis -23.8 -8.3 12.2 -22.8 5.1 0.0 23.1
Time Pilot 3,568.0 5,229.2 4,870.0 8,339.0 11,666.0 7,553.0 8,329
Tutankham 11.4 167.6 68.1 218.4 211.4 245.9 280
Up and Down 533.4 11,693.2 9,989.9 22,972.2 44,939.6 33,879.1 15,612
Venture 0.0 1,187.5 163.0 98.0 497.0 48.0 1,520
Video Pinball 16,256.9 17,667.9 196,760.4 309,941.9 98,209.5 479,197.0 949,604
Wizard Of Wor 563.5 4,756.5 2,704.0 7,492.0 7,855.0 12,352.0 9,300
Yars’ Revenge 3,092.9 54,576.9 18,098.9 11,712.6 49,622.1 69,618.1 35,050
Zaxxon 32.5 9,173.3 5,363.0 10,163.0 12,944.0 13,886.0 10,513

Figure 14. Raw scores across all games, starting with 30 no-op actions. Reference values from Wang et al. (2016).
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Figure 15. FREEWAY: Agent differentiates action-value distributions under pressure.

Figure 16. Q*BERT: Top, left and right: Predicting which actions are unrecoverably fatal. Bottom-Left: Value distribution shows steep
consequences for wrong actions. Bottom-Right: The agent has made a huge mistake.

Figure 17. SEAQUEST: Left: Bimodal distribution. Middle: Might hit the fish. Right: Definitely going to hit the fish.

Figure 18. SPACE INVADERS: Top-Left: Multi-modal distribution with high uncertainty. Top-Right: Subsequent frame, a more certain
demise. Bottom-Left: Clear difference between actions. Bottom-Middle: Uncertain survival. Bottom-Right: Certain success.


