Efficient Online Bandit Multiclass Learning

A. Adaptive Tuning of the Exploration Rate

In Theorem 2 we have presented a tuning of ~y that guarantees a regret of the order of O(%\/T ). However, this setting
requires to upper bound the sum of the quadratic terms with a worst case bound. In this section, we develop an adaptive
strategy for the tuning of the exploration rate ~ that guarantees an optimal bound w.r.t. to the tightest sum of the quadratic
terms.

First, we make rate dependent of the time, i.e. ;. Our aim is to choose -y, in each time step in order to minimize the excess
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mistake bound E [Zt:l Vet 5o i1 2% A; zt] . The main result is that, adaptively setting ;s would result in a

bound within (roughly) a constant factor of that obtained by the best fixed 7 in hindsight. We start with a technical lemma.
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Lemma 4. Let cq,...,cr € [0,b] be a sequence of real numbers, a > 0, and define v, = min <\/ IH_Z;E#CS, 1). We

have,
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Proof. First, note that
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Second, using the elementary chain of inequalities max(a, b) < a + b, Va, b > 0, we have that

where the last inequality uses Lemma 3.5 of (Auer et al., 2002). Combining the two inequalities, we get the desired
result. O

Built upon the lemma above, we show that, tailored to our setting, the adaptive tuning would result in a bound within a
constant factor of that achieved by the best fixed - in hindsight.
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Theorem 5. Running SOBA with the adaptive setting of v; = min (\/k(HZb 12 Az 1) and a = X2, we have that

EM] < L,(U)+ O <X2||U||% + %(\/deTlnT + dk? lnT)) :

Proof Sketch. Following the same proof as Theorem 3, we get that
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Meanwhile by triangle inequality,
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Combining the two inequalities above, we get
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We take a closer look at the last term. Lemma 4 with ¢; = kz] A; 'z, € [0,k], b=k, a = m, implies that
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Taking the expecation of both sides and using Lemma 3, we get that the last term on the right hand side is at most
%(\/ dk2T'InT + dk? InT). This completes the proof. O

B. Deferred Proofs

Proof of Theorem 1. Let p > 2 such that % + % = 1. Denote by b, the indicator variable that multiclass Perceptron makes
an update, i.e. makes a mistake. We have:
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Also, we have, that

T
<WT+17 U> = Z bt<Ua (eyt eyt) ® wt>
t;l
= th[l - (]- - <U7 (eyf, - e.@t) ® $t>)]
T
>3 bl = 1= (U, (ey, —e5,) @ m1)|+]
T o
> th - thf(U, (x4, yt))
t=1 t=1
> b= 0 O () )T
t=1 t=1 t=1

Putting all together we have
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Noting that EtT:l b, is equal to number of mistake M7, we get the stated bound. O

Lemma 5. Suppose we are given positive real numbers L, T, H,U and function F(y) = min(T, L+~T+ % +4/ %)
where v € [0, 1]. Then:

1. If L < (U + 1)VHT, then taking v* = min(,/%, 1) gives that F(v*) < L+ 3(U + 1)V HT.

2. IfL > (U + 1)V HT, then taking v* = min((%)%7 1) gives that F(v*) < L+ 2(~U + 1)(HLT)5.

Proof. We prove the two cases separately.

1. fT < H,theny* =1, F(y*) < T < L+ 3(U + 1)VHT.
Otherwise, T' > H. In this case, v* = % ‘We have that
F(y")
B L B [
= L+VHT+UVHT +\ ULVHT

L+ (U+1)VHT + L+ UVHT
L+3(U +1)VHT.
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where the first inequality is from that arithmetic mean-geometric mean inequality, the second inequality is by the
assumption on L.
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2. If HL > T2, then~v* = 1, F(y*) < T < (HLT)3.
Otherwise, HL < T?. In this case, v* = (%)% We have that

. UH |UHL*
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< L+ (U+U3s +1)(HLT)
< L+2(VU+1)(HLT)3.
where the first inequality is from algebra and the condition on L, implying UH3T3L~5 < (H LT)%U(¥)% <

Us (H LT)%, the second inequality is from that U 3 <VU+1.

C. Per-Step Analysis of Online Least Squares

For completeness, we present a technical lemma in online least squares, which has appeared in (e.g., Orabona et al., 2012).

) , t
Lemma 6. Suppose zt’s are vectors, and «y’s are scalars. For all t > 1, define Ay = Zszl ZSZE wy =
—At 1 Zs 1 0s2zs. Then for any vector u, we have:
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S (G, 20) + a2 (1= T A7 2) = 5 (w, 2) + 00 < sllu—wily, = sllu—welly,

Proof. Observe that w;’s have the following recurrence:
-1
W41 = At (At—lwt - atZt)

Since A; = A;_1 + 22!, we have
T
Arwip = Ay — (wy 20 + o) 2

Now, by standard online mirror descent analysis (See e.g. Cesa-Bianchi & Lugosi, 2006, proof of Theorem 11.1), we have
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Now, move the last term on the RHS to the LHS, we get
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Now moving the last term on the RHS to the LHS, the lemma follows. O



