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Abstract
We present an efficient second-order algorithm
with Õ( 1η

√
T )1 regret for the bandit online mul-

ticlass problem. The regret bound holds simulta-
neously with respect to a family of loss functions
parameterized by η, for a range of η restricted
by the norm of the competitor. The family of
loss functions ranges from hinge loss (η = 0)
to squared hinge loss (η = 1). This provides a
solution to the open problem of (Abernethy, J.
and Rakhlin, A. An efficient bandit algorithm
for

√
T -regret in online multiclass prediction?

In COLT, 2009). We test our algorithm experi-
mentally, showing that it also performs favorably
against earlier algorithms.

1. Introduction
In the online multiclass classification problem, the learner
must repeatedly classify examples into one of k classes. At
each step t, the learner observes an example xt ∈ Rd and
predicts its label ỹt ∈ [k]. In the full-information case,
the learner observes the true label yt ∈ [k] and incurs loss
1[ỹt �= yt]. In the bandit version of this problem, first con-
sidered in (Kakade et al., 2008), the learner only observes
its incurred loss 1[ỹt �= yt], i.e., whether or not its pre-
diction was correct. Bandit multiclass learning is a special
case of the general contextual bandit learning (Langford &
Zhang, 2008) where exactly one of the losses is 0 and all
other losses are 1 in every round.

The goal of the learner is to minimize its regret with re-
spect to the best predictor in some reference class of pre-
dictors, that is the difference between the total number of
mistakes the learner makes and the total number of mis-
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1Õ(·) hides logarithmic factors.

takes of the best predictor in the class. Kakade et al. (2008)
proposed a bandit modification of the Multiclass Percep-
tron algorithm (Duda & Hart, 1973), called the Banditron,
that uses a reference class of linear predictors. Note that
even in the full-information setting, it is difficult to provide
a true regret bound. Instead, performance bounds are typ-
ically expressed in terms of the total multiclass hinge loss
of the best linear predictor, a tight upper bound on 0-1 loss.

The Banditron, while computationally efficient, achieves
only O(T 2/3) expected regret with respect to this loss,
where T is the number of rounds. This is suboptimal as the
Exp4 algorithm of Auer et al. (2003) can achieve Õ(

√
T )

regret for the 0-1 loss, albeit very inefficiently. Abernethy
& Rakhlin (2009) posed an open problem: Is there an ef-
ficient bandit multiclass learning algorithm that achieves
expected regret of Õ(

√
T ) with respect to any reasonable

loss function?

The first attempt to solve this open problem was by Cram-
mer & Gentile (2013). Using a stochastic assumption about
the mechanism generating the labels, they were able to
show a Õ(

√
T ) regret, with a second-order algorithm.

Later, Hazan & Kale (2011), following a suggestion by
Abernethy & Rakhlin (2009), proposed the use of the log-
loss coupled with a softmax prediction. The softmax de-
pends on a parameter that controls the smoothing factor.
The value of this parameter determines the exp-concavity
of the loss, allowing Hazan & Kale (2011) to prove
worst-case regret bounds that range between O(log T ) and
O(T

2
3 ), again with a second-order algorithm. However, the

choice of the smoothing factor in the loss becomes critical
in obtaining strong bounds.

The original Banditron algorithm has been also extended
in many ways. Wang et al. (2010) have proposed a variant
based on the exponentiated gradient algorithm (Kivinen &
Warmuth, 1997). Valizadegan et al. (2011) proposed dif-
ferent strategies to adapt the exploration rate to the data in
the Banditron algorithm. However, these algorithms suffer
from the same theoretical shortcomings as the Banditron.

There has been significant recent focus on developing ef-
ficient algorithms for the general contextual bandit prob-
lem (Dudı́k et al., 2011; Agarwal et al., 2014; Rakhlin &
Sridharan, 2016; Syrgkanis et al., 2016a;b). While solving
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a more general problem that does not make assumptions
on the structure of the reward vector or the policy class,
these results assume that contexts or context/reward pairs
are generated i.i.d., or the contexts to arrive are known be-
forehand, which we do not assume here.

In this paper, we follow a different route. Instead of design-
ing an ad-hoc loss function that allows us to prove strong
guarantees, we propose an algorithm that simultaneously
satisfies a regret bound with respect to all the loss functions
in a family of functions that are tight upper bounds to the 0-
1 loss. The algorithm, named Second Order Banditron Al-
gorithm (SOBA), is efficient and based on the second-order
Perceptron algorithm (Cesa-Bianchi et al., 2005). The re-
gret bound is of the order of Õ(

√
T ), providing a solution

to the open problem of Abernethy & Rakhlin (2009).

2. Definitions and Settings
We first introduce our notation. Denote the rows of a matrix
V ∈ Rk×d by v1,v2, . . . ,vk. The vectorization of V is
defined as vec(V ) = [v1,v2, . . . ,vk]

T , which is a vector
in Rkd. We define the reverse operation of reshaping a kd×
1 vector into a k×d matrix by mat(V ), using a row-major
order. To simplify notation, we will use V and vec(V )
interchangeably throughout the paper. For matrices A and
B, denote by A⊗B their Kronecker product. For matrices
X and Y of the same dimension, denote by �X,Y � =�

i,j Xi,jYi,j their inner product. We use � · � to denote
the �2 norm of a vector, and � · �F to denote the Frobenius
norm of a matrix. For a positive definite matrix A, we use
�x�A =

�
�x , Ax� to denote the Mahalanobis norm of x

with respect to A. We use 1k to denote the vector in Rk

whose entries are all 1s.

We use Et−1[·] to denote the conditional expectation given
the observations up to time t− 1 and xt, yt, that is, x1, y1,
ỹ1, . . . , xt−1, yt−1, ỹt−1, xt, yt.

Let [k] denote {1, . . . , k}, the set of possible labels. In our
setting, learning proceeds in rounds:

For t = 1, 2, . . . , T :

1. The adversary presents an example xt ∈ Rd to the
learner, and commits to a hidden label yt ∈ [k].

2. The learner predicts a label ỹt ∼ pt, where pt ∈
Δk−1 is a probability distribution over [k].

3. The learner receives the bandit feedback 1[ỹt �= yt].

The goal of the learner is to minimize the total number of
mistakes, MT =

�T
t=1 1[ỹt �= yt].

We will use linear predictors specified by a matrix
W ∈ Rk×d. The prediction is given by W (x) =
argmaxi∈[k](Wx)i, where (Wx)i is the ith element of

the vector Wx, corresponding to class i.

A useful notion to measure the performance of a competitor
U ∈ Rk×d is the multiclass hinge loss

�(U , (x, y)) := max
i�=y

[1− (Ux)y + (Ux)i]+, (1)

where [·]+ = max(·, 0).

3. A History of Loss Functions
As outlined in the introduction, a critical choice in obtain-
ing strong theoretical guarantees is the choice of the loss
function. In this section we introduce and motivate a fam-
ily of multiclass loss functions.

In the full information setting, strong binary and multiclass
mistake bounds are obtained through the use of the Percep-
tron algorithm (Rosenblatt, 1958). A common misunder-
standing of the Perceptron algorithm is that it corresponds
to a gradient descent procedure with respect to the (binary
or multiclass) hinge loss. However, it is well known that
the Perceptron simultaneously satisfies mistake bounds that
depend on the cumulative hinge loss and also on the cumu-
lative squared hinge loss, see for example Mohri & Ros-
tamizadeh (2013). Note also that the squared hinge loss is
not dominated by the hinge loss, so, depending on the data,
one loss can be better than the other.

We show that the Perceptron algorithm satisfies an even
stronger mistake bound with respect to the cumulative loss
of any power of the multiclass hinge loss between 1 and 2.
Theorem 1. On any sequence (x1, y1), . . . , (xT , yT ) with
�xt� ≤ X for all t ∈ [T ], and any linear predictor U ∈
Rk×d, the total number of mistakes MT of the multiclass
Perceptron satisfies, for any q ∈ [1, 2],

MT ≤ M
1− 1

q

T L
1
q

MH,q(U) + �U�FX
√
2
�

MT ,

where LMH,q(U) =
�T

t=1 �(W , (xt, yt))
q . In particular,

it simultaneously satisfies the following:

MT ≤ LMH,1(U)+2X2�U�2F +X�U�F
√
2
�

LMH,1(U)

MT ≤ LMH,2(U)+2X2�U�2F+X�U�F 2
√
2
�

LMH,2(U) .

For the proof, see Appendix B.

A similar observation was done by Orabona et al. (2012)
who proved a logarithmic mistake bound with respect to
all loss functions in a similar family of functions smoothly
interpolating between the hinge loss to the squared hinge
loss. In particular, Orabona et al. (2012) introduced the
following family of binary loss functions

�η(x) :=

�
1− 2

2−ηx+ η
2−ηx

2, x ≤ 1

0, x > 1 .
(2)
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Figure 1. Plot of the loss functions in �η for different values of η.

where 0 ≤ η ≤ 1. Note that η = 0 recovers the bi-
nary hinge loss, and η = 1 recovers the squared hinge
loss. Meanwhile, for any 0 ≤ η ≤ 1, �η(x) ≤
max{�0(x), �1(x)}, and �η is an upper bound on 0-1 loss:
1[x < 0] ≤ �η(x). See Figure 1 for a plot of the different
functions in the family.

Here, we define a multiclass version of the loss in (2) as

�η(U , (x, y)) := �η

�
(Ux)y −max

i�=y
(Ux)i

�
. (3)

Hence, �0(U , (x, y)) = �(U , (x, y)) is the classical mul-
ticlass hinge loss and �1(U , (x, y)) = �2(U , (x, y)) is the
squared multiclass hinge loss.

Our algorithm has a Õ( 1η
√
T ) regret bound that holds si-

multaneously for all loss functions in this family, with η in
a range that ensure that (Ux)i − (Ux)j ≤ 2−η

η , i, j ∈ [k].
We also show that there exists a setting of the parame-
ters of the algorithm that gives a mistake upper bound of
Õ((L∗T )1/3+

√
T ), where L∗ is the cumulative hinge loss

of the competitor, which is never worse that the best bounds
in Kakade et al. (2008).

4. Second Order Banditron Algorithm
This section introduces our algorithm for bandit multiclass
online learning, called Second Order Banditron Algorithm
(SOBA), described in Algorithm 1.

SOBA makes a prediction using the γ-greedy strategy: At
each iteration t, with probability 1 − γ, it predicts ŷt =
argmaxi∈[k](Wtxt)i; with the remaining probability γ, it
selects a random action in [k]. As discussed in Kakade
et al. (2008), randomization is essential for designing ban-
dit multiclass learning algorithms. If we deterministically
output a label and make a mistake, then it is hard to make an
update since we do not know the identity of yt. However,

Algorithm 1 Second Order Banditron Algorithm (SOBA)
Input: Regularization parameter a > 0, exploration pa-

rameter γ ∈ [0, 1].
1: Initialization: W1 = 0, A0 = aI , θ0 = 0
2: for t = 1, 2, . . . , T do
3: Receive instance xt ∈ Rd

4: ŷt = argmaxi∈[k](Wtxt)i
5: Define pt = (1− γ)eŷt

+ γ
k1k

6: Randomly sample ỹt according to pt

7: Receive bandit feedback 1[ỹt �= yt]
8: Initialize update indicator nt = 0
9: if ỹt = yt then

10: ȳt = argmaxi∈[k]\{yt}(Wtxt)i
11: gt =

1
pt,yt

(eȳt − eyt)⊗ xt

12: zt =
√
pt,yt

gt

13: mt =
�Wt , zt�2+2�Wt , gt�

1+zT
t A−1

t−1zt

14: if mt +
�t−1

s=1 nsms ≥ 0 then
15: Turn on update indicator nt = 1
16: end if
17: end if
18: Update At = At−1 + ntztz

T
t

19: Update θt = θt−1 − ntgt
20: Set Wt+1 = mat(A−1

t θt)
21: end for
Remark: matrix At is of dimension kd × kd, and vector
θt is of dimension kd; in line 20, the matrix multiplication
results in a kd dimensional vector, which is reshaped to
matrix Wt+1 of dimension k × d.

if randomization is used, we can estimate yt and perform
online stochastic mirror descent type updates (Bubeck &
Cesa-Bianchi, 2012).

SOBA keeps track of two model parameters: cumulative
Perceptron-style updates θt = −�t

s=1 nsgs ∈ Rkd and
corrected covariance matrix At = aI +

�t
s=1 nszsz

T
s ∈

Rkd×kd. The classifier Wt is computed by matricizing over
the matrix-vector product A−1

t−1θt−1 ∈ Rkd. The weight
vector θt is standard in designing online mirror descent
type algorithms (Shalev-Shwartz, 2011; Bubeck & Cesa-
Bianchi, 2012). The matrix At is standard in designing on-
line learning algorithms with adaptive regularization (Cesa-
Bianchi et al., 2005; Crammer et al., 2009; McMahan &
Streeter, 2010; Duchi et al., 2011; Orabona et al., 2015).
The algorithm updates its model (nt = 1) only when the
following conditions hold simultaneously: (1) the predicted
label is correct (ỹt = yt), and (2) the “cumulative regular-
ized negative margin” (

�t−1
s=1 nsms+mt) is positive if this

update were performed. Note that when the predicted label
is correct we know the identity of the true label.

As we shall see, the set of iterations where nt = 1 in-
cludes all iterations where ỹt = yt �= ŷt. This fact is cru-
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cial to the mistake bound analysis. Furthermore, there are
some iterations where ỹt = yt = ŷt but we still make an
update. This idea is related to “online passive-aggressive
algorithms” (Crammer et al., 2006; 2009) in the full infor-
mation setting, where the algorithm makes an update even
when it predicts correctly but the margin is too small.

Let’s now describe our algorithm more in details. Through-
out, suppose all the examples are �2-bounded: �xt�2 ≤ X .

As outlined above, we associate a time-varying regularizer
Rt(W ) = 1

2�W �2At
, where At = aI +

�t
s=1 nszsz

T
s is

a kd× kd matrix and

zt =
√
pt,ytgt =

1
√
pt,yt

(eȳt − eyt)⊗ xt .

Note that this time-varying regularizer is constructed by
scaled versions of the updates gt. This is critical, because
in expectation this becomes the correct regularizer. Indeed,
it is easy to verify that, for any U ∈ Rk×d,

Et−1[1[yt = ỹt] gt] = (eȳt
− eyt

)⊗ xt,

Et−1[1[yt = ỹt] �U , zt�2] = �U , (eȳt
− eyt

)⊗ xt�2 .

In words, this means that in expectation the regularizer con-
tains the outer products of the updates, that in turn promote
the correct class and demotes the wrong one. We stress
that it is impossible to get the same result with the estima-
tor proposed in Kakade et al. (2008). Also, the analysis
is substantially different from the Online Newton Step ap-
proach (Hazan et al., 2007) used in Hazan & Kale (2011).

In reality, we do not make an update in all iterations in
which ỹt = yt, since the algorithm need to maintain the
invariant that

�t
s=1 msns ≥ 0, which is crucial to the

proof of Lemma 2. Instead, we prove a technical lemma
that gives an explicit form on the expected update ntgt and
expected regularization ntztz

T
t . Define

qt := 1

�
t−1�

s=1

nsms +mt ≥ 0

�
,

ht := 1[ŷt �= yt] + qt1[ŷt = yt] .

Lemma 1. For any U ∈ Rkd,

Et−1 [nt �U , gt�] = ht �U , (eyt
− eȳt

)⊗ xt� ,

Et−1

�
nt �U , zt�2

�
= ht �U , (eyt − eȳt)⊗ xt�2 .

The proof of Lemma 1 is deferred to the end of Subsec-
tion 4.1.

Our last contribution is to show how our second order al-
gorithm satisfies a mistake bound for an entire family of

loss functions. Finally, we relate the performance of the
algorithm that predicts ŷt to the γ-greedy algorithm.

Putting all together, we have our expected mistake bound
for SOBA. 2

Theorem 2. SOBA has the following expected upper bound
on the number of mistakes, MT , for any U ∈ Rk×d and any
0 < η ≤ min(1, 2

2maxi �ui�X+1 ),

E [MT ] ≤ Lη(U) +
aη

2− η
�U�2F

+
k

γη(2− η)

T�

t=1

E
�
zT
t A

−1
t zt

�
+ γT,

where Lη(U) :=
�T

t=1 �η(U , (xt, yt)) is the cumulative
η-loss of the linear predictor U , and {ui}ki=1 are rows of
U .

In particular, setting γ = O(
�

k2 d lnT
T ) and a = X2, we

have

E [MT ] ≤ Lη(U) +O

�
X2�U�2F +

k

η

√
dT lnT

�
.

Note that, differently from previous analyses (Kakade
et al., 2008; Crammer & Gentile, 2013; Hazan & Kale,
2011), we do not need to assume a bound on the norm of
the competitor, as in the full information Perceptron and
Second Order Perceptron algorithms. In Appendix A, we
also present an adaptive variant of SOBA that sets explo-
ration rate γt dynamically, which achieves a regret bound
within a constant factor of that using optimal tuning of γ.

We prove Theorem 2 in the next Subsection, while in Sub-
section 4.2 we prove a mistake bound with respect to the
hinge loss, that is not fully covered by Theorem 2.

4.1. Proof of Theorem 2

Throughout the proofs, U , Wt, gt, and zt’s should be
thought of as kd × 1 vectors. We first show the follow-
ing lemma. Note that this is a statement over any sequence
and no expectation is taken.

Lemma 2. For any U ∈ Rkd, with the notation of Algo-
rithm 1, we have:

T�

t=1

nt

�
2 �U , −gt� − �U , zt�2

�

≤ a�U�2F +

T�

t=1

ntg
T
t A

−1
t gt .

2Throughout the paper, expectations are taken with respect to
the randomization of the algorithm.
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Proof. First, from line 14 of Algorithm 1, it can be seen
(by induction) that SOBA maintains the invariant that

t�

s=1

nsms ≥ 0. (4)

We next reduce the proof to the regret analysis of online
least squares problem. For iterations where nt = 1, de-
fine αt = 1√

pt,yt
so that gt = αtzt. From the algorithm,

At = aI +
�t

s=1 nszsz
T
s , and Wt is the ridge regres-

sion solution based on data collected in time 1 to t− 1, i.e.
Wt = A−1

t−1(−
�t−1

s=1 nsgs) = A−1
t−1(−

�t−1
s=1 nsαszs).

By per-step analysis in online least squares, (see, e.g.,
Orabona et al., 2012)(See Lemma 6 for a proof), we have
that if an update is made at iteration t, i.e. nt = 1, then

1

2
(�Wt , zt�+ αt)

2(1− zT
t A

−1
t zt)−

1

2
(�U , zt�+ αt)

2

≤ 1

2
�U −Wt�2At−1

− 1

2
�U −Wt+1�2At

.

Otherwise nt = 0, in which case we have Wt+1 = Wt

and At+1 = At.

Denoting by kt = 1 − zT
t A

−1
t zt, by Sherman-Morrison

formula, kt = 1
1+zT

t A−1
t−1zt

. Summing over all rounds t ∈
[T ] such that nt = 1,

1

2

T�

t=1

nt

�
(�Wt , zt�+ αt)

2kt − (�U , zt�+ αt)
2
�

≤ 1

2
�U�2A0

− 1

2
�U −WT+1�2AT

≤ a

2
�U�2F .

We also have by definition of mt,

(�Wt , zt�+ αt)
2kt − (�U , zt�+ αt)

2

= mt − 2 �U , gt� − �U , zt�2 − α2
tz

T
t A

−1
t zt .

Putting all together and using the fact that
�T

t=1 ntmt ≥ 0,
we have the stated bound.

We can now prove the following mistake bound for the pre-
diction ŷt, defined as M̂T :=

�T
t=1 1[ŷt �= yt].

Theorem 3. For any U ∈ Rk×d, and any 0 < η ≤
min(1, 2

2maxi �ui�X+1 ), the expected number of mistakes
committed by ŷt can be bounded as

E
�
M̂T

�
≤ Lη(U) +

aη�U�2F
2− η

+
k
�T

t=1 E[ntz
T
t A

−1
t zt]

γη(2− η)

≤ Lη(U) +
aη�U�2F
2− η

+
dk2 ln

�
1 + 2T X2

a d k

�

γη(2− η)
,

where Lη(U) :=
�T

t=1 �η(U , (xt, yt)) is the η-loss of the
linear predictor U .

Proof. Using Lemma 2 with ηU , we get that

T�

t=1

nt

�
2η �U , −gt� − η2 �U , zt�2

�

≤ aη2�U�2F +

T�

t=1

ntg
T
t A

−1
t gt .

Taking expectations, using Lemma 1 and the fact that
1

pt,yt
≤ k

γ and that At is positive definite, we have

0 ≤ −E

�
T�

t=1

ht · 2η �U , (eyt − eȳt)⊗ xt�
�

+ E

�
T�

t=1

ht · η2(�U , (eyt
− eȳt

)⊗ xt�)2
�

+ aη2�U�2F +
k

γ

T�

t=1

E[ntz
T
t A

−1
t zt] .

(5)

Add the terms η(2 − η)E
��T

t=1 ht

�
to both sides and di-

vide both sides by η(2− η), to have

E

�
T�

t=1

ht

�
≤ E

�
T�

t=1

htf(�U , (eyt
− eȳt

)⊗ xt�)
�

+
aη

2− η
�U�2F +

k

γη(2− η)

T�

t=1

E[ntz
T
t A

−1
t zt],

where f(z) := 1 − 2
2−η z + η

2−η z
2. Taking a close look

at the function f , we observe that the two roots of the
quadratic function are 1 and 2−η

η , respectively. Setting
η ≤ 1, the function is negative in (1, 2−η

η ] and positive in
(−∞, 1]. Additionally, if 0 < η ≤ 2

2maxi �ui�2X+1 , then

for all i, j ∈ [k], �U , (ei − ej)⊗ xt� ≤ 2−η
η . Therefore,

we have that

f(�U , (eyt − eȳt)⊗ xt�)
= f((Uxt)yt − (Uxt)ȳt)

≤ �η ((Uxt)yt − (Uxt)ȳt)

≤ �η

�
(Uxt)yt

−max
r �=yt

(Uxt)r

�
= �η(U , (xt, yt)) .

where the first equality is from algebra, the first inequal-
ity is from that f(·) ≤ �η(·) in (−∞, 2−η

η ], the second
inequality is from that �η(·) is monotonically decreasing.

Putting together the two constraints on η, and noting that
M̂T ≤ �T

t=1 ht, we have the first bound.

The second statement follows from Lemma 3 below.
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Lemma 3. If d ≥ 1, k ≥ 2, T ≥ 2, then

T�

t=1

E[ntz
T
t A

−1
t zt] ≤ dk ln

�
1 +

2X2T

a d k

�
.

Specifically, if a = X2, the right hand side is ≤ dk lnT .

Proof. Observe that

T�

t=1

ntz
T
t A

−1
t zt ≤ ln

|AT |
|A0|

≤ d k ln


1 +

2X2
�T

t=1
1[ỹt=yt]
pt,yt

a d k


 ,

where the first inequality is a well-known fact from linear
algebra (e.g. Hazan et al., 2007, Lemma 11). Given that the
AT is kd × kd, the second inequality comes from the fact
that |AT | is maximized when all its eigenvalues are equal

to tr(AT )
d k = a +

�T
t=1 nt�zt�2

d k ≤ a +
2X2 �T

t=1
1[ỹt=yt]

pt,yt

d k .
Finally, using Jensen’s inequality, we have that,

T�

t=1

E[ntz
T
t A

−1
t zt] ≤ d k ln

�
1 +

2X2T

a d k

�
.

If a = X2, then the right hand side is d k ln(1+ 2T
d k ), which

is at most dk lnT under the conditions on d, k, T .

Proof of Theorem 2. Observe that by triangle inequality,
1[ỹt �= yt] ≤ 1[ỹt �= ŷt] + 1[yt �= ŷt]. Summing over
t, taking expectation on both sides, we conclude that

E[MT ] ≤ E[M̂T ] + γT . (6)

The first statement follows from combining the above in-
equality with Theorem 3.

For the second statement, first note that from Theorem 3,
and Equation (6), we have

E[MT ] ≤ Lη(U) +
aη�U�2F
2− η

+
dk2 ln

�
1 + 2T X2

a d k

�

γη(2− η)
+ γT

≤ Lη(U) +X2�U�2F +
2d k2 lnT

γη
+ γT,

where the second inequality is from that η ≤ 1, and
Lemma 3 with a = X2. The statement is concluded by

the setting of γ = O(
�

k2d lnT
T ).

Proof of Lemma 1. We show the lemma in two steps. Let
Gt := qt · 1[yt = ỹt = ŷt], and Ht := 1[yt = ỹt �= ŷt].

First, we show that nt = Gt + Ht. Recall that SOBA
maintains the invariant (4), hence

�t−1
s=1 nsms ≥ 0. From

line 14 of SOBA, we see that nt = 1 only if ỹt = yt. Now
consider two cases:

• yt = ỹt �= ŷt. In this case, ȳt = ŷt, therefore
�Wt , gt� ≥ 0, making mt ≥ 0. This implies that�t−1

s=1 nsms +mt ≥ 0, guaranteeing nt = 1.

• yt = ỹt = ŷt. In this case, nt is set to 1 if and only if
qt = 1, i.e.

�t−1
s=1 nsms +mt ≥ 0.

This gives that nt = Gt +Ht.

Second, we have the following two equalities:

Et−1 [Ht �U , gt�]

= Et−1

�
1[ỹt = yt]

pt,yt

1[ŷt �= yt] �U , (eyt
− eȳt

)⊗ xt�
�

= 1[ŷt �= yt] �U , (eyt
− eȳt

)⊗ xt� ,

Et−1 [Gt �U , gt�]

= Et−1

�
1[ỹt = yt]

pt,yt

1[ŷt = yt]qt �U , (eyt
− eȳt

)⊗ xt�
�

= 1[ŷt �= yt]qt �U , (eyt
− eȳt

)⊗ xt� .

The first statement follows from adding up the two equali-
ties above.

The proof for the second statement is identi-
cal, except replacing �U , (eyt

− eȳt
)⊗ xt� with

�U , (eyt
− eȳt

)⊗ xt�2.

4.2. Fall-Back Analysis

The loss function �η is an interpolation between the hinge
and the squared hinge losses. Yet, the bound becomes vac-
uous for η = 0. Hence, in this section we show that SOBA
also guarantees a Õ((L0(U)T )1/3 +

√
T ) mistake bound

w.r.t. L0(U), the multiclass hinge loss of the competitor,
assuming L0(U) is known. Thus the algorithm achieves
a mistake guarantee no worse than the sharpest bound im-
plicit in Kakade et al. (2008).

Theorem 4. Set a = X2 and denote by MT the number
of mistakes done by SOBA. Then SOBA has the following
guarantees:3

1. If L0(U) ≥ (�U�2F + 1)
√
dk2X2T lnT , then with

parameter setting γ = min(1, (dk
2X2L0(U) lnT

T 2 )1/3),
one has the following expected mistake bound:

E[MT ] ≤ L0(U)

+O
�
�U�F (d k2X2L0(U)T lnT )1/3

�
.

3Assuming the knowledge of �U�F it would be possible to
reduce the dependency on �U�F in both bounds. However such
assumption is extremely unrealistic and we prefer not to pursue it.
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2. If L0(U) < (�U�2F + 1)
√
dk2X2T lnT , then with

parameter setting γ = min(1, (d k2X2 lnT
T )1/2), one

has the following expected mistake bound:

E[MT ] ≤ L0(U) +O
�
k(�U�2F + 1)X

√
dT lnT

�
.

where L0(U) :=
�T

t=1 �0(U , (xt, yt)) is the hinge loss of
the linear classifier U .

Proof. Recall that M̂T the mistakes made by ŷt, that is�T
t=1 1[ŷt �= yt]. Adding to both sides of (5) the term

ηE[
�T

t=1 ht] and dividing both sides by η, and plugging
a = X2, we get that for all η > 0,

E

�
T�

t=1

ht

�
≤ E

�
T�

t=1

ht · (1− �U , (eyt
− eȳt

)⊗ xt�)

+

T�

t=1

ht ·
η

2
�U , (eȳt − eyt)⊗ xt�2

�

+
ηX2

2
�U�2F +

d k2

2 γ η
lnT

≤ E

�
T�

t=1

�0(U , (xt, yt)) +

�
T�

t=1

ht +
1

2

�
· η�U�2FX2

�

+
d k2

2 γ η
lnT .

where the first inequality uses Lemma 3, the
second inequality is from Cauchy-Schwarz that
�U , (eyt − eȳt)⊗ xt� ≤ �U�F · �(eyt − eȳt) ⊗ xt� ≤
�U�F

√
2X and that (1 − �U , (eyt

− eȳt
)⊗ xt�) ≤

�(U , (xt, yt)).

Taking η =
dk2

2γ lnT

�U�2
F (E[�t ht]+

1
2 )X

2 , we have

E

�
T�

t=1

ht

�
≤ L0(U)

+

�����U�2F

�
E

�
T�

t=1

ht

�
+

1

2

�
d k2 X2

2γ
lnT

≤ L0(U) +

�����U�2F

�
E

�
T�

t=1

ht

�
+

1

2

�
d k2 X2

γ
lnT ,

where the last inequality is due to the elementary
inequality

√
c+ d ≤ √

c +
√
d, and the setting of

a = X2. Solving the inequality and using the fact that
E[MT ] ≤ E[M̂T ] + γT ≤ E[

�T
t=1 ht] + γT , we have

E[MT ] ≤ L0(U) + γT

+O


d k2 �U�2F X2 lnT

γ
+

�
L0(U)

d k2 �U�2F X2 lnT

γ


 .

The theorem follows from Lemma 5 in Appendix B, taking
U = �U�2F , H = d k2 X2 lnT , L = L0(U).

5. Empirical Results
We tested SOBA to empirically validate the theoretical
findings. We used three different datasets from Kakade
et al. (2008): SynSep, SynNonSep, Reuters4.
The first two are synthetic, with 106 samples in R400 and
9 classes. SynSep is constructed to be linearly separa-
ble, while SynNonSep is the same dataset with 5% ran-
dom label noise. Reuters4 is generated from the RCV1
dataset (Lewis et al., 2004), extracting the 665,265 ex-
amples that have exactly one label from the set {CCAT,
ECAT, GCAT, MCAT}. It contains 47,236 features. We
also report the performance on Covtype from LibSVM
repository.4 We report averages over 10 different runs.

SOBA, as the Newtron algorithm, has a quadratic complex-
ity in the dimension of the data, while the Banditron and
the Perceptron algorithm are linear. Following the long tra-
dition of similar algorithms (Crammer et al., 2009; Duchi
et al., 2011; Hazan & Kale, 2011; Crammer & Gentile,
2013), to be able to run the algorithm on large datasets,
we have implemented an approximated diagonal version of
SOBA, named SOBAdiag. It keeps in memory just the di-
agonal of the matrix At. Following Hazan & Kale (2011),
we have tested only algorithms designed to work in the
fully adversarial setting. Hence, we tested the Banditron
and the PNewtron, the diagonal version of the Newtron al-
gorithm in Hazan & Kale (2011). The multiclass Percep-
tron algorithm was used as a full-information baseline.

In the experiments, we only changed the exploration rate γ,
leaving fixed all the other parameters the algorithms might
have. In particular, for the PNewtron we set α = 10,
β = 0.01, and D = 1, as in Hazan & Kale (2011). In
SOBA, a is fixed to 1 in all the experiments. We explore
the effect of the exploration rate γ in the first row of Figure
5. We see that the PNewtron algorithm,5 thanks to the ex-
ploration based on the softmax prediction, can achieve very
good performance for a wide range of γ.

It is important to note that SOBAdiag has good perfor-
mance on all four datasets for a value of γ close to 1%. For
bigger values, the performance degrades because the best
possible error rate is lower bounded by k−1

k γ due to explo-

4https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

5We were unable to make the PNewtron work on Reuters4.
For any setting of γ the error rate is never better than 57%. The
reason might be that the dataset RCV1 has 47,236 features, while
the one reported in Kakade et al. (2008); Hazan & Kale (2011)
has 346,810, hence the optimal setting of the 3 other parameters
of PNewtron might be different. For this reason we prefer not to
report the performance of PNewtron on Reuters4.
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Figure 2. Error rates vs. the value of the exploration rate γ (top row) and vs. the number examples (bottom row). The x-axis is
logarithmic in all the plots, while the y-axis is logarithmic in the plots in the second row. Figure best viewed in colors.

ration. For smaller values of exploration, the performance
degrades because the algorithm does not update enough. In
fact, SOBA updates only when ỹt = yt, so when γ is too
small the algorithms does not explore enough and remains
stuck around the initial solution. Also, SOBA requires an
initial number of updates to accumulate enough negative
terms in the

�
t ntmt in order to start updating also when

ŷt is correct but the margin is too small.

The optimal setting of γ for each algorithm was then used
to generate the plots in the second row of Figure 5, where
we report the error rate over time. With the respective opti-
mal setting of γ, we note that the performance of PNewtron
does not seem better than the one of the Multiclass Percep-
tron algorithm, and on par or worse to the Banditron’s one.
On the other hand, SOBAdiag has the best performance
among the bandits algorithms on 3 datasets out of 4.

The first dataset, SynSep, is separable and with their opti-
mal setting of γ, all the algorithms converge with a rate of
roughly O( 1

T ), as can be seen from the log-log plot, but the
bandit algorithms will not converge to zero error rate, but
to k−1

k γ. However, SOBA has an initial phase in which the
error rate is high, due to the effect mentioned above.

On the second dataset, SynNonSep, SOBAdiag out-
performs all the other algorithms (including the full-
information Perceptron), achieving an error rate close to
the noise level of 5%. This is due to SOBA being a second-
order algorithm, while the Perceptron is a first-order algo-
rithm. A similar situation is observed on Covtype. On the
last dataset, Reuters4, SOBAdiag achieves performance
better than the Banditron.

6. Discussion and Future Work
In this paper, we study the problem of online multiclass
learning with bandit feedback. We propose SOBA, an algo-
rithm that achieves a regret of Õ( 1η

√
T ) with respect to η-

loss of the competitor. This answers a COLT open problem
posed by (Abernethy & Rakhlin, 2009). Its key ideas are to
apply a novel adaptive regularizer in a second order online
learning algorithm, coupled with updates only when the
predictions are correct. SOBA is shown to have compet-
itive performance compared to its precedents in synthetic
and real datasets, in some cases even better than the full-
information Perceptron algorithm. There are several open
questions we wish to explore:

1. Is it possible to design efficient algorithms with mis-
take bounds that depend on the loss of the competitor, i.e.
E[MT ] ≤ Lη(U) + Õ(

�
kdLη(U) + kd)? This type of

bound occurs naturally in the full information multiclass
online learning setting, (see e.g. Theorem 1), or in multi-
armed bandit setting, e.g. (Neu, 2015).

2. Are there efficient algorithms that have a finite mistake
bound in the separable case? (Kakade et al., 2008) pro-
vides an algorithm that performs enumeration and plurality
vote to achieve a finite mistake bound in the finite dimen-
sional setting, but unfortunately the algorithm is impracti-
cal. Notice that it is easy to show that in SOBA ŷt makes a
logarithmic number of mistakes in the separable case, with
a constant rate of exploration, yet it is not clear how to de-
crease the exploration over time in order to get a logarith-
mic number of mistakes for ỹt.

Acknowledgments. We thank Claudio Gentile for sug-
gesting the original plan of attack for this problem, and
thank the anonymous reviewers for thoughtful comments.
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