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Ilija Bogunovic, Slobodan Mitrović, Jonathan Scarlett, and Volkan Cevher

A. Proof of Proposition 4.1
We have

|S0| =
dlog ⌧eX

i=0

d⌧/2ie2i⌘


dlog ⌧eX

i=0

⇣ ⌧

2i
+ 1
⌘
2i⌘

 ⌘(dlog ⌧e+ 1)(⌧ + 2dlog ⌧e)

 3⌘⌧(dlog ⌧e+ 1)

 3⌘⌧(log k + 2).

B. Proof of Proposition 4.4
Recalling that A

j

(T ) denotes a set constructed by the algorithm after j iterations, we have

f(A
j

(T ))� f(A
j�1(T )) � 1

�
max
e2T

f(e|A
j�1(T ))

� 1

�
max
e2T

f(e|A
k

(T ))

� 1

�
max

e2T\Ak(T )
f(e|A

k

(T )), (13)

where the first inequality follows from the �-iterative property (6), and the second inequality follows from A
j�1(S) ✓

A
k

(S) and the submodularity of f .

Continuing, we have

f(A
k

(T )) =

kX

j=1

f(A
j

(T ))� f(A
j�1(T ))

� k

�
max

e2T\Ak(T )
f(e|A

k

(T )),

where the last inequality follows from (13).

By rearranging, we have for any e 2 T \ A
k

(T ) that

f(e|A
k

(T ))  �
f(A

k

(T ))

k
.

C. Proof of Lemma 4.3
Recalling that A

j

(T ) denotes the set constructed after j iterations when applied to T , we have

max
e2T\Aj�1

(T )
f(e|A

j�1(T )) � 1

k

X

e2OPT(k,T )\Aj�1

(T )

f(e|A
j�1(T ))

� 1

k
f(OPT(k, T )|A

j�1(T ))

� 1

k

�
f(OPT(k, T ))� f(A

j�1(T ))
�
, (14)
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where the first line holds since the maximum is lower bounded by the average, the line uses submodularity, and the last
line uses monotonicity.

By combining the �-iterative property with (14), we obtain

f(A
j

(T ))� f(A
j�1(T )) � 1

�
max

e2T\Aj�1

(T )
f(e|A

j�1(T ))

� 1

k�

�
f(OPT(k, T ))� f(A

j�1(T ))
�
.

By rearranging, we obtain

f(OPT(k, T ))� f(A
j�1(T ))  �k

�
f(A

j

(T ))� f(A
j�1(T ))

�
. (15)

We proceed by following the steps from the proof of Theorem 1.5 in (Krause & Golovin, 2012). Defining �
j

:=
f(OPT(k, T ))� f(A

j

(T )), we can rewrite (15) as �
j�1  �k(�

j�1 � �
j

). By rearranging, we obtain

�
j


✓
1� 1

�k

◆
�
j�1.

Applying this recursively, we obtain �
l

 �1� 1
�k

�
l

�0, where �0 = f(OPT(k, T )) since f is normalized (i.e., f(;) = 0).
Finally, applying 1� x  e�x and rearranging, we obtain

f(A
l

(T )) �
⇣
1� e�

l
�k

⌘
f(OPT(k, T )).

D. Proof of Theorem 4.5
D.1. Technical Lemmas

We first provide several technical lemmas that will be used throughout the proof. We begin with a simple property of
submodular functions.

Lemma D.1 For any submodular function f on a ground set V , and any sets A,B,R ✓ V , we have

f(A [B)� f(A [ (B \R))  f(R | A).

Proof. Define R2 := A \R, and R1 := R \A = R \R2. We have

f(A [B)� f(A [ (B \R)) = f(A [B)� f((A [B) \R1)

= f(R1 | (A [B) \R1)

 f(R1 | (A \R1)) (16)
= f(R1 | A) (17)
= f(R1 [R2 | A) (18)
= f(R | A),

where (16) follows from the submodularity of f , (17) follows since A and R1 are disjoint, and (18) follows since R2 ✓ A.
2

The next lemma provides a simple lower bound on the maximum of two quantities; it is stated formally since it will be
used on multiple occasions.

Lemma D.2 For any set function f , sets A,B, and constant ↵ > 0, we have

max{f(A), f(B)� ↵f(A)} �
✓

1

1 + ↵

◆
f(B), (19)

and
max{↵f(A), f(B)� f(A)} �

✓
↵

1 + ↵

◆
f(B). (20)



Robust Submodular Maximization: A Non-Uniform Partitioning Approach

Proof. Starting with (19), we observe that one term is increasing in f(A) and the other is decreasing in f(A). Hence, the
maximum over all possible f(A) is achieved when the two terms are equal, i.e., f(A) = 1

1+↵

f(B). We obtain (20) via the
same argument. 2

The following lemma relates the function values associated with two buckets formed by PRO, denoted by X and Y . It is
stated with respect to an arbitrary set E

Y

, but when we apply the lemma, this will correspond to the elements of Y that are
removed by the adversary.

Lemma D.3 Under the setup of Theorem 4.5, let X and Y be buckets of PRO such that Y is constructed at a later time
than X . For any set E

Y

✓ Y , we have

f(X [ (Y \ E
Y

)) � 1

1 + ↵
f(Y ),

and
f(E

Y

| X)  ↵f(X), (21)

where ↵ = � |EY |
|X| .

Proof. Inequality (21) follows from the �-iterative property of A; specifically, we have from (8) that

f(e|X)  �
f(X)

|X| ,

where e is any element of the ground set that is neither in X nor any bucket constructed before X . Hence, we can write

f(E
Y

| X) 
X

e2EY

f(e|X)  �
|E

Y

|
|X| f(X) = ↵f(X),

where the first inequality is by submodularity. This proves (21).

Next, we write

f(Y )� f(X [ (Y \ E
Y

))  f(X [ Y )� f(X [ (Y \ E
Y

)) (22)
 f(E

Y

| X), (23)

where (22) is by monotonicity, and (23) is by Lemma D.1 with A = X , B = Y , and R = E
Y

.

Combining (21) and (23), together with the fact that f(X [ (Y \ E
Y

)) � f(X) (by monotonicity), we have

f(X [ (Y \ E
Y

)) � max {f(X), f(Y )� ↵f(X)}
� 1

1 + ↵
f(Y ), (24)

where (24) follows from (19). 2

Finally, we provide a lemma that will later be used to take two bounds that are known regarding the previously-constructed
buckets, and use them to infer bounds regarding the next bucket.

Lemma D.4 Under the setup of Theorem 4.5, let Y and Z be buckets of PRO such that Z is constructed at a later time
than Y , and let E

Y

✓ Y and E
Z

✓ Z be arbitrary sets. Moreover, let X be a set (not necessarily a bucket) such that

f((Y \ E
Y

) [X) � 1

1 + ↵
f(Y ), (25)

and
f(E

Y

| X)  ↵f(X). (26)

Then, we have
f(E

Z

| (Y \ E
Y

) [X)  ↵nextf((Y \ E
Y

) [X), (27)
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and
f((Z \ E

Z

) [ (Y \ E
Y

) [X) � 1

1 + ↵next
f(Z), (28)

where
↵next = �

|E
Z

|
|Y | (1 + ↵) + ↵. (29)

Proof. We first prove (27):

f(E
Z

| (Y \ E
Y

) [X) = f((Y \ E
Y

) [X [ E
Z

)� f((Y \ E
Y

) [X)

 f(X [ Y [ E
Z

)� f((Y \ E
Y

) [X) (30)
= f(E

Z

| X [ Y ) + f(X [ Y )� f((Y \ E
Y

) [X)

 f(E
Z

| Y ) + f(X [ Y )� f((Y \ E
Y

) [X) (31)

 �
|E

Z

|
|Y | f(Y ) + f(X [ Y )� f((Y \ E

Y

) [X) (32)

 �
|E

Z

|
|Y | (1 + ↵)f((Y \ E

Y

) [X) + f(X [ Y )� f((Y \ E
Y

) [X) (33)

 �
|E

Z

|
|Y | (1 + ↵)f((Y \ E

Y

) [X) + f(E
Y

| (Y \ E
Y

) [X) (34)

 �
|E

Z

|
|Y | (1 + ↵)f((Y \ E

Y

) [X) + f(E
Y

| X) (35)

 �
|E

Z

|
|Y | (1 + ↵)f((Y \ E

Y

) [X) + ↵f(X) (36)

 �
|E

Z

|
|Y | (1 + ↵)f((Y \ E

Y

) [X) + ↵f((Y \ E
Y

) [X) (37)

=

✓
�
|E

Z

|
|Y | (1 + ↵) + ↵

◆
f((Y \ E

Y

) [X)., (38)

where: (30) and (31) follow by monotonicity and submodularity, respectively; (32) follows from the second part of
Lemma D.3; (33) follows from (25); (34) is obtained by applying Lemma D.1 for A = X , B = Y , and R = E

Y

;
(35) follows by submodularity; (36) follows from (26); (37) follows by monotonicity. Finally, by defining ↵next :=

� |EZ |
|Y | (1 + ↵) + ↵ in (38) we establish the bound in (27).

In the rest of the proof, we show that (28) holds as well. First, we have

f((Z \ E
Z

) [ (Y \ E
Y

) [X) � f(Z)� f(E
Z

| (Y \ E
Y

) [X) (39)

by Lemma D.1 with B = Z, R = E
Z

and A = (Y \E
Y

)[X . Now we can use the derived bounds (38) and (39) to obtain

f((Z \ E
Z

) [ (Y \ E
Y

) [X) � f(Z)� f(E
Z

| (Y \ E
Y

) [X)

� f(Z)�
✓
�
|E

Z

|
|Y | (1 + ↵) + ↵

◆
f((Y \ E

Y

) [X).

Finally, we have

f((Z \ E
Z

) [ (Y \ E
Y

) [X) � max

⇢
f((Y \ E

Y

) [X), f(Z)�
✓
�
|E

Z

|
|Y | (1 + ↵) + ↵

◆
f((Y \ E

Y

) [X)

�

� 1

1 + ↵next
f(Z),

where the last inequality follows from Lemma D.1. 2

Observe that the results we obtain on f(E
Z

| (Y \ E
Y

) [X) and on f((Z \ E
Z

) [ (Y \ E
Y

) [X) in Lemma D.4 are of
the same form as the pre-conditions of the lemma. This will allow us to apply the lemma recursively.
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D.2. Characterizing the Adversary

Let E denote a set of elements removed by an adversary, where |E|  ⌧ . Within S0, PRO constructs dlog ⌧e+1 partitions.
Each partition i 2 {0, . . . , dlog ⌧e} consists of d⌧/2ie buckets, each of size 2i⌘, where ⌘ 2 N will be specified later. We
let B denote a generic bucket, and define E

B

to be all the elements removed from this bucket, i.e. E
B

= B \ E.

The following lemma identifies a bucket in each partition for which not too many elements are removed.

Lemma D.5 Under the setup of Theorem 4.5, suppose that an adversary removes a set E of size at most ⌧ from the set S
constructed by PRO. Then for each partition i, there exists a bucket B

i

such that |E
Bi |  2i, i.e., at most 2i elements are

removed from this bucket.

Proof. Towards contradiction, assume that this is not the case, i.e., assume |E
Bi | > 2i for every bucket of the i-th partition.

As the number of buckets in partition i is d⌧/2ie, this implies that the adversary has to spend a budget of

|E| � 2i|E
Bi | > 2id⌧/2ie = ⌧,

which is in contradiction with |E|  ⌧ . 2

We consider B0, . . . , Bdlog ⌧e as above, and show that even in the worst case, f
⇣Sdlog ⌧e

i=0 (B
i

\ E
Bi)
⌘

is almost as large

as f
�
Bdlog ⌧e

�
for appropriately set ⌘. To achieve this, we apply Lemma D.4 multiple times, as illustrated in the following

lemma. We henceforth write ⌘
h

:= ⌘/2 for brevity.

Lemma D.6 Under the setup of Theorem 4.5, suppose that an adversary removes a set E of size at most ⌧ from the set S
constructed by PRO, and let B0, · · · , Bdlog ⌧e be buckets such that |E

Bi |  2i for each i 2 {1, · · · dlog ⌧e} (cf., Lemma
D.5). Then,

f

0

@
dlog ⌧e[

i=0

(B
i

\ E
Bi)

1

A �
✓
1� 1

1 + 1
↵

◆
f
�
Bdlog ⌧e

�
=

1

1 + ↵
f
�
Bdlog ⌧e

�
, (40)

and

f

0

@E
Bdlog ⌧e

���
dlog ⌧e�1[

i=0

(B
i

\ E
Bi)

1

A  ↵f

0

@
dlog ⌧e�1[

i=0

(B
i

\ E
Bi)

1

A , (41)

for some

↵  �2 (1 + ⌘
h

)dlog ⌧e � ⌘
dlog ⌧e
h

⌘
dlog ⌧e
h

. (42)

Proof. In what follows, we focus on the case where there exists some bucket B0 in partition i = 0 such that B0\EB

0

= B0.
If this is not true, then E must be contained entirely within this partition, since it contains ⌧ buckets. As a result, (i) we
trivially obtain (40) even when ↵ is replaced by zero, since the union on the left-hand side contains Bdlog ⌧e; (ii) (41)
becomes trivial since the left-hand side is zero is a result of E

Bdlog ⌧e = ;.

We proceed by induction. Namely, we show that

f

 
j[

i=0

(B
i

\ E
Bi)

!
�
 
1� 1

1 + 1
↵j

!
f(B

j

) =
1

1 + ↵
j

f(B
j

), (43)

and

f

 
E

Bj

���
j�1[

i=0

(B
i

\ E
Bi)

!
 ↵

j

f

 
j�1[

i=0

(B
i

\ E
Bi)

!
, (44)

for every j � 1, where

↵
j

 �2 (1 + ⌘
h

)j � ⌘j
h

⌘j
h

. (45)

Upon showing this, the lemma is concluded by setting j = dlog ⌧e.
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Base case j = 1. In the case that j = 1, taking into account that E
B

0

= ;, we observe from (43) that our goal is to bound
f(B0 [ (B1 \ EB

1

)). Applying Lemma D.3 with X = B0, Y = B1, and E
Y

= E
B

1

, we obtain

f(B0 [ (B1 \ EB

1

)) � 1

1 + ↵1
f(B1),

and
f(E

B

1

| B0)  ↵1f(B0),

where ↵1 = �
|EB

1

|
|B

0

| . We have |B0| = ⌘, while |E
B

1

|  2 by assumption. Hence, we can upper bound ↵1 and rewrite as

↵1  �
2

⌘
= �

1

⌘
h

= �
(1 + ⌘

h

)� ⌘
h

⌘
h

 �2 (1 + ⌘
h

)� ⌘
h

⌘
h

,

where the last inequality follows since � � 1 by definition.

Inductive step. Fix j � 2. Assuming that the inductive hypothesis holds for j � 1, we want to show that it holds for j as
well.

We write

f

 
j[

i=0

(B
i

\ E
Bi)

!
= f

  
j�1[

i=0

(B
i

\ E
Bi)

!
[ (B

j

\ E
Bj )

!
,

and apply Lemma D.4 with X =
S

j�2
i=0 (B

i

\ E
Bi), Y = B

j�1, E
Y

= E
Bj�1

, Z = B
j

, and E
Z

= E
Bj . Note that the

conditions (25) and (26) of Lemma D.4 are satisfied by the inductive hypothesis. Hence, we conclude that (43) and (44)
hold with

↵
j

= �
|E

Bj |
|B

j�1| (1 + ↵
j�1) + ↵

j�1.

It remains to show that (45) holds for ↵
j

, assuming it holds for ↵
j�1. We have

↵
j

= �
|E

Bj |
|B

j�1| (1 + ↵
j�1) + ↵

j�1

 �
1

⌘
h

 
1 + �

(1 + ⌘
h

)j�1 � ⌘j�1
h

⌘j�1
h

!
+ �

(1 + ⌘
h

)j�1 � ⌘j�1
h

⌘j�1
h

(46)

 �2

 
1

⌘
h

 
1 +

(1 + ⌘
h

)j�1 � ⌘j�1
h

⌘j�1
h

!
+

(1 + ⌘
h

)j�1 � ⌘j�1
h

⌘j�1
h

!
(47)

= �2

 
1

⌘
h

(1 + ⌘
h

)j�1

⌘j�1
h

+
(1 + ⌘

h

)j�1 � ⌘j�1
h

⌘j�1
h

!

= �2

 
(1 + ⌘

h

)j�1

⌘j
h

+
⌘
h

(1 + ⌘
h

)j�1 � ⌘j
h

⌘j
h

!

= �2 (1 + ⌘
h

)j � ⌘j
h

⌘j
h

,

where (46) follows from (45) and the fact that

�
|E

Bj |
|B

j�1|  �
2j

2j�1⌘
= �

2

⌘
= �

1

⌘
h

,

by |E
Bj |  2j and |B

j�1| = 2j�1⌘; and (47) follows since � � 1. 2

Inequality (45) provides an upper bound on ↵
j

, but it is not immediately clear how the bound varies with j. The following
lemma provides a more compact form.



Robust Submodular Maximization: A Non-Uniform Partitioning Approach

Lemma D.7 Under the setup of Lemma D.6, we have for 2dlog ⌧e  ⌘
h

that

↵
j

 3�2 j

⌘
(48)

Proof. We unfold the right-hand side of (45) in order to express it in a simpler way. First, consider j = 1. From (45) we
obtain ↵1  2�2 1

⌘

, as required. For j � 2, we obtain the following:

��2↵
j

 (1 + ⌘
h

)j � ⌘j
h

⌘j
h

=

j�1X

i=0

✓
j

i

◆
⌘i
h

⌘j
h

(49)

=
j

⌘
h

+

j�2X

i=0

✓
j

i

◆
⌘i
h

⌘j
h

(50)

=
j

⌘
h

+

j�2X

i=0

 Q
j�i

t=1(j � t+ 1)
Q

j�i

t=1 t

⌘i
h

⌘j
h

!

 j

⌘
h

+
1

2

j�2X

i=0

jj�i

⌘i
h

⌘j
h

(51)

=
j

⌘
h

+
1

2

j�2X

i=0

✓
j

⌘
h

◆
j�i

=
j

⌘
h

+
1

2

 
�1� j

⌘
h

+

jX

i=0

✓
j

⌘
h

◆
j�i

!
,

where (49) is a standard summation identity, and (51) follows from
Q

j�i

t=1(j� t+1)  jj�i and
Q

j�i

t=1 t � 2 for j� i � 2.
Next, explicitly evaluating the summation of the last equality, we obtain

��2↵
j

 j

⌘
h

+
1

2

0

B@�1� j

⌘
h

+
1�

⇣
j

⌘h

⌘
j+1

1� j

⌘h

1

CA

 j

⌘
h

+
1

2

 
�1� j

⌘
h

+
1

1� j

⌘h

!

=
j

⌘
h

+
1

2

0

B@

⇣
j

⌘h

⌘2

1� j

⌘h

1

CA (52)

=
j

⌘
h

+
j

2⌘
h

 
j

⌘h

1� j

⌘h

!
, (53)

where (52) follows from (�a� 1)(�a+ 1) = a2 � 1 with a = j/⌘
h

.

Next, observe that if j/⌘
h

 1/2, or equivalently
2j  ⌘

h

, (54)

then we can weaken (53) to

��2↵
j

 j

⌘
h

+
j

2⌘
h

=
3

2

j

⌘
h

= 3
j

⌘
, (55)

which yields (48).

2
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D.3. Completing the Proof of Theorem 4.5

We now prove Theorem 4.5 in several steps. Throughout, we define µ to be a constant such that f(E1 | (S \E)) = µf(S1)
holds, and we write E0 := E⇤

S

\ S0, E1 := E⇤
S

\ S1, and E
Bi := E⇤

S

\B
i

, where E⇤
S

is defined in (9). We also make use
of the following lemma characterizing the optimal adversary. The proof is straightforward, and can be found in Lemma 2
of (Orlin et al., 2016)

Lemma D.8 (Orlin et al., 2016) Under the setup of Theorem 4.5, we have for all X ⇢ V with |X|  ⌧ that

f(OPT(k, V, ⌧) \ E⇤
OPT(k,V,⌧))  f(OPT(k � ⌧, V \X)).

Initial lower bounds: We start by providing three lower bounds on f(S \ E⇤
S

). First, we observe that f(S \ E⇤
S

) �
f(S0 \ E0) and f(S \ E⇤

S

) � f
⇣Sdlog ⌧e

i=0 (B
i

\ E
Bi)
⌘

. We also have

f(S \ E) = f(S)� f(S) + f(S \ E)

= f(S0 [ S1) + f(S \ E0)� f(S \ E0)� f(S) + f(S \ E) (56)
= f(S1) + f(S0 | S1) + f(S \ E0)� f(S)� f(S \ E0) + f(S \ E)

= f(S1) + f(S0 | (S \ S0)) + f(S \ E0)� f(E0 [ (S \ E0))� f(S \ E0) + f(S \ E) (57)
= f(S1) + f(S0 | (S \ S0))� f(E0 | (S \ E0))� f(S \ E0) + f(S \ E)

= f(S1) + f(S0 | (S \ S0))� f(E0 | (S \ E0))� f(E1 [ (S \ E)) + f(S \ E) (58)
= f(S1) + f(S0 | (S \ S0))� f(E0 | (S \ E0))� f(E1 | S \ E)

= f(S1)� f(E1 | S \ E) + f(S0 | (S \ S0))� f(E0 | (S \ E0))

� (1� µ)f(S1), (59)

where (56) and (57) follow from S = S0[S1, (58) follows from E⇤
S

= E0[E1, and (59) follows from f(S0 | (S \S0))�
f(E0 | (S \ E0)) � 0 (due to E0 ✓ S0 and S \ S0 ✓ S \ E0), along with the definition of µ.

By combining the above three bounds on f(S \ E⇤
S

), we obtain

f(S \ E⇤
S

) � max

8
<

:f(S0 \ E0), (1� µ)f(S1), f

0

@
dlog ⌧e[

i=0

(B
i

\ E
Bi)

1

A

9
=

; . (60)

We proceed by further bounding these terms.

Bounding the first term in (60): Defining S0
0 := OPT(k � ⌧, V \E0) \ (S0 \E0) and X := OPT(k � ⌧, V \E0) \ S0

0,
we have

f(S0 \ E0) + f(OPT(k � ⌧, V \ S0)) � f(S0
0) + f(X) (61)

� f(OPT(k � ⌧, V \ E0)) (62)
� f(OPT(k, V, ⌧) \ E⇤

OPT(k,V,⌧)), (63)

where (61) follows from monotonicity, i.e. (S0 \ E0) ✓ S0
0 and (V \ S0) ✓ (V \ E0), (62) follows from the fact that

OPT(k � ⌧, V \E0) = S0
0 [X and submodularity,2 and (63) follows from Lemma D.8 and |E0|  ⌧ . We rewrite (63) as

f(S0 \ E0) � f(OPT(k, V, ⌧) \ E⇤
OPT(k,V,⌧))� f(OPT(k � ⌧, V \ S0)). (64)

Bounding the second term in (60): Note that S1 is obtained by using A that satisfies the �-iterative property on the set
V \ S0, and its size is |S1| = k � |S0|. Hence, from Lemma 4.3 with k � ⌧ in place of k, we have

f(S1) �
⇣
1� e�

k�|S
0

|
�(k�⌧)

⌘
f(OPT(k � ⌧, V \ S0)). (65)

2The submodularity property can equivalently be written as f(A) + f(B) � f(A [B) + f(A \B).
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Bounding the third term in (60): We can view S1 as a large bucket created by our algorithm after creating the buckets
in S0. Therefore, we can apply Lemma D.4 with X =

Sdlog ⌧e�1
i=0 (B

i

\ E
Bi), Y = Bdlog ⌧e, Z = S1, E

Y

= E⇤
S

\ Y ,
and E

Z

= E1. Conditions (25) and (26) needed to apply Lemma D.4 are provided by Lemma D.6. From Lemma D.4, we
obtain the following with ↵ as in (42):

f

0

@E1

�����

0

@
dlog ⌧e[

i=0

(B
i

\ E
Bi)

1

A [ (S1 \ E1)

1

A 
✓
�

|E1|
|Bdlog ⌧e| (1 + ↵) + ↵

◆
f

0

@
dlog ⌧e[

i=0

(B
i

\ E
Bi)

1

A . (66)

Furthermore, noting that the assumption ⌘ � 4(log k+1) implies 2dlog ⌧e  ⌘
h

, we can upper-bound ↵ as in Lemma D.7
by (48) for j = dlog ⌧e. Also, we have � |E

1

|
|Bdlog ⌧e|  � ⌧

2dlog ⌧e
⌘

 �

⌘

. Putting these together, we upper bound (66) as
follows:

f

0

@E1

�����

0

@
dlog ⌧e[

i=0

(B
i

\ E
Bi)

1

A [ (S1 \ E1)

1

A 
✓
�

⌘

✓
1 +

3�2dlog ⌧e
⌘

◆
+

3�2dlog ⌧e
⌘

◆
f

0

@
dlog ⌧e[

i=0

(B
i

\ E
Bi)

1

A

 5�3dlog ⌧e
⌘

f

0

@
dlog ⌧e[

i=0

(B
i

\ E
Bi)

1

A ,

where we have used ⌘ � 1 and dlog ⌧e � 1 (since ⌧ � 2 by assumption). We rewrite the previous equation as

f

0

@
dlog ⌧e[

i=0

(B
i

\ E
Bi)

1

A � ⌘

5�3dlog ⌧ef
0

@E1

�����

0

@
dlog ⌧e[

i=0

(B
i

\ E
Bi)

1

A [ (S1 \ E1)

1

A

� ⌘

5�3dlog ⌧ef(E1 | (S \ E)) (67)

=
⌘

5�3dlog ⌧eµf(S1), (68)

where (67) follows from submodularity, and (68) follows from the definition of µ.

Combining the bounds: Returning to (60), we have

f(S \ E⇤
S

) � max

8
<

:f(S0 \ E0), (1� µ)f(S1), f

0

@
dlog ⌧e[

i=0

(B
i

\ E
Bi)

1

A

9
=

;

� max

⇢
f(S0 \ E0), (1� µ)f(S1),

⌘

5�3dlog ⌧eµf(S1)

�
(69)

� max{f(OPT(k, V, ⌧) \ E⇤
OPT(k,V,⌧))� f(OPT(k � ⌧, V \ S0)),

(1� µ)
⇣
1� e�

k�|S
0

|
�(k�⌧)

⌘
f(OPT(k � ⌧, V \ S0)),

⌘

5�3dlog ⌧eµ
⇣
1� e�

k�|S
0

|
�(k�⌧)

⌘
f(OPT(k � ⌧, V \ S0))} (70)

� max{f(OPT(k, V, ⌧) \ E⇤
OPT(k,V,⌧))� f(OPT(k � ⌧, V \ S0)),

⌘

5�3dlog ⌧e

1 + ⌘

5�3dlog ⌧e

⇣
1� e�

k�|S
0

|
�(k�⌧)

⌘
f(OPT(k � ⌧, V \ S0))} (71)

= max{f(OPT(k, V, ⌧) \ E⇤
OPT(k,V,⌧))� f(OPT(k � ⌧, V \ S0)),

⌘

5�3dlog ⌧e+ ⌘

⇣
1� e�

k�|S
0

|
�(k�⌧)

⌘
f(OPT(k � ⌧, V \ S0))}

�
⌘

5�3dlog ⌧e+⌘

⇣
1� e�

k�|S
0

|
�(k�⌧)

⌘

1 + ⌘

5�3dlog ⌧e+⌘

⇣
1� e�

k�|S
0

|
�(k�⌧)

⌘f(OPT(k, V, ⌧) \ E⇤
OPT(k,V,⌧)), (72)
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where (69) follows from (68), (70) follows from (64) and (65), (71) follows since max{1 � µ, cµ} � c

1+c

analogously to
(19), and (72) follows from (20). Hence, we have established (72).

Turning to the permitted values of ⌧ , we have from Proposition 4.1 that

|S0|  3⌘⌧(log k + 2).

For the choice of ⌧ to yield valid set sizes, we only require |S0|  k; hence, it suffices that

⌧  k

3⌘(log k + 2)
. (73)

Finally, we consider the second claim of the lemma. For ⌧ 2 o
�

k

⌘(log k)

�
we have |S0| 2 o(k). Furthermore, by setting

⌘ � log2 k (which satisfies the assumption ⌘ � 4(log k + 1) for large k), we get k�|S
0

|
�(k�⌧) ! ��1 and ⌘

5�3dlog ⌧e+⌘

! 1 as

k ! 1. Hence, the constant factor converges to 1�e

�1/�

2�e

�1/� , yielding (11). In the case that GREEDY is used as the subroutine,

we have � = 1, and hence the constant factor converges t 1�e

�1

2�e

�1

� 0.387. If THRESHOLDING-GREEDY is used, we have
� = 1

1�✏

, and hence the constant factor converges to 1�e

✏�1

2�e

✏�1

� (1� ✏) 1�e

�1

2�e

�1

� (1� ✏)0.387.


