
Compressed Sensing using Generative Models

8. Appendix A
Lemma 8.1. Given S ✓ Rn

, y 2 Rm

, A 2 Rm⇥n

, and

�, �, ✏
1

, ✏
2

> 0, if matrix A satisfies the S-REC(S, �, �),
then for any two x

1

, x
2

2 S, such that kAx
1

� yk ✏
1

and kAx
2

� yk ✏
2

, we have

kx
1

� x
2

k ✏
1

+ ✏
2

+ �

�
.

Proof.

kx
1

� x
2

k 1

�
(kAx

1

�Ax
2

k+ �) ,

=

1

�
(k(Ax

1

� y)� (Ax
2

� y)k+ �) ,

 1

�
(k(Ax

1

� y)k+ k(Ax
2

� y)k+ �) ,

 ✏
1

+ ✏
2

+ �

�
.

8.1. Proof of Lemma 4.1

Definition 2. A random variable X is said to be

subgamma(�, B) if 8✏ � 0, we have

P (|X � E[X]| � ✏) 2max

⇣
e�✏

2
/(2�

2
), e�✏/(2B)

⌘
.

Lemma 8.2. Let G : Rk ! Rn

be an L-Lipschitz func-

tion. Let Bk

(r) be the L
2

-ball in Rk

with radius r,

S = G(Bk

(r)), and M be a �/L-net on Bk

(r) such that

|M | k log

✓
4Lr

�

◆
. Let A be a Rm⇥n

random matrix

with IID Gaussian entries with zero mean and variance

1/m. If

m = ⌦

✓
k log

Lr

�

◆
,

then for any x 2 S, if x0
= argminbx2G(M)

kx � bxk, we

have kA(x� x0
)k = O(�) with probability 1� e�⌦(m)

.

Note that for any given point x0 in S, if we try to find its
nearest neighbor of that point in an �-net on S, then the
difference between the two is at most the �. In words, this
lemma says that even if we consider measurements made
on these points, i.e. a linear projection using a random ma-
trix A, then as long as there are enough measurements, the
difference between measurements is of the same order �. If
the point x0 was in the net, then this can be easily achieved
by Johnson-Lindenstrauss Lemma. But to argue that this
is true for all x0 in S, which can be an uncountably large
set, we construct a chain of nets on S. We now present the
formal proof.

Proof. Observe that for any x 2 Rn,
kAxk2
kxk2 is

subgamma

✓
1p
m
,
1

m

◆
. Thus, for any f > 0,

✏ � 2 +

4

m
log

2

f
� max

✓r
2

m
log

2

f
,
2

m
log

2

f

◆

is sufficient to ensure that

P (kAxk � (1 + ✏)kxk) P
�kAxk � p

1 + ✏kxk� f.

Now, let M = M
0

✓ M
1

✓ M
2

, · · · ✓ M
l

be a chain
of epsilon nets of Bk

(r) such that M
i

is a �
i

/L-net and
�
i

= �
0

/2i, with �
0

= �. We know that there exist nets
such that

log |M
i

| k log

✓
4Lr

�
i

◆
 ik + k log

✓
4Lr

�
0

◆
.

Let N
i

= G(M
i

). Then due to Lipschitzness of G, N
i

’s
form a chain of epsilon nets such that N

i

is a �
i

-net of S =

G(Bk

(r)), with |N
i

| = |M
i

|.
For i 2 {0, 1, 2 · · · , l � 1}, let

T
i

= {x
i+1

� x
i

| x
i+1

2 N
i+1

, x
i

2 N
i

}.

Thus,

|T
i

| |N
i+1

||N
i

|.
=) log |T

i

| log |N
i+1

|+ | log |N
i

|,

 (2i+ 1)k + 2k log

✓
4Lr

�
0

◆
,

 3ik + 2k log

✓
4Lr

�
0

◆
.

Now assume m = 3k log

✓
4Lr

�
0

◆
,

log(f
i

) = �(m+ 4ik),

and

✏
i

= 2 +

4

m
log

2

f
i

,

= 2 +

4

m
log 2 + 4 +

16ik

m
,

= O(1) +

16ik

m
.

By choice of f
i

and ✏
i

, we have 8i 2 [l � 1], 8t 2 T
i

,

P (kAtk > (1 + ✏
i

)ktk) f
i

.

Compressed Sensing using Generative Models

Thus by union bound, we have

P (kAtk (1 + ✏
i

)ktk, 8i, 8t 2 T
i

) � 1�
l�1X

i=0

|T
i

|f
i

.

Now,

log(|T
i

|f
i

) = log(|T
i

|) + log(f
i

),

 �k log

✓
4Lr

�
0

◆
� ik,

= �m/3� ik.

=)
l�1X

i=0

|T
i

|f
i

 e�m/3

l�1X

i=0

e�ik,

 e�m/3

✓
1

1� e�1

◆
,

 2e�m/3.

Observe that for any x 2 S, we can write

x = x
0

+ (x
1

� x
0

) + (x
2

� x
1

) . . . (x
l

� x
l�1

) + xf .

x� x
0

=

l�1X

i=0

(x
i+1

� x
i

) + xf .

where x
i

2 N
i

and x
f

= x�x
l

. We also get kx
i+1

�x
i

k
�
i

, and kxfk �
l

due to properties of epsilon-nets.

Since each x
i+1

� x
i

2 T
i

, with probability at least 1 �
2e�m/3, we have

l�1X

i=0

kA(x
i+1

� x
i

)k =

l�1X

i=0

(1 + ✏
i

)k(x
i+1

� x
i

)k,

l�1X

i=0

(1 + ✏
i

)�
i

,

= �
0

l�1X

i=0

1

2

i

✓
O(1) +

16ik

m

◆
,

= O(�
0

) + �
0

16k

m

l�1X

i=0

✓
i

2

i

◆
,

= O(�
0

).

We know that kAk 2 +

p
n/m with probability at least

1�2e�m/2 (Corollary 5.35 (Vershynin, 2010)). By setting

l = log(n), we get that, kAkkxfk
✓
2 +

r
n

m

◆
�
0

2

l

=

O(�
0

) with probability � 1� 2e�m/2.

Combining these two results, and noting that it is possible

to choose x0
= x

0

, we get that with probability 1�e�⌦(m),

kA(x� x0
)k = kA(x� x

0

)k,

l�1X

i=0

kA(x
i+1

� x
i

)k+ kAxfk,

= O(�
0

) + kAkkxfk,
= O(�).

Lemma. Let G : Rk ! Rn

be L-Lipschitz. Let

Bk

(r) = {z | z 2 Rk, kzk r}
be an L

2

-norm ball in Rk

. For ↵ < 1, if

m = ⌦

✓
k

↵2

log

Lr

�

◆
,

then a random matrix A 2 Rm⇥n

with IID entries such that

A
ij

⇠ N �
0, 1

m

�
satisfies the S-REC(G(Bk

(r)), 1�↵, �)

with 1� e�⌦(↵

2
m)

probability.

Proof. We construct a
�

L
-net, N , on Bk

(r). There exists a
net such that

log |N | k log

✓
4Lr

�

◆
.

Since N is a
�

L
-cover of Bk

(r), due to the L-Lipschitz
property of G(·), we get that G(N) is a �-cover of
G(Bk

(r)).

Let T denote the pairwise differences between the elements
in G(N), i.e.,

T = {G(z
1

)�G(z
2

) | z
1

, z
2

2 N}.

Then,

|T | |N |2,
=) log |T | 2 log |N |,

 2k log

✓
4Lr

�

◆
.

For any z, z0 2 Bk, 9 z
1

, z
2

2 N , such that G(z
1

), G(z
2

)

are �-close to G(z) and G(z0) respectively. Thus, by trian-
gle inequality,

kG(z)�G(z0)k kG(z)�G(z
1

)k+
kG(z

1

)�G(z
2

)k+
kG(z

2

)�G(z0)k,
 kG(z

1

)�G(z
2

)k+ 2�.

Compressed Sensing using Generative Models

Again by triangle inequality,

kAG(z
1

)�AG(z
2

)k kAG(z
1

)�AG(z)k+
kAG(z)�AG(z0)k+
kAG(z0)�AG(z

2

)k.

Now, by Lemma 8.2, with probability 1 � e�⌦(m),
kAG(z

1

)�AG(z)k = O(�), and kAG(z0)�AG(z
2

)k =

O(�). Thus,

kAG(z
1

)�AG(z
2

)k kAG(z)�AG(z0)k+O(�).

By the Johnson-Lindenstrauss Lemma, for a fixed x 2 Rn,
P
⇥kAxk2 < (1� ↵)kxk2⇤ < exp(�↵2m). Therefore, we

can union bound over all vectors in T to get

P(kAxk2 � (1� ↵)kxk2, 8x 2 T) � 1� e�⌦(↵

2
m).

Since ↵ < 1, and z
1

, z
2

2 N , G(z
1

)�G(z
2

) 2 T , we have

(1� ↵)kG(z
1

)�G(z
2

)k p
1� ↵kG(z

1

)�G(z
2

)k,
 kAG(z

1

)�AG(z
2

)k.

Combining the three results above we get that with proba-
bility 1� e�⌦(↵

2
m),

(1� ↵)kG(z)�G(z0)k (1� ↵)kG(z
1

)�G(z
2

)k+O(�),

 kAG(z
1

)�AG(z
2

)k+O(�),

 kAG(z)�AG(z0)k+O(�).

Thus, A satisfies S-REC(S, 1�↵, �) with probability 1�
e�⌦(↵

2
m).

8.2. Proof of Lemma 4.2

Lemma 8.3. Consider c different k�1 dimensional hyper-

planes in Rk

. Consider the k-dimensional faces (hereafter

called k-faces) generated by the hyperplanes, i.e. the ele-

ments in the partition of Rk

such that relative to each hy-

perplane, all points inside a partition are on the same side.

Then, the number of k-faces is O(ck).

Proof. Proof is by induction, and follows (Matoušek,
2002).

Let f(c, k) denote the number of k�faces generated in Rk

by c different (k � 1)-dimensional hyperplanes. As a base
case, let k = 1. Then (k � 1)-dimensional hyperplanes are
just points on a line. c points partition R into c+ 1 pieces.
This gives f(c, 1) = O(c).

Now, assuming that f(c, k�1) = O(ck�1

) is true, we need
to show f(c, k) = O(ck). Assume we have (c�1) different

hyperplanes H = {h
1

, h
2

, . . . , h
c�1

} ⇢ Rk, and a new
hyperplane h

c

is added. h
c

intersects H at (c� 1) different
(k � 2)-faces given by F = {f

j

| f
j

= h
j

\ h
c

, 1 j
(c � 1)}. The (k � 2)-faces in F partition h

c

into f(c �
1, k�1) different (k�1)-faces. Additionally, each (k�1)-
face in h

c

divides an existing k-face into two. Hence the
number of new k-faces introduced by the addition of h

c

is
f(c� 1, k � 1). This gives the recursion

f(c, k) = f(c� 1, k) + f(c� 1, k � 1),

= f(c� 1, k) +O(ck�1

),

= O(ck).

Lemma. Let G : Rk ! Rn

be a d-layer neural network,

where each layer is a linear transformation followed by a

pointwise non-linearity. Suppose there are at most c nodes

per layer, and the non-linearities are piecewise linear with

at most two pieces, and let

m = ⌦

✓
1

↵2

kd log c

◆

for some ↵ < 1. Then a random matrix A 2
Rm⇥n

with IID entries A
ij

⇠ N (0, 1

m

) satisfies the

S-REC(G(Rk

), 1� ↵, 0) with 1� e�⌦(↵

2
m)

probability.

Proof. Consider the first layer of G. Each node in this layer
can be represented as a hyperplane in Rk, where the points
on the hyperplane are those where the input to the node
switches from one linear piece to the other. Since there are
at most c nodes in this layer, by Lemma 8.3, the input space
is partitioned by at most c different hyperplanes, into O(ck)
k-faces. Applying this over the d layers of G, we get that
the input space Rk is partitioned into at most ckd sets.

Recall that the non-linearities are piecewise linear, and the
partition boundaries were made precisely at those points
where the non-linearities change from one piece to another.
This means that within each set of the input partition, the
output is a linear function of the inputs. Thus G(Rk

) is a
union of ckd different k-faces in Rn.

We now use an oblivious subspace embedding to bound
the number of measurements required to embed the range
of G(·). For a single k-face S ✓ Rn, a random matrix
A 2 Rm⇥n with IID entries such that A

ij

⇠ N �
0, 1

m

�

satisfies S-REC(S, 1�↵, 0) with probability 1�e�⌦(↵

2
m)

if m = ⌦(k/↵2

).

Since the range of G(·) is a union of ckd different k-
faces, we can union bound over all of them, such that
A satisfies the S-REC(G(Rk

), 1 � ↵, 0) with probabil-
ity 1 � ckde�⌦(↵

2
m). Thus, we get that A satisfies the

Compressed Sensing using Generative Models

S-REC(G(Rk

), 1 � ↵, 0) with probability 1 � e�⌦(↵

2
m)

if

m = ⌦

✓
kd log c

↵2

◆
.

8.3. Proof of Lemma 4.3

Lemma. Let A 2 Rm⇥n

by drawn from a distribution that

(1) satisfies the S-REC(S, �, �) with probability 1�p and

(2) has for every fixed x 2 Rn

, kAxk 2kxk with proba-

bility 1�p. For any x⇤ 2 Rn

and noise ⌘, let y = Ax⇤
+⌘.

Let bx approximately minimize ky �Axk over x 2 S, i.e.,

ky �Abxk min

x2S

ky �Axk+ ✏.

Then

kbx� x⇤k
✓
4

�
+ 1

◆
min

x2S

kx⇤ � xk+ 1

�
(2k⌘k+ ✏+ �)

with probability 1� 2p.

Proof. Let x = argmin

x2S

kx⇤ � xk. Then we have by
Lemma 8.1 and the hypothesis on bx that

kx� bxk kAx� yk+ kAbx� yk+ �

�
,

 2kAx� yk+ ✏+ �

�
,

 2kA(x� x⇤
)k+ 2k⌘k+ ✏+ �

�
,

as long as A satisfies the S-REC, as happens with probabil-
ity 1 � p. Now, since x and x⇤ are independent of A, by
assumption we also have kA(x � x⇤

)k 2kx � x⇤k with
probability 1� p. Therefore

kx⇤ � bxk kx� x⇤k+ 4kx� x⇤k+ 2k⌘k+ ✏+ �

�

as desired.

8.4. Lipschitzness of Neural Networks

Lemma 8.4. Consider any two functions f and g. If f is

L
f

-Lipschitz and g is L
g

-Lipschitz, then their composition

f � g is L
f

L
g

-Lipschitz.

Proof. For any two x
1

, x
2

,

kf(g(x
1

))� f(g(x
2

))k L
f

kg(x
1

)� g(x
2

)k,
 L

f

L
g

kx
1

� x
2

k.

Lemma 8.5. If G is a d-layer neural network with at most

c nodes per layer, all weights w
max

in absolute value,

and M -Lipschitz non-linearity after each layer, then G(·)
is L-Lipschitz with L = (Mcw

max

)

d

.

Proof. Consider any linear layer with input x, weight ma-
trix W and bias vector b. Thus, f(x) = Wx+ b. Now for
any two x

1

, x
2

,

kf(x
1

)� f(x
2

)k = kWx
1

+ b�Wx
2

+ bk,
= kW (x

1

� x
2

)k,
 kWkk(x

1

� x
2

)k,
 cw

max

k(x
1

� x
2

)k.
Let f

i

(·), i 2 [d] denote the function for the i-th layer in G.
Since each layer is a composition of a linear function and
a non-linearity, by Lemma 8.4, have that f

i

is Mcw
max

-
Lipschitz.

Since G = f
1

� f
2

� . . . f
d

, by repeated application
of Lemma 8.4, we get that G is L-Lipschitz with L =

(Mcw
max

)

d.

9. Appendix B
9.1. Noise tolerance

To understand the noise tolerance of our algorithm, we do
the following experiment: First we fix the number of mea-
surements so that Lasso does as well as our algorithm.
From Fig. 1a, and Fig. 1b we see that this point is at
m = 500 for MNIST and m = 2500 for celebA. Now, we
look at the performance as the noise level increases. Hy-
perparameters are kept fixed as we change the noise level
for both Lasso and for our algorithm.

In Fig. 8a, we show the results on the MNIST dataset. In
Fig. 8a, we show the results on celebA dataset. We observe
that our algorithm has more noise tolerance than Lasso.

9.2. Scaling with latent dimension

In the experiments in Sec. 6.3, we saw that the represen-
tation error was a major component of the total error, and
thus a better generative model might be helpful. Recall that
a generative model is a function G : R ! Rn. Thus, one
way to make the generative model more powerful is to in-
crease the size of the latent space k.

In this section we present some experiments that investi-
gate how the representation error scales as we use different
values of k. We keep the rest of the architecture and hyper-
parameters fixed as we change k. For comparison, we also
plot the representation error of a k-sparse wavelet as we
change k. Figure 9 shows the plots for the celebA dataset.
We observe that for small values of k, our method is far

Compressed Sensing using Generative Models

10-2 10-1 100 101 102

Standard devLatLRn Rf nRLVe

0.00

0.05

0.10

0.15

0.20

0.25

0.30

5
e
cR
n
Vt
ru
ct
LR
n
 e
rr
R
r
(S
e
r
S
Lx
e
l)

LaVVR, m 500

VA(, m 100

VA(, m 500

(a) Results on MNIST.

10-2 10-1 100 101 102

SWDnGDrG GevLDWLRn Rf nRLse

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

5
e
cR
n
sW
ru
cW
LR
n
 e
rr
R
r
(S
e
r
S
Lx
e
l)

LDssR (DCT), m 2500

LDssR (WDveleW), m 2500

DCGA1, m 2500

(b) Results on celebA.

Figure 8. Noise tolerance. We show a plot of per pixel reconstruction error as we vary the noise level (
q

E[k⌘k2]). The vertical bars
indicate 95% confidence intervals.

Figure 9. Results on celebA. We show per pixel representation er-
ror vs the latent dimension of the generative model. The vertical
bars indicate 95% confidence intervals.

superior to k-sparse wavelet. This suggests that neural net-
work based generative models make effective use of the
latent space by constructing excellent representations. We
see that as we increase k, the error starts to plateau for our
method while it goes to zero for k-sparse wavelet model.
This suggests that beyond a point, some other factor in our
model, such as the architecture of the DCGAN, starts to
become the bottleneck. It is possible that the results for our
method can be improved by more careful hyperparameter
tuning for each k.

1
0

2
5

5
0

1
0

0

2
0

0

3
0

0
4

0
0

5
0

0

7
5

0

1umEer Rf meaVurementV

0.00

0.02

0.04

0.06

0.08

0.10

0.12
5

e
FR

n
Vt

ru
Ft

LR
n

 e
rr

R
r

(p
e
r

p
Lx

e
l)

LaVVR

VA(

VA(+5eg

)Lxed A

Learned A

Figure 10. Results for end to end model on MNIST. We show per
pixel reconstruction error vs number of measurements. ‘Fixed
A’ and ‘Learned A’ are two end to end models. The end to end
models get noiseless measurements, while the other models get
noisy ones. The vertical bars indicate 95% confidence intervals.

9.3. Other models

9.3.1. END TO END TRAINING ON MNIST

Instead of using a generative model to reconstruct the im-
age, another approach is to learn from scratch a mapping
that takes the measurements and outputs the original im-
age. A major drawback of this approach is that it necessi-
tates learning a new network if get a different set of mea-
surements.

If we use a random matrix for every new image, the input
to the network is essentially noise, and the network does
not learn well. Instead we use a fixed measurement matrix.
We explore two approaches. First is to randomly sample

Compressed Sensing using Generative Models

2
rL
g
Ln
a
O

F
Lx
e
d
1
0

F
Lx
e
d
2
0

F
Lx
e
d
3
0

Le
a
rn
e
d
1
0

Le
a
rn
e
d
2
0

Le
a
rn
e
d
3
0

Figure 11. MNIST End to end learned model. Top row are original images. The next three are recovered by model with fixed random
A, with 10, 20 and 30 measurements. Bottom three rows are with learned A and 10, 20 and 30 measurements.

and fix the measurement matrix and learn the rest of the
mapping. In the second approach, we jointly optimize the
measurement matrix as well.

We do this for 10, 20 and 30 measurements for the MNIST
dataset. We did not use additive noise. The reconstruction
errors are shown in Fig. 10. The reconstructed images can
be seen in Fig. 11.

9.4. More results

Here, we show more results on the reconstruction task,
with varying number of measurements on both MNIST and
celebA. Fig. 12 shows reconstructions on MNIST with 25,
100 and 400 measurements. Fig. 13, Fig. 14 and Fig. 15
show results on celebA dataset.

Compressed Sensing using Generative Models

(a) 25 measurements

(b) 100 measurements

(c) 400 measurements

Figure 12. Reconstruction on MNIST. In each image, top row is ground truth, middle row is Lasso, bottom row is our algorithm.

Compressed Sensing using Generative Models

O
rL

g
Ln

D
O

LD
ss

o
 (

D
C

T
)

LD
ss

o
 (

W
D
v
e
Oe

W)
D

C
G

A
N

(a) 50 measurements

O
rL

g
Ln

D
O

LD
ss

o
 (

D
C

T
)

LD
ss

o
 (

W
D
v
e
Oe

W)
D

C
G

A
N

(b) 100 measurements

O
rL

g
Ln

D
O

LD
ss

o
 (

D
C

T
)

LD
ss

o
 (

W
D
v
e
Oe

W)
D

C
G

A
N

(c) 200 measurements

Figure 13. Reconstruction on celebA. In each image, top row is ground truth, subsequent two rows show reconstructions by Lasso (DCT)
and Lasso (Wavelet) respectively. The bottom row is the reconstruction by our algorithm.

Compressed Sensing using Generative Models

O
rL

g
Ln

D
O

LD
ss

o
 (

D
C

T
)

LD
ss

o
 (

W
D
v
e
Oe

W)
D

C
G

A
N

(a) 500 measurements

O
rL

g
Ln

D
O

LD
ss

o
 (

D
C

T
)

LD
ss

o
 (

W
D
v
e
Oe

W)
D

C
G

A
N

(b) 1000 measurements

O
rL

g
Ln

D
O

LD
ss

o
 (

D
C

T
)

LD
ss

o
 (

W
D
v
e
Oe

W)
D

C
G

A
N

(c) 2500 measurements

Figure 14. Reconstruction on celebA. In each image, top row is ground truth, subsequent two rows show reconstructions by Lasso (DCT)
and Lasso (Wavelet) respectively. The bottom row is the reconstruction by our algorithm.

Compressed Sensing using Generative Models

O
rL

g
Ln

D
O

LD
ss

o
 (

D
C

T
)

LD
ss

o
 (

W
D
v
e
Oe

W)
D

C
G

A
N

(a) 5000 measurements

O
rL

g
Ln

D
O

LD
ss

o
 (

D
C

T
)

LD
ss

o
 (

W
D
v
e
Oe

W)
D

C
G

A
N

(b) 7500 measurements

O
rL

g
Ln

D
O

LD
ss

o
 (

D
C

T
)

LD
ss

o
 (

W
D
v
e
Oe

W)
D

C
G

A
N

(c) 10000 measurements

Figure 15. Reconstruction on celebA. In each image, top row is ground truth, subsequent two rows show reconstructions by Lasso (DCT)
and Lasso (Wavelet) respectively. The bottom row is the reconstruction by our algorithm.

