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A Proof of Lemma 3.2
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(
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)
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Now we assume that u is parallel to v. We first show that g is differentiable in this case. Without
loss of generality we can assume that u and v lie on the u1 axis. This follows since g is a function of
‖u‖, ‖v‖ and θu,v and therefore g(·,v) has a directional derivative in direction d at u if and only if
g(·, Rv) has a directional derivative in direction Rd at Ru where R is a rotation matrix. Hence g(·,v)
is differentiable at u if and only if g(·, Rv) is differentiable at Ru. Furthermore, if v and u are on the
u1 axis, then by symmetry the partial derivatives with respect to other axes at u are all equal, hence
we only need to consider the partial derivative with respect to the u1 and u2 axes.

Let v = (1, 0, ..., 0) and u = (u, 0, ..., 0) where u 6= 0. In order to show differentiability, we will
prove that g(u,v) has continuous partial derivatives at u (by equality (1) the partial derivatives are
clearly continuous at points that are not on the u1 axis. Define uε = (u, ε, 0, ..., 0). Then
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)
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)
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ε

By L’hopital’s rule and the calculation of equality (1) we get

∂g

∂u2
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1
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‖uε‖
sin θε = 0

Furthermore, by equality (1) we see that limu′→u
∂g
∂u2

(u′,v) = 0 since limu′→u sin θu′,v = 0.

For a fixed θu,v equal to 0 or π, ∂g
∂u1

(u,v) is the same as ∂g
∂‖u‖ (u,v). Hence,

∂g

∂u1
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1

2π
‖v‖

(
sin θu,v +
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π − θu,v

)
cos θu,v

)
=

{
1
2 if u > 0
0 if u < 0

and the partial derivative is continuous since

lim
u′→u

∂g

∂u1
(u′,v) =

{
1
2 if u > 0
0 if u < 0

Finally, we see that for the case where u and v are parallel, the values we got for the partial
derivatives coincide with equation Eq. 1. This concludes the proof.

B Proof of Proposition 4.1

We will prove the claim by induction on k. For the base case we will show that Set-Splitting-by-2-Sets
is NP-complete. We will prove this via a reduction from a variant of the 3-SAT problem with the
restriction of equal number of variables and clauses, which we denote Equal-3SAT. We will first prove
that Equal-3SAT is NP-complete.

Lemma B.1. Equal-3SAT is NP-complete.
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Proof. This can be shown via a reduction from 3SAT. Given a formula φ with n variables and m
clauses we can increase n −m by 1 by adding a new clause of the form (x ∨ y) for new variables x
and y. Furthermore, we can decrease n−m by 1 by adding two new identical clauses of the form (z)
for a new variable z. In each case the formula with the new clause(s) is satisfiable if and only if φ is.
Therefore given a formula φ we can construct a new formula ψ with equal number of variables and
clauses such that φ is satisfiable if and only if ψ is.

We will now give a reduction from Equal-3SAT to Set-Splitting-by-2-Sets.

Lemma B.2. Set-Splitting-by-2-Sets is NP-complete.

Proof. The following reduction is exactly the reduction from 3SAT to Splitting-Sets and we include
it here for completeness. Let φ be a formula with set of variables V and equal number of variables
and clauses. We construct the sets S and C as follows. Define

S = {x̄ | x ∈ V } ∪ V ∪ {n}

where x̄ is the negation of variable x and n is a new variable not in V . For each clause c with set
of variables or negations of variables Vc that appear in the clause (for example, if c = (x̄ ∨ y) then
Vc = {x̄, y}) construct a set Sc = Vc ∪ {n}. Furthermore, for each variable x ∈ V construct a set
Sx = {x, x̄}. Let C be the family of subsets Sc and Sx for all clauses c and x ∈ V . Note that |C|≤ |S|
which is required by the definition of Set-Splitting-by-2-Sets.

Assume that φ is satisfiable and let A be the satisfying assignment. Define S1 = {x|A(x) =
true}∪{x̄|A(x) = false} and S2 = {x|A(x) = false}∪{x̄|A(x) = true}∪{n}. Note that S1∪S2 = S.
Assume by contradiction that there exists a set T ∈ C such that T ⊆ S1 or T ⊆ S2. If T ⊆ S1 then T
is not a set Sc for some clause c because n /∈ S1. However, by the construction of S1 a variable and
its negation cannot be in S1. Hence T ⊆ S1 is impossible. If T ⊆ S2 then as in the previous claim
T cannot be a set Sx for a variable x. Hence T = Sc for some clause c. However, this implies that
A(c) = false, a contradiction.

Conversely, assume there exists splitting sets S1 and S2 and w.l.o.g. n ∈ S1. We note that it
follows that no variable x and its negation x̄ are both contained in one of the sets S1 or S2. Define
the following assignment A for φ. For all x ∈ V if x ∈ S1 let A(x) = false, otherwise let A(x) = true.
Note that A is a well defined assignment. Assume by contradiction that there is a clause c in φ which
is not satisfiable. Since S2 splits Sc it follows that there exists a variable x such that it or its negation
x̄ are in S2 (recall that n ∈ S1). If x ∈ S2 then A(x) = true and if x̄ ∈ S2 then A(x̄) = true since
x ∈ S1. In both cases c is satisfiable, a contradiction.

This proves the base case. We will now prove the induction step by giving a reduction from Set-
Splitting-by-k-Sets to Set-Splitting-by-(k+1)-Sets. Given S = {1, 2, ..., d} and C = {Cj}j such that |C|
≤ (k − 1)d, define S′ = {1, 2, ..., d + 1} and C′ = C ∪{Dj}j where Dj = {j, d + 1} for all 1 ≤ j ≤ d.
Note that |C′| ≤ kd < k(d + 1). Assume that there are S1, ..., Sk that split the sets in C. Then if we

define Sk+1 = {d+ 1}, it follows that
⋃k+1
i=1 Si = S and S1, ..., Sk, Sk+1 are disjoint and split the sets

in C′.
Conversely, assume that S1, ..., Sk, Sk+1 split the sets in C′. Let w.l.o.g. Sk+1 be the set that

contains d+ 1. Then for all 1 ≤ j ≤ d we have Dj 6⊆ Sk+1. It follows that for all 1 ≤ j ≤ d, j /∈ Sk+1,

or equivalently, Sk+1 = {d+ 1}. Hence,
⋃k
i=1 Si = S and S1, ..., Sk are disjoint and split the sets in C,

as desired.

C Missing Proofs for Section 5

C.1 Proof of Proposition 5.1

1. For w 6= 0, the claim follows from Lemma 3.2. As in the proof of Lemma 3.2 we can assume
w.l.o.g. that w = (0, 0, ..., 0) and w∗ = (1, 0, ..., 0). Let f(w,w∗) = 2kg(w,w∗) + (k2 −
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k)‖w‖‖w
∗‖

π . It suffices to show that ∂f
∂w2

(w,w∗) does not exist. Indeed, let wε = (0, ε, 0, ..., 0)
then by L’hopital’s rule

lim
ε→0+

f(wε,w
∗)− f(w,w∗)

ε
= lim
ε→0+

k

π
‖w∗‖ ε

|ε|
sin θwε,w∗ + (k2 − k)

‖w∗‖
π

=
k

π
+
k2 − k
π

and

lim
ε→0−

f(wε,w
∗)− f(w,w∗)

ε
= lim
ε→0−

k

π
‖w∗‖ ε

|ε|
sin θwε,w∗ − (k2 − k)

‖w∗‖
π

= −k
π
− k2 − k

π

Hence the left and right partial derivatives with respect to variable w2 are not equal, and thus
∂f
∂w2

(w,w∗) does not exist.

2. We first show that w = 0 is a local maximum if and only if k > 1. Indeed, by considering the
loss function as a function of the variable x = ‖w‖, for any fixed angle θw,w∗ we get a quadratic
function of the form `(x) = ax2 − bx, where a > 0 and b ≥ 0. Since f(θ) = sin θ + (π − θ) cos θ
is a non-negative function for 0 ≤ θ ≤ π and f(θ) = 0 if and only if θ = π, it follows that
b = 0 if and only if k = 1 and θw,w∗ = π. Therefore if k > 1, then for all fixed angles θw,w∗ ,
the minimum of `(x) is attained at x > 0, which implies that w = 0 is a local maximum. If
k = 1 and θw,w∗ = π the minimum of `(x) is attained at x = 0, and thus w = 0 is not a local
maximum in this case.

We will now find the other critical points of `. By Lemma 3.2 we get

∇`(w) =
1

k2

[(
k +

k2 − k
π

)
w − k

π
‖w∗‖ w

‖w‖
sin θw,w∗ −

k

π

(
π − θw,w∗

)
w∗ − k2 − k

π
‖w∗‖ w

‖w‖

]

=
1

k2

[(
k +

k2 − k
π

− k ‖w∗‖
π ‖w‖

sin θw,w∗ −
k2 − k
π

‖w∗‖
‖w‖

)
w − k

π

(
π − θw,w∗

)
w∗

]
(2)

and assume it vanishes.

Denote θ , θw,w∗ . If θ = 0 then let w = αw∗ for some α > 0. It follows that

k +
k2 − k
π

− k2 − k
π

1

α
− k

α
= 0

or equivalently α = 1, and thus w = w∗.

If θ = π then ‖w‖ = k2−k
k2+(π−1)k ‖w

∗‖ and thus w = −( k2−k
k2+(π−1)k )w∗. By setting θ = π in the loss

function, one can see that w = −( k2−k
k2+(π−1)k )w∗ is a one-dimensional local minimum, whereas

by fixing ‖w‖ and decreasing θ, the loss function decreases. It follows that w = −( k2−k
k2+(π−1)k )w∗

is a saddle point. If θ 6= 0, π then w and w∗ are linearly independent and thus k
π

(
π − θ

)
= 0

which is a contradiction.

It remains to show that u = −γ(k)w∗ where γ(k) = k2−k
k2+(π−1)k is a degenerate saddle point. We

will show that the Hessian at u denoted by∇2`(u), has only nonnegative eigenvalues and at least
one zero eigenvalue. Let ˜̀(w) , `(w, Rw∗), where the second entry denotes the ground truth
weight vector and R is a rotation matrix. Denote by fd1,d2

the second directional derivative of
a function f in directions d1 and d2. Similarly to the proof of Lemma 3.2, since ` depends only
on ‖w‖, ‖w∗‖ and θw,w∗ , we notice that

`d1,d2
(w) = ˜̀

Rd1,Rd2
(Rw)
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or equivalently

dT1∇2`(w)d2 = (Rd1)T∇2 ˜̀(Rw)Rd2 = dT1 R
T∇2 ˜̀(Rw)Rd2

for any w and directions d1 and d2. It follows that

∇2`(w) = RT∇2 ˜̀(Rw)R

for all w. Since R is an orthogonal matrix, we have that ∇2`(w) and ∇2 ˜̀(Rw) are similar
matrices and thus have the same eigenvalues. Therefore, we can w.l.o.g. rotate w∗ such that it
will be on the w1 axis.

By symmetry we have

∂`

∂w1∂wi
(u) =

∂`

∂w1∂wj
(u),

∂`

∂wi∂w1
(u) =

∂`

∂wj∂w1
(u)

and
∂`

∂w2
i

(u) =
∂`

∂w2
j

(u),
∂`

∂wi∂wj
(u) =

∂`

∂ws∂wt
(u)

for i 6= j, s 6= t such that i, j, s, t 6= 1. It follows that we only need to consider second partial
derivatives with respect to 3 axes w1,w2 and w3. Denote uε = (−γ(k), ε, 0, ..., 0) and w∗ =

(1, 0, ..., 0) and β(k) = k2−k
π and note that γ(k) = β(k)

β(k)+k . Then by equation Eq. 2 we have

∂`

∂w2
2

(u) = lim
ε→0

∇`(uε)x −∇`(u)x
ε

= lim
ε→0

1
k2

[(
k + β(k)

)
ε− k

π ‖w
∗‖ ε
‖uε‖ sin θuε,w∗ − β(k) ‖w∗‖ ε

‖uε‖

]
ε

=
1

k2
(
k + β(k)− β(k)

γ(k)

)
= 0

(3)

Furthermore,

∂`

∂w1∂w2
(u) = lim

ε→0

∇`(uε)y −∇`(u)y
ε

= lim
ε→0

1
k2

[
−
(
k + β(k)

)
γ(k) + k

π ‖w
∗‖ γ(k)‖uε‖ sin θuε,w∗ + β(k) ‖w∗‖ γ(k)‖uε‖ −

k
π (π − θuε,w∗)

]
ε

(4)

where θuε,w∗ = arccos( −γ(k)√
ε2+γ2(k)

).

By L’Hopital’s rule we have

∂`

∂w1∂w2
(u) = lim

ε→0
−γ(k)ε sin θuε,w∗

πk‖uε‖3
+
γ(k) cos θuε,w∗

∂θuε,w∗

∂w2

πk ‖uε‖
− β(k)γ(k)ε

‖uε‖3
+

∂θuε,w∗

∂w2

πk

=
1

πk
lim
ε→0

∂θuε,w∗

∂w2

(γ(k) cos θuε,w∗

‖uε‖
+ 1
) (5)
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Since
∂θuε,w∗

∂w2
(uε) = − 1

|ε|√
ε2+γ2(k)

εγ(k)

(ε2 + γ2(k))
3
2

= − εγ(k)

(ε2 + γ2(k))|ε|

it follows that

∣∣∣∣ ∂`

∂w1∂w2
(u)

∣∣∣∣ =
1

πk
lim
ε→0

∣∣∣∣∂θuε,w∗∂w2

∣∣∣∣ ∣∣∣∣γ(k) cos θuε,w∗

‖uε‖
+ 1

∣∣∣∣
≤ 1

γ(k)πk
lim
ε→0

∣∣∣∣γ(k) cos θuε,w∗

‖uε‖
+ 1

∣∣∣∣ = 0

(6)

and thus ∂`
∂w1∂w2

(u) = 0.
Taking derivatives of the gradient with respect to w1 is easier because the expressions in Eq. 2

that depend on θw,w∗ and w
‖w‖ are constant. Therefore,

∂`

∂w2
1

(u) =
k + β(k)

k2

and
∂`

∂w2∂w1
(u) = 0

Finally let ũε = (0,−γ(k), ε, 0, ..., 0) then it is easy to see that

∂`

∂w2∂w3
(u) = lim

ε→0

∇`(ũε)w2
−∇`(u)w2

ε
= 0

.
Therefore, overall we see that ∇2`(u) is a diagonal matrix with zeros and k+β(k)

k2 > 0 on the
diagonal, which proves our claim.

C.2 Proof of Theorem 5.2

For the following lemmas let wt+1 = wt − λ∇`(wt), θt be the angle between wt and w∗ (t ≥ 0) and

define λ̃ = α(k)λ where α(k) = 1
k + k2−k

πk2 . Note that α(k) ≤ 1 for all k ≥ 1 The following lemma
shows that for λ < 1, the angle between wt and w∗ decreases in each iteration.

Lemma C.1. If 0 < θt < π and λ < 1 then θt+1 < θt.

Proof. This follows from the fact that adding

− λ

k2

(
k +

k2 − k
π

− k ‖w∗‖
π ‖wt‖

sin θt −
k2 − k
π

‖w∗‖
‖wt‖

)
wt

to wt does not change θt for λ < 1, since
k+ k2−k

π

k2 ≤ 1 for k ≥ 1. In addition, adding λ
πk

(
π − θ

)
w∗

decreases θt.

We will need the following two lemmas to establish a lower bound on ‖wt‖.

Lemma C.2. If π
2 < θt < π then ‖wt+1‖ ≥ sin θt

sin θt+1
min{‖wt‖ , ‖w

∗‖ sin θt
α(k)π }.
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Proof. Let

ut = wt −
λ

k2

(
k +

k2 − k
π

− k ‖w∗‖
π ‖wt‖

sin θt −
k2 − k
π

‖w∗‖
‖wt‖

)
wt

Notice that if ‖wt‖ ≤ ‖w
∗‖ sin θt
α(k)π then

‖ut‖ = (1− λ̃) ‖wt‖+
λ ‖w∗‖
πk

sin θt +
λ(k2 − k) ‖w∗‖

πk2
≥

(1− λ̃) ‖wt‖+
λk ‖w∗‖ sin θt

πk2
+
λ(k2 − k) ‖w∗‖ sin θt

πk2
=

(1− λ̃) ‖wt‖+
λ̃ ‖w∗‖ sin θt

α(k)π
≥ ‖wt‖

Similarly, if ‖wt‖ ≥ ‖w
∗‖ sin θt
α(k)π then ‖ut‖ ≥ ‖w

∗‖ sin θt
α(k)π . Furthermore, by a simple geometric observa-

tion we see that ‖wt+1‖ cos(θt+1 − π
2 ) = ‖ut‖ cos(θt − π

2 ) if θt+1 >
π
2 and ‖wt+1‖ cos(π2 − θt+1) =

‖ut‖ cos(θt − π
2 ) if θt+1 ≤ π

2 . This is equivalent to ‖wt+1‖ = sin θt
sin θt+1

‖ut‖. It follows that ‖wt+1‖ ≥
sin θt

sin θt+1
min{‖wt‖ , ‖w

∗‖ sin θt
α(k)π } as desired.

Lemma C.3. If 0 < θt ≤ π
2 and 0 < λ < 1

2 then ‖wt+1‖ ≥ min{‖wt‖ , ‖w
∗‖
8 }

Proof. First assume that k ≥ 2. Let ut be as in Lemma C.2, then

‖ut‖ ≥ (1− λ̃) ‖wt‖+
λ̃(k2 − k) ‖w∗‖

α(k)πk2

It follows that if ‖wt‖ ≥ (k2−k)‖w∗‖
α(k)πk2 ≥ ‖w∗‖

2π then ‖ut‖ ≥ ‖w∗‖
2π . Otherwise if ‖wt‖ ≤ (k2−k)‖w∗‖

α(k)πk2

then ‖ut‖ ≥ ‖wt‖. Since wt+1 = ut + λ
πk

(
π − θ

)
w∗ and 0 < θt ≤ π

2 we have ‖wt+1‖ ≥ ‖ut‖ ≥

min{‖w
∗‖

2π , ‖wt‖}.
Now let k = 1. Note that in this case λ̃ = λ. First assume that θt <

π
3 . If ‖wt‖ ≥ ‖w∗‖

4 then,

using the same notation as in Lemma C.2, ‖ut‖ ≥ (1 − λ) ‖wt‖ + λ‖w∗‖ sin θt
π ≥ ‖wt‖

2 ≥ ‖w
∗‖
8 . Since

wt+1 = ut + λ
π

(
π − θt

)
w∗ and 0 < θt ≤ π

2 we have ‖wt+1‖ ≥ ‖ut‖ ≥ ‖w
∗‖
8 . If ‖wt‖ < ‖w∗‖

4 then by

the facts 0 < θt ≤ π
2 and cos θt >

1
2 we get

‖wt+1‖2 = ‖ut‖2 + 2 ‖ut‖
∥∥∥∥λπ(π − θt)w∗

∥∥∥∥ cos θt +

∥∥∥∥λπ(π − θt)w∗
∥∥∥∥2 ≥

(1− λ)2 ‖wt‖2 +
(1− λ)λ

2
‖wt‖ ‖w∗‖+

λ2

4
‖w∗‖2 ≥

(1− λ)2 ‖wt‖2 + 2(1− λ)λ ‖wt‖2 + 4λ2 ‖wt‖2 =

(1 + 3λ2) ‖wt‖2 ≥ ‖wt‖2

Finally, assume θt ≥ π
3 . As in the proof of Lemma C.2, if ‖wt‖ ≥ ‖w∗‖ sin θt

π ≥
√
3
2
‖w∗‖
π then

‖wt+1‖ ≥ ‖ut‖ ≥
√
3
2
‖w∗‖
π . Otherwise, if ‖wt‖ < ‖w∗‖ sin θt

π then ‖wt+1‖ ≥ ‖ut‖ ≥ ‖wt‖. This
concludes our proof.

We can now show that in each iteration ‖wt‖ is bounded away from 0 by a constant.
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Proposition C.4. Assume GD is initialized at w0 such that θ0 6= π and runs for T iterations with
learning rate 0 < λ < 1

2 . Then for all 0 ≤ t ≤ T ,

‖wt‖ ≥ min{‖w0‖ sin θ0,
‖w∗‖ sin2 θ0

α(k)π
,
‖w∗‖

8
}

Proof. Let θ0 > θ1 > ... > θT (by Lemma C.1). Let i be the last index such that θi >
π
2 (if such i

does not exist let i = −1). Since sin θj > sin θ0 for all 0 ≤ j ≤ i, by applying Lemma C.2 at most
j + 1 times we have

‖wj+1‖ ≥ min{‖w0‖ sin θ0,
‖w∗‖ sin2 θ0

α(k)π
}

for all 0 ≤ j ≤ i.
Finally, by Lemma C.3 and the fact that θj ≤ π

2 for all i < j ≤ T , we get

‖wj‖ ≥ min{‖wi+1‖ ,
‖w∗‖

8
}

for all i+ 1 < j ≤ T , from which the claim follows.

The following lemma shows that ∇` is Lipschitz continuous at points that are bounded away from
0.

Lemma C.5. Assume ‖w1‖ , ‖w2‖ ≥M , w1,w2 and w∗ are on the same two dimensional half-plane
defined by w∗, then

‖∇`(w1)−∇`(w2)‖ ≤ L ‖w1 −w2‖

for L = 1 + 3‖w∗‖
M .

Proof. Recall that by equality Eq. 1,

∂g

∂w
(w,w∗) =

1

2π
‖w∗‖ w

‖w‖
sin θw,w∗ +

1

2π

(
π − θw,w∗

)
w∗

Let θ1 and θ2 be the angles between w1,w∗ and w2,w∗, respectively. By the inequality x0 sin x
sin x0

≥ x
for 0 ≤ x ≤ x0 < π and since |θ1−θ2|2 ≤ π

2 we have

|θ1 − θ2|
2

≤
π sin |θ1−θ2|2

2

Furthermore ‖w1 −w2‖ is minimized (for fixed angles θ1 and θ2) when ‖w1‖ = ‖w2‖ = M and is

equal to 2M sin |θ1−θ2|2 . Thus, under our assumptions we have,

|θ1 − θ2|
2

≤
π sin |θ1−θ2|2

2
≤ π ‖w1 −w2‖

4M

Thus we get ∥∥∥∥ 1

2π

(
π − θ1

)
w∗ − 1

2π

(
π − θ2

)
w∗
∥∥∥∥ ≤ ‖w∗‖4M

‖w1 −w2‖

For the first summand, we will first find the parameterization of a two dimensional vector of length
sin θ where θ is the angle between the vector and the positive x axis. Denote this vector by (a, b),
then the following holds

a2 + b2 = sin2 θ

and
b

a
= tan θ

8



The solution to these equations is (a, b) = ( sin 2θ
2 , sin2 θ). Hence (here we use the fact that w1,w2 are

on the same half-plane) ∥∥∥∥ 1

2π
‖w∗‖ w1

‖w1‖
sin θ1 −

1

2π
‖w∗‖ w2

‖w2‖
sin θ2

∥∥∥∥ =

1

2π
‖w∗‖

√( sin 2θ1
2
− sin 2θ2

2

)2
+
(

sin2 θ1 − sin2 θ2

)2
≤

1

2π
‖w∗‖

√
(θ1 − θ2)2 + 4(θ1 − θ2)2 ≤

√
5

π
‖w∗‖ π ‖w1 −w2‖

4M
=

√
5 ‖w∗‖
4M

‖w1 −w2‖

where the first inequality follows from the fact that | sinx−sin y| ≤ |x−y| and the second inequality
from previous results. In conclusion, we have∥∥∥∥ ∂g∂w (w1,w

∗)− ∂g

∂w
(w2,w

∗)

∥∥∥∥ ≤ (
√

5 + 1) ‖w∗‖
4M

‖w1 −w2‖

Similarly, in order to show that the function f(w) = w
‖w‖ is Lipschitz continuous, we parameterize

the unit vector by (cos θ, sin θ) where θ is the angle between the vector and the positive x axis. We
now obtain ∥∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥∥ =
√

(cos θ1 − cos θ2)2 + (sin θ1 − sin θ2)2 ≤

√
2(θ1 − θ2)2 ≤ π ‖w1 −w2‖√

2M

Now we can conclude that

‖∇`(w1)−∇`(w2)‖ ≤
(1

k
+
k2 − k
πk2

)
‖w1 −w2‖+

2

k

∥∥∥∥ ∂g∂w (w1,w
∗)− ∂g

∂w
(w2,w

∗)

∥∥∥∥+

( (k2 − k) ‖w∗‖
πk2

)∥∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥∥ ≤ (1

k
+
k2 − k
πk2

+
(k2 − k) ‖w∗‖√

2Mk2
+

(
√

5 + 1) ‖w∗‖
2Mk

)
‖w1 −w2‖ ≤

1 +
‖w∗‖√

2M
+

(
√

5 + 1) ‖w∗‖
2M

≤ 1 +
3 ‖w∗‖
M

Given that ` is Lipschitz continuous we can now follow standard optimization analysis (Nesterov
(2004)) to show that limt→∞ ‖∇`(wt)‖ = 0.

Proposition C.6. Assume GD is initialized at w0 such that θ0 6= π and runs with a constant learning
rate 0 < λ < min{ 2

L ,
1
2} where L = Õ(1). Then for all T

T∑
t=0

‖∇`(wt)‖2 ≤
1

λ(1− λ
2L)

`(w0)

Proof. We will need the following lemma

Lemma C.7. Let f : Rn → R be a continuously differentiable function on a set D ⊆ Rn and x, y ∈ D
such that for all 0 ≤ τ ≤ 1, x + τ(y − x) ∈ D and ‖∇f(x+ τ(y − x))−∇f(x)‖ ≤ L ‖x− y‖. Then
we have

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L

2
‖x− y‖2

9



Proof. The proof exactly follows the proof of Lemma 1.2.3 in Nesterov (2004) and note that the proof
only requires Lipschitz continuity of the gradient on the set S = {x+ τ(y − x) | 0 ≤ τ ≤ 1} and that
S ⊆ D.

By Proposition C.4, for all t, ‖wt‖ ≥M ′ where

M ′ = min{‖w0‖ sin θ0,
‖w∗‖ sin2 θ0

α(k)π
,
‖w∗‖

8
}

. Furthermore, by a simple geometric observation we have

min

0≤τ≤1,‖w1‖,‖w2‖≥M ′,arccos
(

w1·w2
‖w1‖‖w2‖

)
=θ

‖τw1 + (1− τ)w2‖ = M ′ cos
θ

2

.
It follows by Lemma C.5 that for any t and x1,x2 ∈ St , {wt + τ(wt+1 −wt) | 0 ≤ τ ≤ 1},

‖∇`(x1)−∇`(x2)‖ ≤ L ‖x1 − x2‖

where L = 1 + 3‖w∗‖
M and M = M ′ cos θ02 (Note that cos θt−θt+1

2 ≥ cos θ02 for all t by Lemma C.1).
Hence by Lemma C.7, for any t we have

`(wt+1) ≤ `(wt) + 〈∇`(wt),wt+1 −wt〉+
L

2
‖wt+1 −wt‖2 =

`(wt)− λ(1− λ

2
L) ‖∇`(wt)‖2

which implies that

T∑
t=0

‖∇`(wt)‖2 ≤
1

λ(1− λ
2L)

(
`(w0)− `(wT )

)
≤ 1

λ(1− λ
2L)

`(w0)

We are now ready to prove the theorem.

Proof of Theorem 5.2. First, we observe that for a randomly initialized point w0, 0 ≤ θ0 ≤ π(1− δ)
with probability 1−δ. Hence by Proposition C.6 we have for L = 1+ 3‖w∗‖

M where M = min{sin(π(1−
δ)), sin

2(π(1−δ))
α(k)π , 18} cos(π(1−δ)2 ) and α(k) = k + k2−k

π , and for λ = 1
L (we assume w.l.o.g. that L > 2),

T∑
t=0

‖∇`(wt)‖2 ≤
1

λ(1− λ
2L)

`(w0) = 2L`(w0) ≤ 4L

k2
(k

2
+
k2 − k

2π

)
Therefore,

min
0≤t≤T

{‖∇`(wt)‖2} ≤
4L
k2

(
k
2 + k2−k

2π

)
T

It follows that gradient descent reaches a point wt such that ‖∇`(wt)‖ < ε after T iterations where

T >

(
4L
k2

(
k
2 + k2−k

2π

))2
ε2

We will now show that if ‖∇`(wt)‖ < ε then wt is O(
√
ε)-close to the global minimum w∗. First

note that if π2 ≤ θt ≤ π(1−δ) then a vector of the form v = αw∗+βw where α ≥ 0 is of minimal norm

10



equal to α sin(π− θt) ‖w∗‖ when it is perpendicular to w. Since the gradient is a vector of this form,

we have ‖∇`(wt)‖ > πδ‖w∗‖ sinπδ
πk ≥ δ sinπδ

k ≥ ε. Hence, from now on we assume that 0 ≤ θt < π
2 .

Similarly to the previous argument, we have

ε > ‖∇`(wt)‖ >
‖w∗‖ (π − π

2 ) sin θt

πk
≥ sin θt

2k

Hence, θt < arcsin(2kε) = O(ε). It follows by the triangle inequality that

k2ε > k2 ‖∇`(wt)‖ =

∥∥∥∥∥
(
k +

k2 − k
π

− k ‖w∗‖
π ‖wt‖

sin θt −
k2 − k
π

‖w∗‖
‖wt‖

)
wt −

k(π − θt)
π

w∗

∥∥∥∥∥ ≥∥∥∥∥∥
(
k +

k2 − k
π

− k2 − k
π

‖w∗‖
‖wt‖

)
wt − kw∗

∥∥∥∥∥− k ‖w∗‖
π

sin θt −
kθt ‖w∗‖

π
≥∥∥∥∥∥

(
k +

k2 − k
π

− k2 − k
π

‖w∗‖
‖wt‖

)
wt −

k ‖w∗‖
‖wt‖

wt

∥∥∥∥∥−∥∥∥∥kw∗ − k ‖w∗‖
‖wt‖

wt

∥∥∥∥− k ‖w∗‖
π

sin θt −
kθt ‖w∗‖

π
≥

(
k +

k2 − k
π

)
| ‖wt‖ − ‖w∗‖ | − k ‖w∗‖ θt −

k ‖w∗‖
π

sin θt −
kθt ‖w∗‖

π
where the last inequality follows since the arc of a circle is larger than its corresponding segment.

Therefore we get | ‖wt‖ − ‖w∗‖ | < O(ε). By the bounds on θt and | ‖wt‖ − ‖w∗‖ | and the
inequality cosx ≥ 1− x for x ≥ 0, we can give an upper bound on ‖wt −w∗‖:

‖wt −w∗‖2 = ‖wt‖2 − 2 ‖wt‖ ‖w∗‖ cos θt + ‖w∗‖2 =

‖wt‖ (‖wt‖ − ‖w∗‖ cos θt) + ‖w∗‖ (‖w∗‖ − ‖wt‖ cos θt) ≤

(‖w∗‖+O(ε))(O(ε) + θt ‖w∗‖) + ‖w∗‖ (O(ε2) + θt ‖w∗‖) = O(ε)

Finally, to prove the claim it suffices to show that `(w) ≤ d‖w −w∗‖2. Denote the input vector
x = (x1,x2, ...,xk) where xi ∈ Rm for all 1 ≤ i ≤ k. Then we get

`(w) = Ex

[∑k
i=1 σ(wTxi)

k
−
∑k
i=1 σ(w∗Txi)

k

]2
≤ Ex

[∑k
i=1 |σ(wTxi)− σ(w∗Txi)|

k

]2
≤ Ex

[∑k
i=1 |wTxi −w∗Txi|

k

]2
≤ Ex

[∑k
i=1 ‖w −w∗‖ ‖xi‖

k

]2
≤ ‖w −w∗‖2Ex‖x‖2

= d‖w −w∗‖2

(7)

where the second inequality follows from Lipschitz continuity of σ, the third inequality from the
Cauchy-Schwarz inequality and the last equality since ‖x‖2 follows a chi-squared distribution with d
degrees of freedom.

�
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D Missing Proofs for Section 7.1

D.1 Proof of Proposition 7.1

Define wp = (w2, w1), w∗p1 = (0,−w∗) and w∗p2 = (w∗, 0). We first prove the following lemma.

Lemma D.1. Let l be defined as in Eq. 16. Then

∇l(w) =
1

k2

[(
k +

k2 − 3k + 2

π

)
w +

2(k − 1) sin θwr,wl

π
w

+
(k − 1)(π − θwr,wl

)

π
wp −

(k2 − 3k + 2) ‖w∗‖
π ‖w‖

w

− k ‖w∗‖ sin θw,w∗

π ‖w‖
w − k(π − θw,w∗)

π
w∗

−
(k − 1) sin θwl,w∗r ‖w

∗‖
π ‖w‖

w −
(k − 1)(π − θwl,w∗r )

π
w∗p2

−
(k − 1) sin θwr,w∗l

‖w∗‖
π ‖w‖

w −
(k − 1)(π − θwr,w∗l

)

π
w∗p1

]
Proof. The gradient does not follow immediately from Lemma 3.2 because the loss has expressions
with of the function g but with different dependencies on the parameters in A. We will only calculate
∂g(wr,wl)

∂w , the other expressions are calculated in the same manner.
Recall that

g(wr,wl) =
1

2π
‖w‖2(sin θwr,wl

+ (π − θwr,wl
) cos θwr,wl

)

It follows that

∂g(wr,wl)

∂w
=

1

π
(sin θwr,wl

+ (π − θwr,wl
) cos θwr,wl

)w +
1

2π
‖w‖2(π − θwr,wl

)
∂ cos θwr,wl

∂w
(8)

Let w = (w1, w2) then cos θwr,wl
= w1w2

w2
1+w

2
2
. Then,

∂ cos θwr,wl

∂w1
=
w2(w2

1 + w2
2)− 2w2

1w2

(w2
1 + w2

2)2
=

w2

‖w‖2
− 2w1 cos θwr,wl

‖w‖2

and
∂ cos θwr,wl

∂w2
=
w1(w2

1 + w2
2)− 2w2

2w1

(w2
1 + w2

2)2
=

w1

‖w‖2
− 2w2 cos θwr,wl

‖w‖2

or equivalently
∂ cos θwr,wl

∂w =
wp

‖w‖2 −
2w cos θwr,wl
‖w‖2 . It follows that

∂g(wr,wl)

∂w
=

sin θwr,wl
w

π
+

(π − θwl,wr
)

2π
wp

We will prove that wt+1 6= 0 and that it is in the interior of the fourth quadrant. Denote w = wt

and ∇l(w) = 1
k2

(
B1(w) +B2(w) +B3(w)

)
where

B1(w) =
(
k +

k2 − 3k + 2

π

)
w +

2(k − 1) sin θwr,wl

π
w−

(k2 − 3k + 2) ‖w∗‖
π ‖w‖

w − k ‖w∗‖ sin θw,w∗

π ‖w‖
w −

(k − 1) sin θwl,w∗r
‖w∗‖

π ‖w‖
w −

(k − 1) sin θwr,w∗l
‖w∗‖

π ‖w‖
w

12



B2(w) =
(k − 1)(π − θwr,wl

)

π
wp

and

B3(w) = −k(π − θw,w∗)
π

w∗ −
(k − 1)(π − θwl,w∗r

)

π
w∗p2 −

(k − 1)(π − θwr,w∗l
)

π
w∗p1

Let w = (w,−mw) for w,m ≥ 0. Straightforward calculation shows that cos θwl,w∗r
= 1√

2(1+m2)

and cos θwr,w∗l
= m√

2(m2+1)
. Hence π

4 ≤ θwl,w∗r
, θwr,w∗l

≤ π
2 . Since w is in the fourth quadrant we

also have 3π
4 ≤ θw,w∗ ≤ π. Therefore, adding −λB3(w) can only increase ‖w‖. This follows since in

the worst case (the least possible increase of ‖w‖)

−B3(w) =
k

4
w∗ +

k − 1

2
w∗p2 +

k − 1

2
w∗p1 = (

k − 2

4
w∗,−k − 2

4
w∗)

which is in the fourth quadrant for k ≥ 2. In addition, since −wp is in the fourth quadrant then
adding −λB2(w) increases ‖w‖.

If ‖w‖ < ‖w∗‖
16 then −B1(w) points in the direction of w since in this case −B1(w) = αw where

α ≥
(k2 − 3k + 2

π
+

(k − 1)

π
− k − 1

8π
− k2 − 3k + 2

16π
− k

16

)
‖w∗‖ > 0

for k ≥ 2. If −B1(w) points in the direction of −w then by the assumption that λ ∈ (0, 13 ) we have
‖λB1(w)‖ < ‖w‖. Thus we can conclude that wt+1 6= 0.

Now, let w = (w1, w2), θt be the angle between w = wt and the positive x axis and first assume
that w1 > −w2. In this case −B3(w) least increases (or even most decreases) θt when

−B3(w) =
k

4
w∗ +

3(k − 1)

4
w∗p2 +

k − 1

2
w∗p1 =

(2k − 3

4
w∗,

2− k
4

w∗
)

which is a vector in the fourth quadrant for k ≥ 2. Otherwise, −B3(w) is a vector in the fourth
quadrant as well. Note that we used the facts π

4 ≤ θwl,w∗r
, θwr,w∗l

≤ π
2 and 3π

4 ≤ θw,w∗ ≤ π. Since
−λB1(w) does not change θt and −λB2(w) increases θt but never to an angle greater than or equal
to π

2 , it follows that 0 < θt+1 <
π
2 .

If w1 ≤ −w2 then by defining all angles with respect to the negative y axis, we get the same
argument as before. This shows that wt+1 is in the interior of the fourth quadrant, which concludes
our proof.

D.2 Proof of Proposition 7.2

We will need the following auxiliary lemmas.

Lemma D.2. Let w be in the fourth quadrant, then g(wl,wr) ≥ 1
2π

(√
3
2 −

π
6

)
‖w‖2.

Proof. First note that the function s(θ) = sin θ+ (π− θ) cos θ is decreasing as a function of θ ∈ [0, π].
Let w = (w,−mw) for w,m ≥ 0. Straightforward calculation shows that cos θwl,wr = − m

m2+1 . As a

function of m ∈ [0,∞), cos θwl,wr is minimized for m = 1 with value − 1
2 , i.e., when θ(wl,wr) = 2π

3

and this is the largest angle possible. Thus g(wl,wr) ≥ 1
2π s(

2π
3 )
)
‖w‖2 = 1

2π

(√
3
2 −

π
6

)
‖w‖2.

Lemma D.3. Let

f(θ) = 2k
(

sin(
3π

4
+ θ) + (

π

4
− θ) cos(

3π

4
+ θ)

)
+

(
2k − 2

)(√
1− cos θ2

2
+ (π − arccos

cos θ√
2

)
cos θ√

2

)
+
(
2k − 2

)(√
1− sin θ2

2
+ (π − arccos

sin θ√
2

)
sin θ√

2

)
, then in the interval θ ∈ [0, π4 ], f(θ) is maximized at θ = π

4 for all k ≥ 2.
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Proof. We will maximize the function f(θ)
2(k−1) = k

k−1f1(θ) + f2(θ) + f3(θ) where f1(θ), f2(θ), f3(θ)

correspond to the three summands in the expression of f(θ).
Since for h(x) =

√
1− x2 + (π − arccos(x))x we have h′(x) = π − arccos(x), it follows that

f ′2(θ) = −(π − arccos cos θ√
2

) sin θ√
2

, f ′3(θ) = (π − arccos sin θ√
2

) cos θ√
2

and f ′1(θ) = −(π4 − θ) sin( 3π
4 + θ). It

therefore suffices to show that

d1(θ) := (π − arccos
sin θ√

2
)
cos θ√

2
− (π − arccos

cos θ√
2

)
sin θ√

2
− k

k − 1
(
π

4
− θ) sin(

3π

4
+ θ) ≥ 0

for θ ∈ [0, π4 ].
By applying the inequalities arccos(x) ≤ π

2 − x for x ∈ [0, 1] and arccos(x) ≥ π
2 − x − 1

10 for
x ∈ [ 12 ,

1√
2
] we get d1(θ) ≥ d2(θ) where

d2(θ) =
(π

2
+

sin θ√
2

)cos θ√
2
−
(π

2
+

cos θ√
2

+
1

10

) sin θ√
2
− k

k − 1
(
π

4
− θ) sin(

3π

4
+ θ) =

π

2
√

2
cos θ −

( π

2
√

2
+

1

10
√

2

)
sin θ − k

k − 1
(
π

4
− θ) sin(

3π

4
+ θ)

We notice that d2(0) ≥ 0 and d2( 3
4 ) ≥ 0 for all k ≥ 2. In addition,

d′2(θ) = − π

2
√

2
sin θ −

( π

2
√

2
+

1

10
√

2

)
cos θ +

k

k − 1
sin(

3π

4
+ θ)− k

k − 1
(
π

4
− θ) cos(

3π

4
+ θ)

and d′2(0) > 0 for all k ≥ 2. It follows that in order to show that d2(θ) ≥ 0 for θ ∈ [0, 34 ] and k ≥ 2, it
suffices to show that d′′2(θ) ≤ 0 for θ ∈ [0, 34 ] and k ≥ 2. Indeed,

d′′2(θ) = − π

2
√

2
cos θ +

( π

2
√

2
+

1

10
√

2

)
sin θ +

2k

k − 1
cos(

3π

4
+ θ) +

k

k − 1
(
π

4
− θ) sin(

3π

4
+ θ) ≤

( 1

10
√

2
+

k

k − 1

π

4

)
max{sin θ, sin(

3π

4
+ θ)}+

2k

k − 1
cos(

3π

4
+ θ) ≤ 0

for all θ ∈ [0, 34 ] and k ≥ 2. Note that the first inequality follows since cos θ ≥ sin θ and the second
since cos( 3π

4 +θ) ≥ max{sin θ, sin( 3π
4 +θ)}, both for θ ∈ [0, 34 ]. This shows that d1(θ) ≥ 0 for θ ∈ [0, 34 ].

Now assume that θ ∈ [ 34 ,
π
4 ]. Since d1( 3

4 ) ≥ 0 and d1(π4 ) ≥ 0, it suffices to prove that d′1(θ) ≤ 0 for
θ ∈ [ 34 ,

π
4 ]. Indeed, for all θ ∈ [ 34 ,

π
4 ]

d′1(θ) = −(π − arccos
cos θ√

2
)
cos θ√

2
− (π − arccos

sin θ√
2

)
sin θ√

2
+

cos2 θ

2
√

1− sin2 θ
2

+
sin2 θ

2
√

1− cos2 θ
2

+
k

k − 1
sin(

3π

4
+ θ)− k

k − 1
(
π

4
− θ) cos(

3π

4
+ θ) ≤

−(π − arccos
cos(π4 )
√

2
)
cos(π4 )
√

2
− (π − arccos

sin( 3
4 )

√
2

)
sin( 3

4 )
√

2
+

cos2( 3
4 )

2

√
1− sin2(π4 )

2

+
sin2(π4 )

2

√
1− cos2( 3

4 )

2

+ 2 sin(
3π

4
+

3

4
)− 2(

π

4
− 3

4
) cos(

3π

4
+

3

4
) < 0

We conclude that d1(θ) ≥ 0 for all θ ∈ [0, π4 ] as desired.
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Proof of Proposition 7.2. First assume that w1 ≥ −w2. Let θ be the angle between w and the
positive x axis. Then cos θ = w1

‖w‖ and tan θ = −w2

w1
. Therefore we get

cos θwl,w∗r
=

w1

‖w‖
√

2
=

cos θ√
2

and

cos θwr,w∗l
=
−w2

‖w‖
√

2
=

cos θ tan θ√
2

=
sin θ√

2

We can rewrite `(w) as

`(w) =
1

k2

[
k2 − 3k + 2

2π
(‖w‖ − ‖w∗‖)2 +

k

2
‖w‖2 + 2(k − 1)g(wr,wl)−

‖w‖ ‖w∗‖
2π

(
2k
(

sin(
3π

4
+ θ) + (

π

4
− θ) cos(

3π

4
+ θ)

))
+

(
2k− 2

)(√
1− cos θ2

2
+ (π− arccos

cos θ√
2

)
cos θ√

2

)
+
(
2k− 2

)(√
1− sin θ2

2
+ (π− arccos

sin θ√
2

)
sin θ√

2

))
+

k

2
‖w∗‖2 + 2(k − 1)g(w∗r ,w

∗
l )

]
Hence by Lemma D.2 and Lemma D.3 we can lower bound `(w) as follows

`(w) ≥ 1

k2

[
k2 − 3k + 2

2π
(‖w‖ − ‖w∗‖)2 +

k

2
‖w‖2 +

k − 1

π

(√3

2
− π

6

)
‖w‖2−

(k − 1) ‖w‖ ‖w∗‖
π

(√
3 +

2π

3

)
+
k

2
‖w∗‖2 +

k − 1

π

(√3

2
− π

6

)
‖w∗‖2

]
By setting ‖w‖ = α ‖w∗‖ we get

`(w)

‖w∗‖2
≥ 1

k2

[
k2 − 3k + 2

2π
(α− 1)2 +

k

2
α2 +

k − 1

π

(√3

2
− π

6

)
α2−

(k − 1)

π

(√
3 +

2π

3

)
α+

k

2
+
k − 1

π

(√3

2
− π

6

)]
Solving for α that minimizes the latter expression we obtain

α∗ =
k2−3k+2

π + (k−1)
π

(√
3 + 2π

3

)
k + k2−3k+2

π + 2(k−1)
π (

√
3
2 −

π
6

) =
h(k)

h(k) + 1

Plugging α∗ back to the inequality we get

`(w) ≥ 1

k2

(h(k) + 1

2
(α∗)2 − h(k)α∗ +

h(k) + 1

2

)
‖w∗‖2 =

2h(k) + 1

k2(2h(k) + 2)
‖w∗‖2

and for w̃ = −α∗w∗ it holds that `(w̃) = 2h(k)+1
k2(2h(k)+2)‖w

∗‖2.
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Finally, assume w1 ≤ −w2. In this case, let θ be the angle between w and the negative y axis.
Then cos θ = −w2

‖w‖ and tan θ = −w1

w2
. Therefore

cos θwl,w∗r
=

w1

‖w‖
√

2
=

cos θ tan θ√
2

=
sin θ√

2

and

cos θwr,w∗l
=
−w2

‖w‖
√

2
=

cos θ√
2

Notice that from now on we get the same analysis as in the case where w1 ≥ −w2, where we switch
between expressions with wl,w

∗
r and expressions with wr,w

∗
l . This concludes our proof. �

E Uniqueness of Global Minimum in the Population Risk

Without loss of generality we assume that the filter is of size 2 and the stride is 1. The proof of the
general case follows the same lines. Assume that `(w) = 0 and denote w = (w1, w2), w∗ = (w∗1 , w

∗
2).

Recall that `(w) = EG
[
(f(x;W )− f(x;W ∗))2

]
where f(x;W ) = 1

k

∑
i σ (wi · x) and for all 1 ≤ i ≤ k

wi = (0i−1,w,0d−i−1). By equating `(w) to 0 we get that (f(x;W )− f(x;W ∗))2 = 0 almost surely.
Since (f(x;W ) − f(x;W ∗))2 is a continuous function it follows that f(x;W ) − f(x;W ∗) = 0 for all
x. In particular this is true for x1 = (x, 0, 0, ..., 0), x ∈ R. Thus σ (xw1) = σ (xw∗1) for all x ∈ R
which implies that w1 = w∗1 . The equality holds also for x2 = (0, x, 0, ..., 0), x ∈ R which implies that
σ (xw2)+σ (xw1) = σ (xw∗2)+σ (xw∗1) for all x ∈ R. By the previous result, we get σ (xw2) = σ (xw∗2)
for all x ∈ R and thus w2 = w∗2 . We proved that w = w∗ and therefore w∗ is the unique global
minimum.

F Experimental Setup for Section 7.2

In our experiments we estimated the probability of convergence to the global minimum of a randomly
initialized gradient descent for many different ground truths w∗ of a convolutional neural network
with overlapping filters. For each value of number of hidden neurons, filter size, stride length and
ground truth distribution we randomly selected 30 different ground truths w∗ with respect to the
given distribution. We tested with all combinations of values given in Table 1.

Furthermore, for each combination of values of number of hidden neurons, filter size and stride
length we tested with deterministic ground truths: ground truth with all entries equal to 1, all entries
equal to -1 and with entries that form an increasing sequence from -1 to 1, -2 to 0 and 0 to 2 or
decreasing sequence from 1 to -1, 0 to -2 and 2 to 0.

For each ground truth, we ran gradient descent 20 times and for each run we recorded whether it
reached a point very close to the unique global minimum or it repeatedly (5000 consecutive iterations)
incurred very low gradient values and stayed away from the global minimum. We then calculated the
empirical probability p̂ = #times reached global minimum

20 . To compute the one-sided confidence interval
we used the Wilson method (Brown et al. (2001)) which gives a lower bound

p̂+
z2α
2n + zα

√
p̂(1−p̂)
n +

z2α
4k2

1 +
z2α
n

(9)

where zα is the Z-score with α = 0.05 and in our experiments n = 20. Note that we initialized gradient
descent inside a large hypercube such that outside the hypercube the gradient does not vanish (this
can be easily proved after writing out the gradient for each setting).

For all ground truths we got p̂ ≥ 0.15, i.e., for each ground truth we reached the global minimum
at least 3 times. Hence the confidence interval lower bound Eq. 9 is greater than 1

17 in all settings.
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Table 1: Parameters values for experiments in Section 7.2

Number of hidden neurons 50,100
Filter size 2,8,16

stride length 1,min{ f4 , 1},min{ f2 , 1} where f is the filter size
(For instance, for f = 16 we used strides 1,4,8

and for f = 2 we used stride 1)
Ground truth distribution The entries of the ground truth are i.i.d.

uniform random variables over the interval [a, b]
where (a, b) ∈ {(−1, 1), (−2, 0), (0, 2)}

This suggests that with a few dozen repeated runs of a randomly initialized gradient descent, with
high probability it will converge to the global minimum.
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