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Abstract

We develop differentially private hypothesis test-
ing methods for the small sample regime. Given
a sample D from a categorical distribution p over
some domain Y, an explicitly described distri-
bution g over ¥, some privacy parameter &, ac-
curacy parameter «, and requirements J; and
b1 for the type I and type II errors of our test,
the goal is to distinguish between p = ¢ and
drv(p,q) > «. We provide theoretical bounds
for the sample size |D| so that our method both
satisfies (e, 0)-differential privacy, and guaran-
tees 01 and Oyr type I and type II errors. We
show that differential privacy may come for free
in some regimes of parameters, and we always
beat the sample complexity resulting from run-
ning the y2-test with noisy counts, or standard
approaches such as repetition for endowing non-
private y2-style statistics with differential pri-
vacy guarantees. We experimentally compare the
sample complexity of our method to that of re-
cently proposed methods for private hypothesis
testing (Gaboardi et al., 2016; Kifer & Rogers,
2017).

1. Introduction

Hypothesis testing is the age-old problem of deciding
whether observations from an unknown phenomenon p
conform to a model ¢q. Often p can be viewed as a distri-
bution over some alphabet 3, and the goal is to determine,
using samples from p, whether it is equal to some model
distribution ¢ or not. This type of test is the lifeblood of
the scientific method and has received tremendous study in
statistics since its very beginnings. Naturally, the focus has
been on minimizing the number of observations from the
unknown distribution p that are needed to determine, with
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confidence, whether p = g or p # q.

In several fields of research and application, however, sam-
ples may contain sensitive information about individuals;
consider for example, individuals participating in some
clinical study of a disease that carries social stigma. It may
thus be crucial to guarantee that operating on the samples
needed to test a statistical hypothesis protects sensitive in-
formation about the samples. This is not at odds with the
goal of hypothesis testing itself, since the latter is about
verifying a property of the population p from which the
samples are drawn, and not of the samples themselves.

Without care, however, sensitive information about the
sample might actually be divulged by statistical process-
ing that is improperly designed. As recently exhibited, for
example, it may be possible to determine whether individ-
uals participated in a study from data that would typically
be published in genome-wide association studies (Homer
et al., 2008). Motivated in part by this realization, there has
been increased recent interest in developing data sharing
techniques which are private (Johnson & Shmatikov, 2013;
Uhler et al., 2013; Yu et al., 2014; Simmons et al., 2016).

Protecting privacy when computing on data has been ex-
tensively studied in several fields ranging from statistics to
diverse branches of computer science including algorithms,
cryptography, database theory, and machine learning; see,
e.g., (Dalenius, 1977; Adam & Worthmann, 1989; Agrawal
& Aggarwal, 2001; Dinur & Nissim, 2003; Dwork, 2008;
Dwork & Roth, 2014) and their references. A notion of pri-
vacy proposed by theoretical computer scientists which has
found a lot of traction is that of differential privacy (Dwork
et al., 2006). Roughly speaking, it requires that the output
of an algorithm on two neighboring datasets D and D’ that
differ in the value of one element be statistically close. For
a formal definition see Section 2.

Our goal in this paper is to develop tools for privately per-
forming statistical hypothesis testing. In particular, we are
interested in studying the tradeoffs between statistical ac-
curacy, power, significance, and privacy in the sample size.
To be precise, given samples from a categorical distribution
p over some domain Y, an explicitly described distribution
q over ¥, some privacy parameter €, accuracy parameter .,
and requirements /51 and (7 for the type I and type II er-
rors of our test, the goal is to distinguish between p = ¢
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and drv(p,q) > «. We want that the output of our test
be (g, 0)-differentially private, and that the probability we
make a type I or type II error be 5 and Sy respectively.
Treating these as hard constraints, we want to minimize the
number of samples that we draw from p.

Notice that the correctness constraint on our test pertains
to whether we draw the right conclusion about how p com-
pares to g, while the privacy constraint pertains to whether
we respect the privacy of the samples that we draw from p.
The pertinent question is how much the privacy constraint
increases the number of samples that are needed to guaran-
tee correctness. Our main result is that privacy may come
for free in certain regimes of parameters, and has a mild
cost for all regimes of parameters.

To be precise, without privacy constraints, it is well known
that identity testing can be performed from O(% - log %)
samples, where n is the size of ¥ and = min{f, S},
and that this is tight (Batu et al., 2001; Paninski, 2008;
Valiant & Valiant, 2014; Acharya et al., 2015). Our main
theoretical result is that, with privacy constraints, the num-
ber of samples that are needed is

. Vi it
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Our statistical test is provided in Section 5 where the above
upper bound on the number of samples that it requires is
proven as Theorem 3. Notice that privacy comes for free
when the privacy requirement ¢ is Q(y/a) — for example
when ¢ = 10% and the required statistical accuracy is 3%.

The precise constants sitting in the O(+) notation of Eq. (1)
are given in the proof of Theorem 3. We experimentally
verify the sample efficiency of our tests by comparing them
to recently proposed private statistical tests (Gaboardi et al.,
2016; Kifer & Rogers, 2017), discussed in more detail
shortly. Fixing a differential privacy and type I, type Il error
constraints, we compare how many samples are required
by our and their methods to distinguish between hypothe-
ses that are o = 0.1 apart in total variation distance. We
find that different algorithms are more efficient depending
on the regime and properties desired by the analyst. Our
experiments and further discussion of the tradeoffs are pre-
sented in Section 6.

Approach. A standard approach to turn an algorithm dif-
ferentially private is to use repetition. As already men-
tioned above, absent differential privacy constraints, sta-
tistical tests have been provided that use an optimal m =

O(g - log %) number of samples. A trivial way to get
(e, 0)-differential privacy using such a non-private test is to
create O(1/¢) datasets, each comprising m samples from
p, and run the non-private test on one of these datasets, cho-

sen randomly. It is clear that changing the value of a single

element in the combined dataset may only affect the output
of the test with probability at most €. Thus the output is
(e, 0)-differentially private; see Section 3 for a proof. The
issue with this approach is that the total number of samples

that it draws is m/e = O(ﬂ -log %) which is higher than

ca?
our target. See Corollary 1.

A different approach towards private hypothesis testing is
to look deeper into the non-private tests and try to “priva-
tize” them. The most sample-efficient tests are variations
of the classical x2-test. They compute the number of times,
N;, thatelement ¢ € ¥ appears in the sample and aggregate
those counts using a statistic that equals, or is close to, the
x2-divergence between the empirical distribution defined
by these counts and the hypothesis distribution q. They ac-
cept q if the statistic is low and reject q if it is high, using
some threshold.

A reasonable approach to privatize such a test is to add
noise, e.g. Laplace(1/¢) noise, to each count N;, before
running the test. It is well known that adding Laplace(1/¢)
noise to a set of counts makes them differentially private,
see Theorem 1. However, it also increases the variance of
the statistic. This has been noticed empirically in recent
work of (Gaboardi et al., 2016) for the x2—test. We show
that the variance of the optimal y2-style test statistic sig-
nificantly increases if we add Laplace noise to the counts,
in Section 4.1, thus increasing the sample complexity from
O(y/n) to Q(n3/*). So this route, too, seems problematic.

A last approach towards designing differentially private
tests is to exploit the distance beween the null and the al-
ternative hypotheses. A correct test should accept the null
with probability close to 1, and reject an alternative that is
a-far from the null with probability close to 1, but there are
no requirements for correctness when the alternative is very
close to the null. We could thus try to interpolate smoothly
between datasets that we expect to see when sampling the
null and datasets that we expect to see when sampling an
alternative that is far from the null. Rather than outputting
“accept” or “reject” by merely thresholding our statistic,
we would like to tune the probability that we output “re-
ject” based on the value of our statistic, and make it so that
the “reject” probability is e-Lipschitz as a function of the
dataset. Moreover, the probability should be close to 0 on
datasets that we expect to see under the null and close to 1
on datasets that we expect to see under an alternative that
is a-far. As we show in Section 4.2, x2-style statistics have
high sensitivity, requiring w(+/n) samples to be made ap-
propriately Lipschitz.

While both the approach of adding noise to the counts, and
that of turning the output of the test Lipschitz fail in isola-
tion, our test actually goes through by intricately combin-
ing these two approaches. It has two steps:
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1. A filtering step, whose goal is to “reject” when p is
blatantly far from q. This step is performed by com-
paring the counts IV; with their expectations under g,
after having added Laplace(1/¢) noise to these counts.
If the noisy counts deviate from their expectation, tak-
ing into account the extra variance introduced by the
noise, then we can safely “reject.”” Moreover, because
noise was added, this step is differentially private.

2. If the filtering step fails to reject, we perform a statisti-
cal step. This step just computes the y2-style statistic
from (Acharya et al., 2015), without adding noise to
the counts. The crucial observation is that if the fil-
tering step does not reject, then the statistic is actually
e-Lipschitz with respect to the counts, and thus the
value of the statistic is still differentially private. We
use the value of the statistic to determine the bias of a
coin that outputs “reject.”

Details of our test are given in Section 5.

Related Work. Identity testing is one of the most clas-
sical problems in statistics, where it is traditionally called
hypothesis or goodness-of-fit testing, see (Pearson, 1900;
Fisher, 1935; Rao & Scott, 1981; Agresti, 2012) for some
classical and contemporary references. In this field, the fo-
cus is often on asymptotic analysis, where the number of
samples goes to infinity, and we wish to get a grasp on
their asymptotic distributions and error exponents (Agresti,
2012; Tan et al., 2010). In the past twenty years, this
problem has enjoyed significant interest in the theoretical
computer science community (see, i.e., (Batu et al., 2001;
Paninski, 2008; Levi et al., 2013; Valiant & Valiant, 2014;
Acharya et al., 2015; Canonne et al., 2016; Diakonikolas &
Kane, 2016; Daskalakis et al., 2016), and (Canonne, 2015)
for a survey), where the focus has instead been on the finite
sample regime, rather than asymptotics. Specifically, the
goal is to minimize the number of samples required, while
still remaining computationally tractable.

A number of recent works (Wang et al., 2015; Gaboardi
et al., 2016; Kifer & Rogers, 2017) (and a simultaneous
work, focused on independence testing (Kakizaki et al.,
2017)) investigate differential privacy with the former set
of goals. In particular, their algorithms focus on fixing a
desired significance (type I error) and privacy requirement,
and study the asymptotic distribution of the test statistics.
On the other hand, we are the first work to apply differen-
tial privacy to the latter line of inquiry, where our goal is
to minimize the number of samples required to ensure the
desired significance, power and privacy. As a point of com-
parison between these two worlds, we provide an empirical
evaluation of our method versus their methods.

The problem of distribution estimation (rather than testing)
has also recently been studied under the lens of differential

privacy (Diakonikolas et al., 2015). This is another clas-
sical statistics problem which has recently piqued the in-
terest of the theoretical computer science community. We
note that the techniques required for this setting are quite
different from ours, as we must deal with issues that arise
from very sparsely sampled data.

2. Preliminaries

In this paper, we will focus on discrete probability distribu-
tions over [n]. For a distribution p, we will use the notation
p; to denote the mass p places on symbol i.

Definition 1. The total variation distance between p and q
is defined as

1
drv(p,q) = B Z lpi — il -
i€[n]

Definition 2. A randomized algorithm M with domain N"
is (&, §)-differentially private if for all S C Range(M) and
for all pairs of inputs D, D’ such that ||D — D'||; < 1:

Pr[M(D) e S] < e Pr[M(D') € S]+4.
If § = 0, the guarantee is called pure differential privacy.

In the context of distribution testing, the neighboring
dataset definition corresponds to two datasets where one
dataset is generated from the other by removing one sam-
ple. Up to a factor of 2, this is equivalent to the alternative
definition where one dataset is generated from the other by
arbitrarily changing one sample.

Definition 3. An algorithm for the (., b1, fir)-identity
testing problem with respect to a (known) distribution q
takes m samples from an (unknown) distribution p and has
the following guarantees:

e [fp = q, then with probability at least 1 — [y it outputs
“p— g;”

e Ifdrv(p,q) > «, then with probability at least 1 — By
it outputs “p # q.”

In particular, 51 and By are the type I and type Il errors of
the test. Parameter o is the radius of distinguishing accu-
racy. Notice that, when p satisfies neither of cases above,
the algorithm’s output may be arbitrary.

We note that if an algorithm is to satisfy both these defi-
nitions, the latter condition (the correctness property) need
only be satisfied when p falls into one of the two cases,
while the former condition (the privacy property) must be
satisfied for all realizations of the samples from p (and in
particular, for p which do not fall into the two cases above).
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We recall the classical Laplace mechanism, which states
that applying independent Laplace noise to a set of counts
is differentially private.

Theorem 1 (Theorem 3.6 of (Dwork & Roth, 2014)).
Given a set of counts Ny, ..., N, the noised counts (N1 +
Yi,..., N, +Y,) are (¢, 0)-differentially private when the
Y;’s are i.i.d. random variables drawn from Laplace(1/¢).

Finally, we recall the definition of zero-concentrated differ-
ential privacy from (Bun & Steinke, 2016) and its relation-
ship to differential privacy.

Definition 4. A randomized algorithm M with domain N"
is p-zero-concentrated differentially private (p-zCDP) if for
all pairs of inputs D, D’ such that |D — D'||; < 1 and all
a € (1,00):

Do (M(D)[[M (D)) < pa,

where D, is the a-Rényi divergence between the distribu-
tion of M (D) and M (D").

Proposition 1 (Propositions 1.3 and 1.4 of (Bun & Steinke,
2016)). If a mechanism My satisfies (£,0)-differential pri-
vacy, then M satisfies %-zCDP. If a mechanism M sat-

isfies p-zCDP, then My satisfies (p + 2+/plog(1/9),9)-
differential privacy for any § > 0.

3. A Simple Upper Bound

In this section, we provide an O (a—\/fe) upper bound for the
differentially private identity testing problem. More gen-
erally, we show that if an algorithm requires a dataset of
size m for a decision problem, then it can be made (e, 0)-
differentially private at a multiplicative cost of 1/¢ in the
sample size. This is a folklore result, but we include and

prove it here for completeness.

Theorem 2. Suppose there exists an algorithm for a de-
cision problem P which succeeds with probability at least
1 — B and requires a dataset of size m. Then there exists an
(e, 0)-differentially private algorithm for P which succeeds
with probability at least (1 — ) + 1/10 and requires a
dataset of size O(m/e).

Proof. First, with probability 1/5, we flip a coin and out-
put yes or no with equal probability. This guarantees that
we have probability at least 1/10 of either outcome, which
will allow us to satisfy the multiplicative guarantee of dif-
ferential privacy.

We then draw 10/e datasets of size m, and solve the deci-
sion problem (non-privately) for each of them. Finally, we
select a random one of these computations and output its
outcome.

The correctness follows, since we randomly choose the
right answer with probability 1/10, or with probability 4/5,

we solve the problem correctly with probability 1 — 5. As
for privacy, we note that, if we remove a single element
of the dataset, we may only change the outcome of one
of these computations. Since we pick a random compu-
tation, this is selected with probability £/10, and thus the
probability of any outcome is additively shifted by at most
£/10. Since we know the minimum probability of any out-
put is 1/10, this gives the desired multiplicative guarantee
required for (e, 0)-differential privacy. O

We obtain the following corollary by noting that the
tester of (Acharya et al.,, 2015) (among others) requires
O(y/n/a?) samples for identity testing.

Corollary 1. There exists an (g, 0)-differentially private
testing algorithm for the («, b1, P )-identity testing prob-
lem for any distribution q which requires

m=0 (*/ﬁ - log(1/5)>

ea?

samples, where 3 = min (B, 1)

4. Roadblocks to Differentially Private
Testing

In this section, we describe roadblocks which prevent two
natural approaches to differentially private testing from
working.

In Section 4.1, we show that if one simply adds Laplace
noise to the empirical counts of a dataset (i.e., runs the
Laplace mechanism of Theorem 1) and then attempts to
run an optimal identity tester, the variance of the statistic
increases dramatically, and thus results in a much larger
sample complexity, even for the case of uniformity test-
ing. The intuition behind this phenomenon is as follows.
When performing uniformity testing in the small sample
regime (when the number of samples m is the square root
of the domain size n), we will see a (1 — o(1))n elements
0 times, O(y/n) elements 1 time, and O(1) elements 2
times. If we add Laplace(10) noise to guarantee (0.1,0)-
differential privacy, this obliterates the signal provided by
these collision statistics, and thus many more samples are
required before the signal prevails.

In Section 4.2, we demonstrate that X2 statistics have high
sensitivity, and thus are not naturally differentially pri-
vate. In other words, if we consider a X2 statistic Z
on two datasets D and D’ which differ in one record,
|Z(D) — Z(D')| may be quite large. This implies that
methods such as rescaling this statistic and interpreting it
as a probability, or applying noise to the statistic, will not
be differentially private until we have taken a large number
of samples.
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4.1. A Laplaced y?-statistic has large variance

Proposition 2. Applying the Laplace mechanism to a
dataset before applying the identity tester of (Acharya
et al., 2015) results in a significant increase in the vari-
ance, even when considering the case of uniformity. More
precisely, if we consider the statistic

; ;, —m/n)? —
70y ¥, (et Ky

(N, +Y;)

i€[n]

where N, is the number of occurrences of symbol i in
the dataset D (which is of size Poisson(m)) and Y; ~
Laplace(1/¢), then

o If p is uniform, then E[Z'] = 822"; and Var[Z'] >
20n°
Am2:

e If p is a particular distribution which is a-far in to-

tal variation distance from uniform, then E[Z'] =
2n?
e2m

The variance of the statistic can be compared to that of the
unnoised statistic, which is upper bounded by m?a*. We

can see that the noised statistic has larger variance until
m = Q(n?/*).

Proof. First, we compute the mean of Z’. Note that since
|D| ~ Poisson(m), the N;’s will be independently dis-
tributed as Poisson(mp;) (see, i.e., (Acharya et al., 2015)
for additional discussion).

E[Z'] E[ 3 (N; 4+ Y; —m/n)? —

i€[n] m/n

(Vs +}/z‘):|

Ni—an—Ni
-5 3 S
i€[n]

Y2+ 2Y;(N; — m/n) —
N

*(p.q)

2

2n
p7q) + 5

= m X e2m

In other words, the mean is a rescaling of the X2 distance
between p and g, shifted by some constant amount. When
p = q, the x2-distance between p and ¢ is 0, and the expec-
tation is just the second term. Focus on the case where n is
even, and consider p such that p; = (1+2a)/n if i is even,
and (1 — 2a)/n otherwise. This is a-far from uniform in
total variation distance. Furthermore, by direct calculation,
x2(p, q) = 4a?, and thus the expectation of Z’ in this case

: 2 2n
is dmao” + e

Next, we examine the variance of Z’. Let \; = mp; and
A, = mgq; = m/n. By a similar computation as before, we
have that

V Z/ — 2 !
ar(Z'] Z 7 {QA + AN (i — X))
i€n]

1 9 20
+ 8—2(8)\,; +2(20; — 2\, —1)%) + ek
Since all four summands of this expression are non-
negative, we have that

Var[Z'] > Z )\/2 - E4m2

If we wish to use Chebyshev’s inequality to separate these
two cases, we require that Var[Z’] is at most the square
of the mean separation In other words, we require that

20n° , or that m = Q( 3/4). O

<
etm?2 — m® ea

4.2. A x-statistic has high sensitivity

Consider the primary statistic which we use in Algorithm
1:
1 (N; —mg;)* = N;
Z(D) = —; Z o :
i€[n]

As shown in Section 5, E[Z] = 0if p = gand E[Z] > 1
if drv(p,q) > «, and the variance of Z is such that these
two cases can be separated with constant probability. A
natural approach is to truncate this statistic to the range
[0, 1], interpret it as a probability and output the result of
Bernoulli(Z) —if p = ¢, the result is likely to be 0, and if
drv(p,q) > «, the result is likely to be 1. One might hope
that this statistic is naturally private. More specifically, we
would like that the statistic Z has low sensitivity, and does
not change much if we remove a single individual. Unfor-
tunately, this is not the case. We consider datasets D, D’,
where D’ is identical to D, but with one fewer occurrence
of symbol i. It can be shown that the difference in Z is

2|N; —mg; — 1]
m2aq;

1Z(D) - Z(D')| =
Letting ¢ be the uniform distribution and requiring that
this is at most ¢ (for the sake of privacy), we have a con-
straint which is roughly of the form ;fﬁa’; < ¢, or that

m:Q(Ff)

e0-5qy

In particular, if N; = n° for any ¢ > 0, this does not
achieve the desired O(y/n) sample complexity. One may
observe that, if N; is this large, looking at symbol ¢ alone
is sufficient to conclude p is not uniform, even if the count
N, had Laplace noise added. Indeed, our main algorithm of
Section 5 works in part due to our formalization and quan-
tification of this intuition.



Priv’IT

5. Priv’IT: A Differentially Private Identity
Tester

In this section, we sketch the proof of our main testing up-
per bound:

Theorem 3. There exists an (e,0)-differentially private
testing algorithm for the («, f1, Bu)-identity testing prob-
lem for any distribution q which requires

3 1/3
m =0 (max{\c, a\:”//;s (157;32/3} ~10g(1/5))

samples, where 3 = min (B, 1)

The full details of the proof are provided in the supplemen-
tary materials.

The pseudocode for this algorithm is provided in Algorithm
1. We fix the constants ¢; = 1/4 and ¢; = 3/40. For a
high-level overview of our algorithm’s approach, we refer
the reader to the Approach paragraph in Section 1.

Algorithm 1 Priv’IT: A differentially private identity tester

1: Input: €; an explicit distribution ¢; sample access to a
distribution p

2: Define A+ {i:q; > cra/n}, A+ [n]\ A

3: Sample Y; ~ Laplace(2/cqe) forall i € A

4: if there exists ¢ € A such that |Y;| >

= log (m) then

5:  return either “p # ¢” or “p = ¢” with equal proba-

bility

6: end if

7: Draw a multiset S of Poisson(m) samples from p

8: Let IV; be the number of occurrences of the ¢th domain
element in S

9: fori € Ado

10:  if |N; +Y; — mg;| > ci—glog (W) +

max {4\/mqi logn, log n} then

11: return “p # ¢”
12:  end if
13: end for

. (N; mql) —N;
14: Z « 771(12 ZzEA

15: Let T be the closest Value to Z which is contained in
the interval [0, 1]

16: Sample b ~ Bernoulli(T)

17: if b = 1 then

18:  return “p # ¢~

19: else

20:  return “p = q”

21: end if

Proof of Theorem 3 (sketch): We focus on the case where
B = 1/3, the general case follows at the cost of a multi-
plicative log(1/8) in the sample complexity from a stan-

dard amplification argument. We will require the following
tail bounds on N; and Y;.

Claim 1. |Y;| < CQ% log (W) simultaneously
for all i € A with probability exactly 1 — cs.
Claim 2. |N; — mp;| < max {4y/mp;logn,logn} si-

multaneously for all i € A with probability at least
1 2 1.1

7084 n

Correctness. Correctness can be shown in a similar way
to (Acharya et al., 2015) — in short, if m = Q(y/n/a?),
then the expectations are separated in the two cases, and the
variance is bounded. A careful combination of the previous
claims and Chebyshev’s inequality guarantee correctness.

Privacy. We will prove (0, coe/2)-differential privacy,
which in our setting, will imply (e, 0)-differential privacy
(due to Claim 1).

We first consider the possibility of rejecting in line 11.
Noising our counts by the random variables Y; ensures that
this step is (0, cae/4)-differentially private.

Consider the difference in value of Z for two neighbor-
ing datasets D and D', differing in i: Z(D) — Z(D') =
M#W. Conditioning on the event that we did not

return in line 11, we can show

41
|N; —mg;| < og(n/cz + max {4\/mql logn, logn}
Co€

This  implies that |Z(D) -
m?gﬂqi (610gc(;/52) + 4+/mg; log n) )

each of these terms are at most coe/8 gives the condition

96 _+/nlog(n/c2) 64 2/3 (nlogn)t/3
A a5/3e2/3 (-

cZey alde
Since both terms are at most cz¢/8, this step is (0, coe/4)-
differentially private. By composition of differential pri-
vacy, this gives the desired overall (0, coe/2)-differential
privacy and thus e-pure differential privacy. O

20| <
Enforcing  that

mzmax{

6. Experiments

We performed an empirical evaluation of our algorithm,
Priv’ IT, on synthetic datasets. All experiments were
performed on a laptop computer with a 2.6 GHz Intel Core
17-6700HQ CPU and 8 GB of RAM. Significant discussion
is required to provide a full comparison with prior work in
this area, since performance of the algorithms varies de-
pending on the regime.

We compared our algorithm with two recent algorithms for
differentially private hypothesis testing:

1. The Monte Carlo Goodness of fit test with Laplace
noise from (Gaboardi et al., 2016), MCGOF;
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2. The projected Goodness of Fit test from (Kifer &
Rogers, 2017), zCDP-GOF.

We note that we implemented a modified version of
Priv’ IT, which differs from Algorithm 1 in lines 14 to
21. In particular, we instead consider a statistic

2
- Z (Nz_mQZ) _Nz.
i€ A mgi
We add Laplace noise to Z, with scale parameter ©(A /¢),
where A is the sensitivity of Z, which guarantees (£/2,0)-
differential privacy. Then, similar to the other algorithms,
we choose a threshold for this noised statistic such that
we have the desired type I error. This algorithm can be
analyzed to provide identical theoretical guarantees as Al-
gorithm 1, but with the practical advantage that there are
fewer parameters to tune.

To begin our experimental evaluation, we started with uni-
formity testing. Our experimental setup was as follows.
The algorithms were provided g as the uniform distribution
over [n]. The algorithms were also provided with samples
from some distribution p. This (unknown) p was q for the
case p = ¢, or a distribution which we call the “Paninski
construction” for the case drv(p,q) > «. The Paninski
construction is a distribution where half the elements of the
support have mass (1+«)/n and half have mass (1—a)/n.
‘We use this name for the construction as (Paninski, 2008)
showed that this example is one of the hardest to distin-
guish from uniform: one requires 2(y/n/a?) samples to
(non-privately) distinguish a random permutation of this
construction from the uniform distribution. We fixed pa-
rameters ¢ = 0.1 and « = 0.1. In addition, recall that
Proposition 1 implies that pure differential privacy (the pri-
vacy guaranteed by Priv’ IT) is stronger than zCDP (the
privacy guaranteed by zCDP—GOF). In particular, our guar-
antee of e-pure differential privacy implies £2 /2-zCDP. As
a result, we ran zCDP—-GOF with a privacy parameter of
0.005-zCDP, which is equivalent to the amount of zCDP
our algorithm provides. Our experiments were conducted
on a number of different support sizes n, ranging from 10
to 10600. For each n, we ran the testing algorithms with in-
creasing sample sizes m in order to discover the minimum
sample size when the type I and type II errors were both
empirically below 1/3. To determine these empirical error
rates, we ran all algorithms 1000 times for each n and m,
and recorded the fraction of the time each algorithm was
correct. As the other algorithms take a parameter J; as a
target type I error, we input 1/3 as this parameter.

The results of our first test are provided in Figure 1. The
x-axis indicates the support size, and the y-axis indicates
the minimum number of samples required. We plot three
lines, which demonstrate the empirical number of samples
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Figure 1. The sample complexities of Priv’ IT, MCGOF, and
zCDP~-GOF for uniformity testing

required to obtain 1/3 type I and type II error for the dif-
ferent algorithms. We can see that in this case, zCDP-GOF
is the most statistically efficient, followed by MCGOF and
Priv’IT.

To explain this difference in statistical efficiency, we note
that the theoretical guarantees of Priv’ IT imply that it
performs well even when data is sparsely sampled. More
precisely, one of the benefits of our tester is that it can
reduce the variance induced by elements whose expected
number of occurrences is less than 1. Since none of these
testers reach this regime (i.e., even zCDP-GOF at n =
10000 expects to see each element 10 times), we do not
reap the benefits of Priv’ IT. Ideally, we would run these
algorithms on the uniform distribution at sufficiently large
support sizes. However, since this is prohibitively expen-
sive to do with thousands of repetitions (for any of these
methods), we instead demonstrate the advantages of our
tester on a different distribution.

Our second test is conducted with ¢ being a 2-histogram!,
where all but a vanishing fraction of the probability mass is
concentrated on a small, constant fraction of the support.
This serves as our proxy for a very large support, since now
we will have elements which have a sub-constant expected
number of occurrences. The algorithms are provided with
samples from a distribution p, which is either ¢ or a similar
Paninski construction as before, where the total variation
distance from ¢ is placed on the support elements contain-
ing non-negligible mass. We ran the test on support sizes n
ranging from 10 to 6800. All other parameters are the same

'A k-histogram is a distribution where the domain can be par-
titioned into k intervals such that the distribution is uniform over
each interval.

?In particular, in Figure 3, n/200 support elements contained
1 —10/n probability mass, but similar trends hold with modifica-
tions of these parameters.
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Identity Testing on a 2-Histogram
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Figure 2. The sample complexities of Priv’ IT and zCDP-GOF
for identity testing on a 2-histogram

as in the previous test.

The results of our second test are provided in Figure 2. In
this case, we compare Priv’ IT and zCDP-GOF, and note
that our test is slightly better for all support sizes n, though
the difference can be pronounced or diminished depend-
ing on the construction of the distribution q. We found
that MCGOF was incredibly inefficient on this construction
— even for n = 400 it required 130000 samples, which is
a factor of 10 worse than zCDP—-GOF on a support of size
n = 6800. To explain this phenomenon, we can inspect the
contribution of a single domain element ¢ to their statistic:

(N, +Y; — in)2
mg; '

In the case where mq; < 1 and p = g, this is approxi-

Y;?
mately equal to v

will be of the order TR which can be made arbitrarily
large as mq; — 0. While zCDP-GOF may naively seem
susceptible to this same pitfall, their projection method ap-
pears to elegantly avoid it.

The standard deviation of this term
1

As a final test, we note that zCDP-GOF guarantees zCDP,
while Priv’ IT guarantees (vanilla) differential privacy.
In our previous tests, our guarantee was e-differential pri-
vacy, while theirs was %-ZCDPZ by Proposition 1, our
guarantees imply theirs. In the third test, we revisit unifor-
mity testing, but when their guarantees imply ours. More
specifically, againzwith € = 0.1, we ran zCDP—-GOF with
g

the guarantee of 5--zCDP and Priv’ IT with the guaran-

tee of (% + e4/2log(1/4),d) for various § > 0. We note
that J is often thought in theory to be “cryptographically
small” (such as 27199), but we compare with a wide range
of §, both large and small: § = 1/e! fort € {1,2,4,8,16}.
This test was conducted on support sizes n ranging from 10
to 6000.

Uniformity Testing, Revisited
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Figure 3. The sample complexities of Priv’ IT and zCDP-GOF
for uniformity testing, with approximate differential privacy

The results of our third test are provided in Figure 3. We
found that, for all ¢ tested, Priv’ IT required fewer sam-
ples than zCDP—-GOF. This is unsurprising for § very large
and small, since the differential privacy guarantees become
very easy to satisfy, but we found it to be true for even
“moderate” values of d. This implies that if an analyst is
satisfied with approximate differential privacy, she might
be better off using Priv’ IT, rather than an algorithm
which guarantees zCDP.

While the main focus of our evaluation was statistical in na-
ture, we will note that Priv’ IT was more efficient in run-
time than our implementation of MCGOF, and more efficient
in memory usage than our implementation of zCDP-GOF.
The former point was observed by noting that, in the same
amount of time, Priv’ IT was able to reach a trial cor-
responding to a support size of 20000, while MCGOF was
only able to reach 10000. The latter point was observed by
noting that zCDP —GOF ran out of memory at a support size
of 11800. This is likely because zCDP-GOF requires ma-
trix computations on a matrix of size O(n?). It is plausible
that all of these implementations could be made more time
and memory efficient, but we found our implementations
to be sufficient for the sake of our comparison.
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