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Supplementary material
A. Proofs from Section 2
A.1. Proof of Proposition 1

Proposition 1. Let f be L-smooth, and let yt0 and xt

0 be the sequence of iterates generated by AGD-UNTIL-GUILTY(f ,
y0, L, ", �) for some " > 0 and 0 < �  L. Fix w 2 Rd. If for s = 0, 1, . . . , t� 1 we have
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for both u = w and u = y
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Proof. The proof is closely based on the proof of Theorem 3.18 of (Bubeck, 2014), which itself is based on the estimate
sequence technique of Nesterov (2004). We modify the proof slightly to avoid arguments that depend on the global
minimum of f . This enables using inequalities (5) to prove the result, instead of �-strong convexity of the function f .
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Using (5) with u = w, straightforward induction shows that
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We now prove (22) by induction. Note that it is true at s = 0 since x0 = y0 is the global minimizer of �0. We have,
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where inequality (a) follows from the definition y
s+1 = x

s

�

1
L

rf(x
s

) and the L-smoothness of f , inequality (b) is the
induction hypothesis and inequality (c) is assumption (5) with u = y

s

.

Past this point the proof is identical to the proof of Theorem 3.18 of (Bubeck, 2014), but we continue for sake of complete-
ness.

To complete the induction argument we now need to show that:
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Substituting (24) gives
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Examining this equation, it is seen that v
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where the first equality comes from (24), the second from the induction hypothesis, the third from the definition of y
s+1

and the last one from the definition of x
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A.2. Proof of Lemma 1

Lemma 1. Let f : Rd
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Proof. We proceed in two parts; in the first part, we show that f has negative curvature of at least ↵/2 in the direction
of u � v at the point u. In the second part we show that such negative curvature guarantees that a step with magnitude ⌘
produces the required progress in function value.

For 0  ✓  ku� vk, let
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which concludes the first part of the proof.

The Lipschitz continuity ofr2f also implies that it is upper bounded by its quadratic approximation with a cubic residual
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B. Proofs from Section 3
B.1. Proof of Lemma 2

Lemma 2. Let f : Rd

! R be L1-smooth and have L2-Lipschitz continuous Hessian, let ✏,↵ > 0 and p0 2 Rd. Let
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Proof. Fix an iterate index 1  k < K; throughout the proof we let yt0, xt

0 and u, v refer to outputs of AGD-UNTIL-
GUILTY in the kth iteration. We consider the cases u, v = NULL and u, v 6= NULL separately.
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The case u, v = NULL also implies ˆf(p
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which establishes the claim in the case u, v = NULL.

Next we consider the case u, v 6= NULL (non-convexity detected). By Corollary 1,
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B.2. Proof of Lemma 3

Lemma 3. Let f be L1-smooth, and ⌧ � 0. At any iteration of GUARDED-NON-CONVEX-AGD, if u, v 6= NULL and the
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B.3. Proof of Theorem 1

Theorem 1. Let f : Rd
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Proof. We bound two quantities: the number of calls to AGD-UNTIL-GUILTY, which we denote by K, and the maximum
number of steps AGD-UNTIL-GUILTY performs when it is called, which we denote by T . The overall number gradient
evaluations is 2KT , as we compute at most 2T gradients per iterations (at the points x0, . . . , xt�1 and y1, . . . , yt).

The upper bound on K is immediate from Lemma 2, as by telescoping the progress guarantee (12) we obtain
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where the final inequality follows by substituting our choice (13), of ↵. We conclude that
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the theorem.

C. Proofs from Section 4
C.1. Proof of Lemma 5

We begin by proving the following normalized version of Lemma 5.
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Lemma 8. Let h : R! R be thrice differentiable, h000 be L-Lipschitz continuous for some L > 0 and let
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where the equality follows from the definition (2 + ⇢0)2 = ⇢(2 + ⇢). We lower bound ⇢0(2 + ⇢0) as

⇢0(2 + ⇢0) = ⇢(2 + ⇢)� 2

p

⇢(2 + ⇢) � ⇢
⇣⇢

2

+ ⇢
⌘

�

⇢

2

r

⇢
⇣⇢

2

+ ⇢
⌘

�

2⇢2

3

,

where the first inequality follows from the fact that ⇢(⇣ + ⇢)� ⇣
p

⇢(⇣ + ⇢) is monotonically decreasing in ⇣ � 0 and the
assumption 2  ⇢/2. Noting that ⇢0  ⇢, we have the upper bound ⇢0(2 + ⇢0)  ⇢(2 + ⇢)  3⇢2/2. Combining these
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bounds gives ˜h(1 + ⇢0)  ˜h(1) � A

6 ⇢
2
+

L

8 ⇢
2. Applying |h(⇠) � ˜h(⇠)|  L⇠4/24 at ⇠ = 1 and ⇠ = 1 + ⇢0, and using

⇢0  ⇢ and 1  ⇢/4 once more, we obtain,

h(1 + ⇢0)  h(1)�
A

6

⇢2 +
L

8

⇢2 +
L

24

(1 + (1 + ⇢)4)  h(1)�
A

6

⇢2 +
L

8

⇢4. (36)

The fact that either (35) or (36) must hold implies (31).

With the auxiliary Lemma 8, we prove Lemma 5.
Lemma 5. Let f : Rd

! R have L3-Lipschitz third-order derivatives. Let ↵ > 0 and let u and v satisfy (10) and let
⌘ 

p

2↵/L3. Then for every ku� vk  ⌘/2, EXPLOIT-NC-PAIR3(f, u, v, ⌘) finds a point z such that

f(z)  max

n

f(v)�
↵

4

⌘2, f(u)�
↵

12

⌘2
o

. (16)

Proof. Define

h(✓) := f

✓

1 + ✓

2

u+

1� ✓

2

v

◆

.

We have
h(1)� h(�1)� 2h0

(�1) = f(u)� f(v)�rf(v)T (u� v) < �
↵

2

ku� vk
2
:= �A.

Additionally, since f has L3-Lipschitz third order derivatives, h000 is 1
16L3 ku� vk

4
:= L Lipschitz continuous, so we may

apply Lemma 8 at ⇢ = 2⌘/ ku� vk � 4. Letting � = (u � v)/ ku� vk, we note that h(1 � ⇢) = f(v � ⌘�). Similarly,
for 2+ ⇢0 =

p

⇢(2 + ⇢) we have h(1+ ⇢0) = f(u+ ⌘0�) with ⌘0 given in line 2 of EXPLOIT-NC-PAIR3. The result is now
immediate from (31), as

f(z) = min{f(v � ⌘�), f(u+ ⌘0�)} = min{h(�1� ⇢), h(1 + ⇢0)}  max

⇢

h(�1)�
A

4

⇢2, h(1)�
A

6

⇢2
�

+

L

8

⇢4

= max

n

f(v)�
↵

2

⌘2, f(u)�
↵

3

⌘2
o

+

L3

8

⌘4  max

n

f(v)�
↵

4

⌘2, f(u)�
↵

12

⌘2
o

,

where in the last transition we have used ⌘ 
q

2↵
L3

.

C.2. Proof of Lemma 6

We first state and prove a normalized version of the central argument in the proof of Lemma 6
Lemma 9. Let h : R! R be thrice differentiable and let h000 be L-Lipschitz continuous for some L > 0. If

h(0)  A, h(�1/2) � �B, h(�1)  C and h(�3) � �D (37)

for some A,B,C,D � 0, then
h(✓)  h(0) + 7A+ 12.8B + 6C + 0.2D + L

for any ✓ 2 [0, 1].

Proof. Define
˜h(⇠) = h(0) + h0

(0)⇠ +
1

2

h00
(0)⇠2 +

1

6

h000
(0)⇠3.

By the Lipschitz continuity of h000, we have that |h(⇠) � ˜h(⇠)|  L⇠4/24, for any ⇠ 2 R. Using the expressions for ˜h(x)
at ⇠ = �3,�1,�1/2 to eliminate h0

(0), h00
(0) and h000

(0), we obtain:

˜h(✓) = h(0)� ˜h(�3)



1

30

✓ +
1

10

✓2 +
1

15

✓3
�

+

˜h(�1)



3

2

✓ +
7

2

✓2 + ✓3
�

�

˜h(�1/2)



24

5

✓ +
32

5

✓2 +
8

5

✓3
�

+ h(0)



10

3

✓ + 3✓2 +
2

3

✓3
�

.
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Applying (37), ✓ 2 [0, 1] and |h(⇠)� ˜h(⇠)|  L⇠4/24 gives the required bound:

h(✓)  h(0) + 0.2D + 6C + 12.8B + 7A+

L

24

⇥

✓4 + 0.2 · (�3)4 + 6 · (�1)

4
+ 12.8 · (�1/2)4

⇤

 h(0) + 7A+ 12.8B + 6C + 0.2D + L

We now prove Lemma 6 itself.
Lemma 6. Let f be L1-smooth and have L3-Lipschitz continuous third-order derivatives, and let ⌧ 

p

↵/(16L3)

with ⌧,↵, L1, L3 > 0. Consider GUARDED-NON-CONVEX-AGD with FIND-BEST-ITERATE replaced by FIND-BEST-
ITERATE3. At any iteration, if u, v 6= NULL and the best iterate b(1) satisfies f(b(1)) � f(y0)� ↵⌧

2 then,

f(v)  f(y0) + 14↵⌧2.

Proof. Let 0  j < t be such that v = x
j

(such j always exists by Corollary 1). If j = 0 then x
j

= y0 and the result is
trivial, so we assume j � 1. Let

h(✓) = f(y
j

+ ✓(y
j

� y
j�1))� f(y0) for ✓ 2 R

Note that

h(�3) = f(q
j

)� f(y0) � f(b(1))� f(y0) � �↵⌧
2,

h(�1) = f(y
j�1)� f(y0)  0,

h(�1/2) = f(c
j

)� f(y0) � f(b(1))� f(y0) � �↵⌧
2,

h(0) = f(y
j

)� f(y0)  0 and
h(!) = f(x

j

)� f(y0),

where 0 < ! < 1 is defined in line 1 of AGD-UNTIL-GUILTY, and we have used the guarantee max{f(y
j�1), f(yj)} 

f(y0) from Corollary 1. Moreover, by the Lipschitz continuity of the third derivatives of f , h000 is L3 kyj � y
j�1k

4-
Lipschitz continuous. Therefore, we can apply Lemma 9 with A = C = 0 and B = D = ↵⌧2 at ✓ = ! and obtain

f(v)� f(y0) = f(x
j

)� f(y0)  f(y
j

)� f(y0) + 13↵⌧2 + L3 kyj � y
j�1k

4
 13↵⌧2 + L3 kyj � y

j�1k
4
.

To complete the proof, we note that Lemma 3 guarantees ky
j

� y
j�1k  kyj � y0k+ kyj�1 � y0k  2⌧ and therefore

L3 kyj � y
j�1k

4
 16L3⌧

4
 ↵⌧2,

where we have used ⌧2  ↵/(16L3).

C.3. Proof of Lemma 7

Lemma 7. Let f : Rd

! R be L1-smooth and have L3-Lipschitz continuous third-order derivatives, let ✏,↵ > 0 and
p0 2 Rd. If pK0 is the sequence of iterates produced by GUARDED-NON-CONVEX-AGD(f , p0, L1, ✏, ↵,

q

2↵
L3

), then for
every 1  k < K,

f(p
k

)  f(p
k�1)�min

⇢

✏2

5↵
,
↵2

32L3

�

. (17)

Proof. Fix an iterate index 1  k < K; throughout the proof we let yt0, xt

0 and w refer to outputs of AGD-UNTIL-GUILTY
in the kth iteration. We consider only the case v, u 6= NULL, as the argument for v, u = NULL is unchanged from
Lemma 2.

As argued in the proof of Lemma 2, when v, u 6= NULL, condition (10) holds. We set ⌧ :=

q

↵

32L3
and consider

two cases. First, if f(b(1))  f(y0) � ↵⌧2 = f(p
k�1) �

↵

2

32L3
then we are done, since f(p

k

)  f(b(1)). Second, if
f(b(1)) � f(y0)� ↵⌧

2, by Lemma 3 we have that

kv � uk  4⌧ 

r

↵

2L3
=

⌘

2

,
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Therefore, we can use Lemma 5 (with ⌘ as defined above) to show that

f(b(2))  max

⇢

f(v)�
↵2

2L3
, f(u)�

↵2

6L3

�

. (38)

By Corollary 1, f(u)  ˆf(u)  ˆf(y0) = f(p
k�1). Moreover, since f(b(1)) � f(y0) � ↵⌧

2 and ⌧ =

q

↵

32L3
, we may

apply Lemma 6 to obtain

f(v)  f(y0) + 14↵⌧2  f(p
k�1) +

7↵2

16L3
.

Combining this with (38), we find that

f(p
k

)  f(b(2))  f(p
k�1)�min

⇢

↵2

2L3
�

7↵2

16L3
,
↵2

6L3

�

= f(p
k�1)�

↵2

16L3
,

which concludes the case v, u 6= NULL under third-order smoothness.

C.4. Proof of Theorem 2

Theorem 2. Let f : Rd

! R be L1-smooth and have L3-Lipschitz continuous third-order derivatives. Let p0 2 Rd,
�

f

= f(p0)� inf

z2Rd f(z) and 0 < ✏2/3  min{�

1/2
f

L
1/6
3 , L1/(8L

1/3
3 )}. If we set

↵ = 2L
1/3
3 ✏2/3, (18)

GUARDED-NON-CONVEX-AGD(f , p0, L1, ✏, ↵,
q

2↵
L3

) finds a point p
K

such that krf(p
K

)k  ✏ and requires at most

20 ·

�

f

L
1/2
1 L

1/6
3

✏5/3
log

✓

500L1�f

✏2

◆

(19)

gradient evaluations.

Proof. The proof proceeds exactly like the proof of Theorem 1. As argued there, the number of gradient evaluations is at
most 2KT , where K is number of iterations of GUARDED-NON-CONVEX-AGD and T is the maximum amount of steps
performed in any call to AGD-UNTIL-GUILTY.

We derive the upper bound on K directly from Lemma 7, as by telescoping (12) we obtain

�

f

� f(p0)� f(p
K�1) =

K�1
X

k=1

(f(p
k�1)� f(p

k

)) � (K � 1) ·min

⇢

✏2

5↵
,
↵2

32L3

�

� (K � 1)

✏4/3

10L
1/3
3

,

where the last transition follows from substituting (18), our choice of ↵. We therefore conclude that

K  1 + 10�

f

L
1/3
3 ✏�4/3. (39)

To bound T , we recall that  (z)  �

f

for every z 2 Rd, as argued in the proof Theorem 1. Therefore, substituting
" = ✏/10, L = L1 + 2↵ and � = ↵ = 2L

1/3
3 ✏2/3 into the guarantee (7) of Corollary 1 we obtain,

T  1 +

s

2 +

L1

2L
1/3
3 ✏2/3

log+

 

200(L1 + 4L
1/3
3 ✏2/3)�

f

✏2

!

, (40)

where log+(·) is shorthand for max{0, log(·)}.

Finally, we use ✏2/3  min{�

1/2
f

L
1/6
3 , L1/(8L

1/3
3 )} to simplify the bounds on K and T . Using 1  �

f

L
1/3
3 ✏�4/3

reduces (28) to
K  11�

f

L
1/3
3 ✏�4/3.
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Applying 1  L1/(8L
1/3
3 ✏2/3) on (29) gives

T 

r

3

4

L
1/2
1

L
1/6
3 ✏1/3

log

500L1�f

✏2
,

where �

f

L1✏
�2
� 8 allows us to drop the subscript from the log. Multiplying the product of the above bounds by 2 gives

the result.

D. Adding a second-order guarantee
In this section, we sketch how to obtain simultaneous guarantees on the gradient and minimum eigenvalue of the Hessian.
We use the eO(·) notation to hide logarithmic dependence on ✏, Lipschitz constants �

f

, L1, L2, L3 and a high probability
confidence parameter � 2 (0, 1), as well as lower order polynomial terms in ✏�1.

Using approximate eigenvector computation, we can efficiently generate a direction of negative curvature, unless the
Hessian is almost positive semi-definite. More explicitly, there exist methods of the form APPROX-EIG(f , x, L1, ↵,
�) that require eO(

p

L1/↵ log d) Hessian-vector products to produce a unit vector v such that whenever r2f(x) ⌫ �↵I ,
with probability at least 1 � � we have vTr2f(x)v  �↵/2, e.g. the Lanczos method (see additional discussion in
(Carmon et al., 2016, §2.2)). Whenever a unit vector v satisfying vTr2f(x)v  �↵/2 is available, we can use it to make
function progress. If r2f is L2-Lipschitz continuous then by Lemma 1 f(x ±

↵

L2
v) < f(x) � ↵

3

12L2
2

where by f(x ± z)

we mean min{f(x + z), f(x � z)}. If instead f has L3-Lipschitz continuous third-order derivatives then by Lemma 4,
f(x±

q

2↵
L3

v) < f(x)� ↵

2

4L3
.

We can combine APPROX-EIG with Algorithm 3 that finds a point with a small gradient as follows:

ẑ
k

 GUARDED-NON-CONVEX-AGD(f, z
k

, L1, ✏,↵, ⌘) (41a)
v
k

 APPROX-EIG(f, ẑ
k

, L1,↵, �
0
) (41b)

z
k+1  argmin

x2{ẑk+⌘vk,ẑk�⌘vk}
f(x) (41c)

As discussed above, under third order smoothness , ⌘ =

p

2↵/L3 guarantees that the step (41c) makes at least ↵2/(4L3)

function progress whenever vT
k

r

2f(ẑ
k

)v
k

 �↵/2. Therefore the above iteration can run at most eO(�

f

L3/↵
2
) times

before vT
k

r

2f(ẑ
k

)v
k

� �↵/2 is satisfied. Whenever vT
k

r

2f(ẑ
k

)v
k

� �↵/2, with probability 1 � �0 · k we have the
Hessian guarantee r2f(ẑ

k

) ⌫ �↵I . Moreover, krf(ẑ
k

)k  ✏ always holds. Thus, by setting ↵ = L
1/3
3 ✏2/3 we obtain

the required second order stationarity guarantee upon termination of the iterations (41).

It remains to bound the computational cost of the method, with ↵ = L
1/3
3 ✏2/3. The total number of Hessian-vector products

required by APPROX-EIG is,

eO

 

�

f

L3/↵
2
·

r

L1

↵
log d

!

=

eO
⇣

�

f

L
1/2
1 L

1/6
3 ✏�5/3

log d
⌘

.

Moreover, it is readily seen from the proof of Theorem 2 that every evaluation of (41a) requires at most

eO((f(x
k

)� f(x
k+1))L

1/2
1 L

1/6
3 ✏�5/3

+ L
1/2
1 L

�1/6
3 ✏�1/3

) (42)

gradient and function evaluations. By telescoping the first term and multiplying the second by eO(�

f

L3/↵
2
), we guarantee

krf(x)k  ✏ and r2f(x) ⌫ �L
1/3
3 ✏2/3I in at most eO(�

f

L
1/2
1 L

1/6
3 ✏�5/3

log d) function, gradient and Hessian-vector
product evaluations.

The argument above is the same as the one used to prove Theorem 4.3 of (Carmon et al., 2016), but our improved guarantees
under third order smoothness allows us get a better ✏ dependence for the complexity and lower bound on the Hessian in
that regime. If instead we use the second order smoothness setting, we recover exactly the guarantees of (Carmon et al.,
2016; Agarwal et al., 2016), namely krf(x)k  ✏ and r2f(x) ⌫ �L

1/2
2 ✏1/2I in at most eO(�

f

L
1/2
1 L

1/4
2 ✏�7/4

log d)
function, gradient and Hessian-vector product evaluations.
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Finally, we remark that the above analysis would still apply if in (41a) we replace GUARDED-NON-CONVEX-AGD with
any method with a run -time guarantee of the form (42). The resulting method will guarantee whatever the original method
does, and also r2f(x) ⌫ �↵I . In particular, if the first method guarantees a small gradient, the combined method
guarantees convergence to second-order stationary points.

E. Experiment details
E.1. Implementation details

Semi-adaptive gradient steps Both gradient descent and AGD are based on gradients steps of the form

y
t+1 = x

t

�

1

L1
rf(x

t

). (43)

In practice L1 is often unknown and non-uniform, and therefore needs to be estimated adaptively. A common approach
is backtracking line search, which we use for conjugate gradient. However, combining line search with AGD without
invalidating its performance guarantees would involve non-trivial modification of the proposed method. Therefore, for the
rest of the methods we keep an estimate of L1, and double it whenever the gradient steps fails to make sufficient progress.
That is, whenever

f

✓

x
t

�

1

L1
rf(x

t

)

◆

> f(x
t

)�

1

2L1
krf(x

t

)k

2

we set L1  2L1 and try again. In all experiments we start with L1 = 1, which underestimates the actual smoothness of f
by 2-3 orders of magnitude. We call our scheme for setting L1 semi-adaptive, since we only increase L1, and therefore do
not adapt to situations where the function becomes more smooth as optimization progresses. Thus, we avoid painstaking
tuning of L1 while preserving the ‘fixed step-size’ nature of our approach, as L1 is only doubled a small number of times.

Algorithm 3 We implement GUARDED-NON-CONVEX-AGD with the following modifications, indented to make it more
practical without substantially compromising its theoretical properties.

1. We use the semi-adaptive scheme described above to set L. Specifically, whenever the gradient steps in lines 3
and 4 of AGD-UNTIL-GUILTY and CERTIFY-PROGRESS respectively fail, we double L until it succeeds, terminate
AGD-UNTIL-GUILTY and multiply L1 by the same factor.

2. We make the input parameters for AGD-UNTIL-GUILTY dynamic. In particular, we set ✏0 = krf(p
k�1)k /10 and

use ↵ = � = C1 krf(pk�1)k
2/3, where C1 is a hyper-parameter. We use the same value of ↵ to construct ˆf . This

makes our implementation independent on the final desired accuracy ✏.

3. In CERTIFY-PROGRESS we also test whether

ˆf(x
t

) +r

ˆf(x
t

)

T

(y
t

� x
t

) > ˆf(y
t

).

Since this inequality is a clear convexity violation, we return w
t

= y
t

whenever it holds. We find that this substantially
increases our method’s capability of detecting negative curvature; most of the non-convexity detection in the first
experiment is due to this check.

4. Whenever CERTIFY-PROGRESS produces a point w
t

6= NULL (thereby proving non-convexity and stopping AGD-
UNTIL-GUILTY), instead of finding a single pair (v, u) that violates strong convexity, we compute

↵
v,u

= 2

f(v)� f(u)�rf(v)T (u� v)

ku� vk
2

for the 2t points of the form v = x
j

and u = y
j

or u = w
t

, with 0  j < t, where here we use the original f rather
than ˆf given to AGD-UNTIL-GUILTY. We discard all pairs with ↵

v,u

< 0 (no evidence of negative curvature), and
select the 5 pairs with highest value of ↵

v,u

. For each selected pair v, u, we exploit negative curvature by testing all
the points of the form {z ± ⌘�} with � = (u � v)/ ku� vk, z 2 {v, u} and ⌘ in a grid of 10 points log-uniformly
spaced between 0.01 ku� vk and 100(kuk+ kvk).
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5. In FIND-BEST-ITERATE3 we compute c
j

and q
j

for every j such that f(x
j

) > f(y
j

). Moreover, when v, u = NULL

(no non-convexity detected), we still set the next iterate p
k

to be the output of FIND-BEST-ITERATE3 rather than just
the last AGD step.

The hyper-parameter C1 was tuned separately for each experiment by searching on a small grid. For the regression ex-
periment the tuning was performed on different problem instances (different seeds) than the ones reported in Fig. 1. For
the neural network training problem the tuning was performed on a subsample of 10% of the data and a different random
initialization than the one reported in Fig. 2. The specific parameters used were C1 = 0.01 for regression and C1 = 0.1
for neural network training.

Algorithm 3 without negative curvature exploitation This method is identical to the one described above, except that
at every iteration p

k

is set to b(1) produced by FIND-BEST-ITERATE3 (i.e. the output of negative curvature exploitation is
never used). We used the same hyper-parameters described above.

Gradient descent Gradient descent descent is simply (43), with y
t+1 = x

t+1, where the semi-adaptive scheme is used
to set L1.

Adaptive restart accelerated gradient descent We use the accelerated gradient descent scheme of Beck and Teboulle
(2009) with !

t

= t/(t+3). We use the restart scheme given by O’Donoghue and Candès (2015) where if f(y
t

) > f(y
t�1)

then we restart the algorithm from the point y
t

. For the gradient steps we use the same semi-adaptive procedure described
above and also restart the algorithm whenever the L1 estimate changes (restarts performed for this reason are not shown in
Fig. 1 and 2).

Non-linear conjugate gradient The method is given by the following recursion (Polak and Ribière, 1969),

�
t

= �rf(x
t

) + max

⇢

rf(x
t

)

T

(rf(x
t

)�rf(x
t�1))

krf(x
t�1)k

2
, 0

�

�
t�1 , x

t+1 = x
t

+ ⌘
t

�
t

where �0 = 0 and ⌘
t

is found via backtracking line search, as follows. If �Trf(x
t

) � 0 we set �
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holds. If it does we keep the value of ⌘
t

, and if it does not we set ⌘
t

= ⌘
t

/2 and repeat. The key difference from
the semi-adaptive scheme used for the rest of the methods is the initialization ⌘

t

= 2⌘
t�1, that allows the step size to

grow. Performing line search is crucial for conjugate gradient to succeed, as otherwise it cannot produce approximately
conjugate directions. If instead we use the semi-adaptive step size scheme, performance becomes very similar to that of
gradient descent.

Comparison of computational cost In the figures, the x-axis is set to the number of steps performed by the methods.
We do this because it enables a one-to-one comparison between the steps of the restarted AGD and Algorithm 3. However,
Algorithm 3 requires twice the number of gradient evaluations per step of the other algorithms. Furthermore, the number
of function evaluations of Algorithm 3 increases substantially when we exploit negative curvature, due to our naive grid
search procedure. Nonetheless, we believe it is possible to derive a variation of our approach that performs only one
gradient computation per step, and yet maintains similar performance (see remark after Corollary 1, and that effective
negative curvature exploitation can be carried out with only few function evaluations, using a line search.

While the rest of the methods tested require one gradient evaluation per step, the required number of function evaluations
differs. GD requires only one function evaluation per step, while RAGD evaluates f twice per step (at x

t

and y
t

); the
number of additional function evaluations due to the semi-adaptive scheme is negligible. NCG is expected to require
more function evaluations due to its use of a backtracking line search. In the first experiment, NCG required 2 function
evaluations per step on average, indicating that its L1 estimate was stable for long durations. Alg. 3 required 5.3 function
evaluations per step (on average over the 1,000 problem instances, with standard deviation 0.5), putting the amortized cost
of our crude negative curvature exploitation scheme at 3.3 function evaluations per step.
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E.2. Non-convex regression

The problem is to

minimize f(x) :=
1

m

m

X

i=1

�(aT
i

x� b
i

)

where �(✓) = ✓2/(1 + ✓2), x 2 Rd, b 2 Rm, and a
i

2 Rd. The function � is a robust modification of the quadratic loss; it
is approximately quadratic for small errors, but insensitive to larger errors.

To generate problem instances, we set d = 30, m = 60, and draw a
i

iid
⇠ N (0, I

d

). We draw b as follows. We first define
draw a “ground truth” vector z ⇠ N (0, 4I

d

). We then set b = Az + 3⌫1 + ⌫2, where ⌫1 is standard Gaussian and the
elements of ⌫2 are i.i.d. Bernoulli(0.3). The above parameters were manually chosen to make the problem substantially
non-convex.

E.3. Neural network training

The function f is the average cross-entropy loss of 10-way prediction of class labels from input features. The prediction
if formed by applying softmax on the output of a neural network with three hidden layers of 20, 10 and 5 units and tanh

activations. To obtain data features we perform the following preprocessing, where the training examples are treated as
28

2 dimensional vectors. First, each example is separately normalized to zero mean and unit variance. Then, the 282⇥28

2

data covariance matrix is formed, and a projection to the 10 principle components is found via eigen-decomposition. The
projection is then applied to the training set, and then each of the 10 resulting features is normalized to have zero mean
and unit variance across the training set. The resulting model has d = 545 parameters and underfits the 60,000 examples
training set. We randomly initialize the weights according the well-known scaling proposed by Glorot and Bengio (2010).
We repeated the experiment for 10 different initializations of the weights, and all results were consistent with those reported
in Fig. 2.


