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A. Technical Lemmas
Lemma 6. Let z 2 Rd be a fixed vector. Let U
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ply Lemma 14 of (Jain and Tewari, 2015) to get the state-
ment of the lemma.
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From Theorem 7 of (Gordon et al., 2006), we have:
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We also know from (Gordon et al., 2006) that:
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B. Proofs
B.1. Proof of Theorem 1

(I) Consider the weighted least squares estimate:
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Note that because E[ggT
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Consider XTWX . We can apply Lemma 1 to lower-
bound the (d � 1) smallest eigenvalues of this matrix
by O(n2/(kf⇤k2d lnn)) and the largest eigenvalue by
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B.2. Proof of Lemma 1

1. By definition, the smallest singular value,
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2. Consider the variational characterization of the second
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B.3. Proof of Lemma 2

1. By definition, the smallest singular value,
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where v? denotes the component along the subspace or-
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B.4. Proof of Lemma 3
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B.5. Proof of Lemma 4
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That is,
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Hence, using the fact that m
1

= ⌦(d log3 d) along with
standard ✏-net argument, we have:

min

f,kfk=1,f?f

⇤
fTSf 

1.1

0

@
1 +

s
10d log3 d

m
1

1

A
(kf⇤k2 + k�⇤ � �

0

k2). (14)

Lemma now follows using (11) and (14).

B.6. Proof of Theorem 2

Lemma 3 ensures that, with probability at least
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B.7. Proof of Theorem 3
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the oracle O) and tr is linear operator, we have:

Ekb�GLS � �⇤k2
2

= tr

✓
(XTcWX)

�2XTfW 2X

◆
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Write f⇤
=

bf + �
f

, where k�
f

k
2

 �. Let �W denote
the matrix with �W

ii

=

h�f ,xii
h bf,xii2+�

2

. We can bound fW as:

fW 2  2(

cW +�W 2

)

So, we have:

Ekb�GLS � �⇤k2
2

= 2tr

✓
(XTcWX)

�1

◆

+2tr

✓
(XTcWX)

�2XT

�W 2X

◆
(15)

1. Consider the first term tr

✓
(XTcWX)

�1

◆
=

P
n

i=1

1

h bf,xii2+�

2

x

i

x

T

i

. It can be bounded readily by

max

i

(h bf,x
i

i2 + �2

)tr

�
(XTX)

�1

�
. We can bound

tr

�
(XTX)

�1

�
by d

n

, using standard arguments. Apply-
ing Lemma 7, we can bound max

i

(h bf,x
i

i2 + �2

) by
C2

U

ln

2 n + �2, with probability at least 1 � 1/n10. To-

gether, we have tr

✓
(XTcWX)

�1

◆
 C2

U

d

n

ln

2 n.

2. Now to bound the second term
tr

✓
(XTcWX)

�2XT

�W 2X

◆
, first consider the ma-

trix �W 2. The ith entry of this matrix is h�f ,xii2

(h bf,xii2+�

2

)

2

.
Without loss of generality, assume �

f

is orthogonal to
bf . In expectation, the diagonal entry is at most k�fk2

�

4

.
From Lemma 4, and by the choice of � in the statement
of the theorem, the quantity is at most kf⇤k2. Thus
in expectation �W 2 can be bounded by I

n

. We can

bound tr

✓
(XTcWX)

�1

◆
similar to the case above.

Together, we have, tr

✓
(XTcWX)

�2XT

�W 2X

◆


tr

✓
(XTcWX)

�2

)

◆
kXTXk

2

 d ln

4

n

n

2

(n) = kf⇤k2

d ln

4

n

n

.

Plugging the above two bounds in (15), the proof is
complete.

B.8. Proof of Lemma 5

Denote |L| by n
⌧

. Let X 2 Rn⌧⇥d denote the design ma-
trix with instances in L as rows. Consider the ordinary least
squares estimate:

b� = (XTX)

�1XT

y

= (XTX)

�1

n⌧X

i=1

(h�⇤,x
i

i+ g
i

hx
i

, f⇤i)x
i

,

where g
i

are i.i.d. N (0, 1) random variables. So we have:

b� � �⇤
= (XTX)

�1

n⌧X

i=1

g
i

hx
i

, f⇤ix
i

kb� � �⇤k2
2

= tr

✓
(XTX)

�2XTW�0.5

gg

TW�0.5X

◆
,

where W�0.5 is the diagonal matrix with ith diagonal entry
hf⇤,x

i

i. Note that because E[ggT

] = I
n⌧ and tr is linear

operator, we have:

Ekb� � �⇤k2
2

= tr

✓
(XTX)

�2XTW�1X

◆
,

Now, write f⇤
=

bf + �
f

, where k�
f

k  � (as given in
the statement of the Theorem). So, hf⇤,x

i

i = h bf,x
i

i +
h�

f

,x
i

i, and hf⇤,x
i

i2  2kf⇤k2(�2

+ ⌧2).

Ekb� � �⇤k2
2

= tr

✓
X(XTX)

�2XTW�1

◆
,

= 2(⌧2 +�2

)tr

✓
X(XTX)

�2XT

◆

= 2(⌧2 +�2

)tr

�
(XTX)

�1

�

We can use identical arguments as in the proof of Lemma
2, we can upper bound the trace quantity in the above RHS

by O

✓
1

n⌧⌧
2

+

d�1

n⌧

◆
. Using Lemma 3 we can lower bound

n
⌧

by m⌧ with probability at least exp(�m⌧3). This com-
pletes the proof.

B.9. Proof of Theorem 4

From Lemma 3, we know that about n
⌧

=

m⌧

2

instances
out of m unlabeled instances satisfy the tolerance condition
in Step 4 of the algorithm with high probability. So, we
want to choose ⌧ as a function of � = k bf � f⇤k, m, and
d so that the RHS of the bound in Lemma 5 is minimized.
Solving the resulting quadratic problem, we see that ⌧ = �

is optimal choice, up to constant and kf⇤k factors. From
Lemma 4, we have � = O(

p
d/m

1

). Choosing m
1

=

n/2, we then have with probability at least exp(�1/n), at
least n examples satisfying |hx

i

, bfi|  2

p
d/n in Step 4 of

the algorithm. We can now apply Lemma 5 to recover the
statement of the theorem.

C. Iterative Estimation Algorithm of (Carroll
et al., 1988)

We now apply the analysis of (Carroll et al., 1988) to bound
the estimation error of weighted least squares estimator
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with estimated weights (Algorithm 3). In fact, Carroll et al.
(1988) develop an iterative algorithm where the estimates bf
and b� are iteratively improved. So we will mimic the setup,
and derive bounds for the iterative version of Algorithm 3.
In the following, b�

t

and bf
t

denote the estimators at the end
of round t. We use the same �

0

as in Algorithm 3. Define
the following quantities:

1. br
i

:= br(t)
i

= y
i

� hx
i

, b�
t

i; sometimes we write br
i

when t is implicit.

2. �
i

= y
i

� ⌧
i

, where ⌧
i

= hx
i

,�⇤i.

3.  
i

:=  (�
i

, f) = (�2
i

x

i

x

T

i

� �I)f .

Let:

Rd⇥d 3 A
f

= � 1

n

nX

i=1

r
f

 

i

Rd⇥d 3 A
�

=

1

n

nX

i=1

r
�

 

i

Rd⇥d 3 A
1

= E[A
f

] = �E[�2
1

x

1

x

T

1

]

Rd⇥d 3 H
1

= A�1

1

✓p
nA

�

+

1

n

nX

i=1

r
⌧f

 

i

. g
0

x

T

i

◆

Rd

2⇥d 3 W =

1

2

p
n

nX

i=1

�
I ⌦ x

i

�
A�1

1

r
⌧⌧

 

i

. xT

i

Rd⇥1 3 g
0

=

1p
n
A�1

1

nX

i=1

 

i

Lemma 8 (Bounding bf
t

� f in terms of b�
t

� �). As n !
1, the error in the estimate bf has the expansion:

bf
t

� f⇤
=

1p
n
A�1

f

A
1

g
0

+

✓
1p
n
H

1

+ [I ⌦ (

b�
t

� �⇤
)

T

]W

◆
(

b�
t

� �⇤
)

+ O
p

(n�3/2

) ,

where O
p

(n�3/2

) captures lower-order error quantities
that converge (in probability) to 0 at or faster than the rate
O
�

1

n

p
n

�
.

Define the quantities:

Rd⇥d 3 B
0

= XTWX

Rd⇥1 3 v
0

= XTW �

R 3 ⌘
i

= �
i

� x

T

i

B
0

v
0

Rd 3 l
0

= B�1

0

v
0

Rd 3 l
1

= B�1

0

nX

i=1

gT
0

r
f

w
i

x

i

⌘
i

Rd 3 l
2

= B�1

0

p
n

nX

i=1

gT
0

(A�1

f

A
1

� I)Tr
f

w
i

x

i

⌘
i

+ 0.5
nX

i=1

gT
0

r2

f

w
i

g
0

x

i

⌘
i

�
nX

i,j=1

(gT
0

r
f

w
i

)(gT
0

r
f

w
j

)(x

T

i

B
0

x

j

)x

i

⌘
j

�

Rd⇥d 3 C = B�1

0


nX

i=1

x

i

⌘
i

r
f

wT

i

H
1

�

Rd

2⇥d 3 Q =

nX

i=1

�
B�1

0

x

i

�⌦ �(r
f

wT

i

⌦ I)W⌘
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�

Lemma 9 (Bounding b�
t+1

� � in terms of b�
t

� �).

b�
t+1

� �⇤
= l

0

+

1p
n
l
1

+

1

n
l
2

+

✓
1p
n
C+ [I ⌦ (

b�
t

� �⇤
)

T

]Q

◆
(

b�
t

� �⇤
)

+ O
p

(n�3/2

)

Corollary 1 (Case f⇤ is known). When f is known, we
have: l

1

= l
2

= C = Q = 0. So for all t > 0, we have:
b�
t

� �⇤
= l

0

= (XTWX)

�1XTW � .

Note that the initial b�
0

satisfies:

(

b�
0

� �⇤
) = (XTX)

�1XT � := ⇠
0

.

Corollary 2 (Case f⇤ is estimated). We have:

1. b�
1

� � = l
0

+

1p
n
l
1

+

1

n

�
l
2

+C⇠
0

+ (I ⌦ ⇠T
0

)Q⇠
0

�

+ O
p

(n�3/2

), (16)

and for t � 2,

2. b�
t

� �⇤
= l

0

+

1p
n
l
1

+

1

n

�
l
2

+Cl
0

+ (I ⌦ lT
0

)Ql
0

�

+ O
p

(n�3/2

) . (17)
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The bounds obtained offer little insight, and importantly,
the dependence on factors n and d are not clear. Even for
the case when f⇤ is known, the analysis gives no conver-
gence rates.

D. Active Regression
Algorithm 5 considers a slightly more powerful oracle
model, where the same instance can be queried multiple
times, and each time the response is generated independent
of the other trials. Theorem 5 shows that the learning rate
in this setting is O(1/n), as in Theorem 2.

Theorem 5 (Active Regression with Noise Oracle). As-
sume n � d. Consider the output estimator b� of Algorithm
5. We have, with probability at least 1� 1/nc:

kb� � �⇤k2
2

 C 0kf⇤k2
2

✓
1

n

◆
,

for some positive constants c, C 0.

Proof. First, note that the matrix N? = I
d

� f

⇤
f

⇤T

kf⇤k2

2

cor-
responds to (d � 1) directions orthogal to f⇤, and thus we
have N?f⇤

= 0. Let N =

1

kf⇤k
2

f⇤
1

T

n�d

as in the Step
2 of the algorithm. Clearly, when n = d + 1, the matrix
X = [N? N ]

T has full rank, with all the d singular val-
ues equal to 1. For a general n > d, the largest singular
value of X is proportional to n, while the other singular
values are 1. In this case, notice that the direction of the
largest singular vector of X is f⇤. Let x

i

denote the rows
(instances) of this X .

Now consider the ordinary least squares estimate:

b� = (XTX)

�1XT

y

= (XTX)

�1

nX

i=1

(h�⇤,x
i

i+ g
i

hx
i

, f⇤i)x
i

,

= �⇤
+ (XTX)

�1

✓
dX

i=1

0 +

nX

i=d+1

g
i

f⇤
◆
,

where g
i

are i.i.d. N (0, 1) random variables, and the last
equality is true by construction of X . So we have:

kb� � �⇤k =

��
(XTX)

�1

nX

i=d+1

g
i

f⇤��

 ��
(XTX)

�1f⇤��
����

nX

i=d+1

g
i

����

Notice that f⇤ is the smallest singular vector of (XTX)

�1,
and therefore

��
(XTX)

�1f⇤
�� is proportional to the small-

est singular value of (XTX)

�1, which is 1/k(XTX)k =

1/n. So:

kb� � �⇤k  kf⇤k 1
n

nX

i=d+1

g
i

.

The sum in the above term can be controlled with high
probability using Chernoff bounds, which yields, with
probability at least 1 � 1/nc, |Pn

i=d+1

g
i

|  C 0pn� d,
for c, C 0 > 0. The proof is complete.

Using essentially identical arguments, we can also prove a
lower bound, so that effectively we have:

kb� � �⇤k2
2

= O

✓
kf⇤k2

2

1

n

◆
.
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Algorithm 5 Active Regression With Noise Oracle
Input: Labeling oracle O, noise model f⇤, label budget n > d.
1. Form the matrix N? = I

d

� f

⇤
f

⇤T

kf⇤k2

2

, and query O for (exact) labels of each column of the matrix (call them
y
1

, y
2

, . . . , y
d

.
2. Make n � d queries to O and obtain (noisy) labels along the direction f⇤. Call these labels y

d+1

, y
d+2

, . . . , y
n

. Let
N =

1

kf⇤k
2

f⇤
1

T

n�d

, where 1

T

n�d

denotes the vector of all ones, in n� d dimensions.

2. Estimate b� by solving y ⇡ X b� (ordinary least squares) where X = [N? N ]

T 2 Rn⇥d and y 2 Rn.
Output: b�.


