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Abstract

An active learner is given a model class O, a large
sample of unlabeled data drawn from an under-
lying distribution and access to a labeling oracle
that can provide a label for any of the unlabeled
instances. The goal of the learner is to find a
model § € © that fits the data to a given accuracy
while making as few label queries to the oracle as
possible. In this work, we consider a theoretical
analysis of the label requirement of active learn-
ing for regression under a heteroscedastic noise
model, where the noise depends on the instance.
We provide bounds on the convergence rates of
active and passive learning for heteroscedastic
regression. Our results illustrate that just like
in binary classification, some partial knowledge
of the nature of the noise can lead to significant
gains in the label requirement of active learning.

1. Introduction

An active learner is given a model class ©, a large sample
of unlabeled data drawn from an underlying distribution Py
and access to a labeling oracle O which can provide a label
for any of the unlabeled instances. The goal of the learner is
to find a model 6 € O that fits the data to a given accuracy
while making as few label queries to the oracle as possible.

There has been a lot of theoretical literature on active learn-
ing, most of which has been in the context of binary clas-
sification in the PAC model (Balcan et al., 2009; Han-
neke, 2007; Dasgupta et al., 2007; Beygelzimer et al., 2009;
Awasthi et al., 2014; Zhang and Chaudhuri, 2014). For
classification, the problem is known to be particularly diffi-
cult when there is no perfect classifier in the class that best
fits the labeled data induced by the oracle’s responses. Prior
work in the PAC model has shown that the difficulty of the
problem is alleviated when the “noise” is more benign — for
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example, when there is a ground truth classifier that induces
a labeling and the oracle’s responses are perturbed versions
of these labels (Hanneke, 2007; Awasthi et al., 2014; Zhang
and Chaudhuri, 2014; Awasthi et al., 2016) corrupted by
certain kinds of noise. In particular, significant improve-
ments in label complexity have been obtained under what
is known as the Tsybakov noise conditions, which model
the realistic case of noise that decreases as we move fur-
ther from the decision boundary.

The case of active learning under regression however is
significantly less well-understood. In particular, we only
have a theoretical understanding of the two extreme cases
— no noise (as in, no model mismatch) and arbitrary model
mismatch. Chaudhuri et al. (2015) show that allowing the
learner to actively select instances for labeling under re-
gression with no model mismatch can only improve the
convergence rates by a constant factor; moreover, in many
natural cases, such as when the unlabeled data is drawn
from a uniform Gaussian, there is no improvement. Sabato
and Munos (2014) look at the other extreme case — when
arbitrary model mismatch is allowed — and provide an al-
gorithm that attempts to “learn” the locations of the mis-
match through increasingly refined partitions of the space,
and then learn a model accordingly. However if the model
mismatch is allowed to be arbitrary, then this algorithm
either requires an extremely refined partition leading to a
very high running time, or a large number of labels. More
recently, Anava and Mannor (2016) study an online learn-
ing approach for estimating heteroscedastic variances and
provide general task-dependent regret bounds, but not ex-
act parameter recovery gaurantees.

In this paper we take a step towards closing this gap in un-
derstanding by considering active regression under a real-
istic yet more benign “noise” model — when the variance of
the label noise depends linearly on the example z. Specif-
ically, the oracle’s response on an unlabeled example x
is distributed as NV ((z, 8*),02) with o, = (f*,x); here
£* is the unknown vector of regression coefficients and
f* is an unknown parameter vector. In classical statistics,
this framework is called heteroscedastic regression, and is
known to arise in econometric and medical applications.

While the usual least squares estimator for heteroscedas-
tic regression is still statistically consistent, we find that
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even in the passive learning case, optimal convergence rates
for heteroscedastic regression are not known. We thus be-
gin with a convergence analysis of heteroscedastic regres-
sion for passive learning when the distribution Py over the
unlabeled examples is a spherical Gaussian (in d dimen-
sions). We show that even in this very simple case, the
usual least squares estimator is sub-optimal, even when the
noise model f* is known to the learner. Instead, we pro-
pose a weighted least squares estimator, and show that its
rate of convergence is O (|| f*[|>(1/n + d?/n?)) when the
noise model is known, and O(|| f*||3(d/n)) when it needs
to be estimated from the data; here, n denotes the number
of labeled examples used to obtain the estimator. The lat-
ter matches the convergence rates of the least squares esti-
mator for the usual homoskedastic linear regression, where
| £*]I? plays the role of the variance o2

We next turn to active heteroscedastic regression and pro-
pose a two-stage active estimator. We show that when the
noise model is known, the convergence rate of active het-
eroscedastic regression is O (|| f*]|2(1/n+d?/n*)), a small
improvement over passive. However, in the more realistic
case where the noise model is unknown, the rates become
O(|[f*[1>(1/n+d?/n?)), which improves over the passive
estimator by a factor of d. Our results extend to the case
when the distribution P, over unlabeled examples is an ar-
bitrary Gaussian with covariance matrix > and the norm
used is the X norm. Our work illustrates that just like bi-
nary classification, even a partial knowledge of the nature
of the model mismatch significantly helps the label com-
plexity of active learning.

Our work is just a first step towards a study of active max-
imum likelihood estimation under controlled yet realistic
forms of noise. There are several avenues for future work.
For simplicity, the convergence bounds we present relate to
the case when the distribution Py is a Gaussian. An open
problem is to combine our techniques with the techniques
of (Chaudhuri et al., 2015) and establish convergence rates
for general unlabeled distributions. Another interesting line
of future work is to come up with other, realistic noise mod-
els that apply to maximum likelihood estimation problems
such as regression and logistic regression, and determine
when active learning can help under these noise models.
Summary of our main results in this work is given in Ta-
ble 1. We conclude the paper presenting simulations sup-
porting our theoretical bounds as well as experiments on
real-world data.

2. Problem Setup and Preliminaries

Let x denote instances in R?. Let P, denote a fixed un-
known distribution over instances x. The response y is gen-

NOISE MODEL NOISE MODEL Es-
KNOWN TIMATED
< |7
PassIVE | O([f*|2(2 + %)) | O(IIf11*(4))
Active | O(IF7 P2 + L)) | O(IF7[2(2 + L))

Table 1. Summary of our results: Rates for convergence of esti-
mators, i.e. ||3— 8" |3, under the heteroscedastic noise model (2).
Here, d is the data dimensionality and n is the number of labeled
examples used for estimation.

erated according to the model: y = (B8*,x) + 1, where
7x denotes instance-dependent corruption, and 5* is the
ground-truth parameter. In this work, we consider the fol-
lowing heteroscedastic model:

nx ~ N(0,0%(x)), (1)

with a standard parametric model for heteroscedastic noise
given by a linear model:

e ~ N (0, (f*,x)?), 2)

for some unknown f* # [*. Each response is indepen-
dently corrupted via (2). The goal is to recover 5* using
instances drawn from Py and their responses sampled from
N((B*,x), (f*,%)?).

Remark 1. The noise nx can be sampled from any sub-
Gaussian distribution with E[nx] = 0 and bounded second
moment E[n2] < o2 (for some constant o). For simplicity,
we will consider the Gaussian model (1).

Our approach is based on maximum likelihood estimator
(MLE) for regression. In the homoscedastic setting (i.e.
o(x)? = o forall x in (1)), MLE is known to give minimax
optimal rates'. The standard least squares estimator com-
puted on n iid training instances (x;,y;), ¢ = 1,2,...,nis
given by:

n -1 n
Bs = ( > XiXiT) > xivi 3)
i=1 i=1

and is the solution to the minimization problem:
n
PLs = arg mﬂin Z((ﬁ,xﬁ — ).
i=1

In the heteroscedastic setting, it is easy to show that the
standard least squares estimator is consistent.

Remark 2. Standard least squares estimator is consis-
tent for the heteroscedastic noise model (2): Assuming
x; € R i =1,2,...,n are drawn iid from the standard
multivariate Gaussian, we have the rate:

~ d
s - 518 = 0 (17°1P5 )

! A notable exception is the Stein’s estimator that may do better
for high dimensional spaces (Stein et al., 1956)
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While the estimator (3) is consistent, it does not exploit
the knowledge of the noise model, and does not give bet-
ter rates even when the noise model f* is known exactly.
We look at the maximum likelihood estimator for the het-
eroscedastic noise (1); which is given by the weighted least
squares estimator (or sometimes referred to as generalized
least squares estimator):

n
BaLs = (Z wiXiXiT> > wixiyi, “4)
i=1 i=1

ﬁ When the weights are known, it has
been shown that the weighted estimator is the “correct” es-
timator to study; in particular, it is the minimum variance
unbiased linear estimator (Theorem 10.7, Greene (2002)).
However, we do not know of strong learning rate guaran-
tees for the weighted least squares model in general, or in
particular for the model (2), compared to the ordinary least
squares estimator. This raises two important questions for
which we provide answers in the subsequent sections.

-1 n

where w; =

1. What are the rates of convergence of the maximum
likelihood estimator for the heteroscedastic model
when the noise model, aka, f* is unknown?

2. Can we achieve a better label requirement via active
learning?

The problem is formally stated as follows. Given a set of
m instances U = {x1,X2,...,X,;,} sampled i.i.d. from
the underlying Py, a label budget n < m, and access to
label oracle O that generates responses y; according to the
heteroscedastic noise model (2), we want an estimator B\ of
the regression model parameter 5* such that the estimation
error is small, i.e. ||B— B*|l2 < O(e).

Remark 3. Existing active regression methods (Sabato
and Munos, 2014, Chaudhuri et al., 2015) do not con-
sider the heteroscedastic noise model. Note that when f*
is known exactly, one can reduce heteroscedastic model to
a homoscedastic model, by scaling instances x and their
responses by 1/(f*,x). However, we still may not be able
to apply the existing active learning results to the trans-
formed problem, as the modified data distribution may no
longer satisfy required nice properties. The resulting esti-
mators do not yield advantages over passive learning, even
in simple cases such as when Py is spherical Gaussian.

Notation. ; denotes the identity matrix of size d. We use
bold letters to denote vectors and capital letters to denote
matrices.

3. Basic Idea: Noise Model is Known Exactly

To motivate our approach, we begin with the basic het-
eroscedastic setting: when f* is known exactly in (2). Even

in this arguably simple setting, the rates for passive and ac-
tive learning are a priori not clear, and the exercise turns
out to be non-trivial. The results and the analysis here help
gain insights into label complexities achievable via passive
and active learning strategies.

In the standard (passive) learning setting, we sample n in-
stances uniformly from the set &/ and compute the maxi-
mum likelihood estimator given in (4) with weights set to
w; = 1/(f*,x;)2. The procedure is given in Algorithm
1. The resulting estimator is unbiased, i.e. IE[BGLS|X | =
£*. Let W denote the diagonal weighting matrix with
W;; = w;. The variance of the estimator is given by:
Var(BoLs|X) = (XTWX)~L. The question of interest is
if and when the weighted estimator BGLS is qualitatively
better than the ordinary least squares estimator BLS. The
following theorem shows that the variance of the latter, and
in turn the estimation error, can be potentially much larger;
and in particular, the difference between their estimation
errors is at least a factor of dimensionality d.

Theorem 1 (Passive Regression With Noise Oracle). Let
BGLS denote the estimator in (4) (or the output of Algo-
rithm 1) where x; ~ N(0,1;) iid., with label budget
n > 2dInd and BLS denote the ordinary least squares esti-
mator (3). There exist positive constants C' and ¢ > 1 such
that, with probability at least 1 — %, both the statements
hold:

~ 1 d?lnn
1Bows — A2 < )

noexn2( =
el (5 + S

@<||f*||2Z) .

Remark 4. We present the results for instances sampled
from N(0,14) for clarity. The estimation error bounds
can be naturally extended to the case of Gaussian distri-
bution with arbitrary covariance matrix . In this case,
the bounds (in Theorem 1, for example) continue to hold
for the estimation error measured w.rt. X, ie. (8 —
ﬁ*)TZ(B\ — [*). Furthermore, with some calculations, we
can obtain analogous bounds for sub-Gaussian distribu-
tions, with distribution-specific constants featuring in the
resulting bounds.

1Bs — B*|13 =

Remark 5. In Theorem I, when n > d, d?/n? term is the
lower-order term, and thus, up to constants, the error of
the weighted least squares estimator is at most || f*||?(1/n)
while that of the ordinary least squares estimator is at
least ||f*||12(d/n). Thus, if the noise model is known, the
weighted least squares estimator can give a factor of d im-
provement in convergence rate.

Remark 6 (Technical challenges). The proofs of key results
in this paper involve controlling quantities such as sum of
ratios of Gaussian random variables, ratios of chi-squared
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random variables, etc. which do not even have expectation,
let alone higher moments; so, standard concentration ar-
guments cannot be made. However, in many of these cases,
we can show that our error bounds hold with sufficiently
high probability.

The following lemma is key to showing Theorem 1; the
proof sketch illustrates some of the aforementioned tech-
nical challenges. Unlike typical results in this domain,
which bound tr(A~1) by providing concentration bounds
for A, we bound tr(A~!) by providing lower bound on
each eigenvalue of A.

Lemma 1. Let X € R"* where the rows x; are sampled
iLid. from N(0,1;). Assume n > 2dlnd. Let W denote
a diagonal matrix, with Wy; = 1/(x;, f)?, for fixed f €
R Let o1 > o9 > -+ > o4 denote the eigenvalues of
XTW X. Then, with probability at least (1 — n%)

1. og(XTWX) > HJZLHZ and

2. oy (XTWX) > C”M%fori =1,2,...,d—1,

where ¢ > 1 and C' > 0 are constants.

Proof. We give a sketch of the proof here (See Appendix
B.2 for details). To show a lower bound on the smallest
eigenvalue, we first show that the smallest eigenvector is
very close to f, with sufficiently large probability. To do so,
we exploit the fact that the smallest eigenvalue is at most
n/||f||? which can be readily seen. For the second part, we
consider the variational characterization of d — 1st singular
value given by:

O'd_l(XTWX) = max min v XTWXv.

U:dim(U)=d—1 veU,||v|=1

We look at the particular subspace that is orthogonal to f*
to get the desired upper bound. One key challenge here is

n g
i=1 K2
are iid Gaussian variables. We use a biocking technique
based on the magnitude of (f,x;), and lower bound the
quantity with just the first block (as all the quantities in-
volved are positive). This requires proving a bound on the
order statistics of iid Gaussian random variables (Lemma 7
in Appendix A). O

controlling quantity of the form where ¢; and h;

Theorem 1 shows that weighting “clean” instances (i.e.
(f*,x) ~ 0) much more than “noisy” instances yields a
highly accurate estimator of 5*. But can we instead pre-
fer querying labels on instances where we know a priori
the response will be relatively noise-free? This motivates a
simple active learning solution — in principle, if we actu-
ally know f*, we could query the labels of instances with
low noise, and hope to get an accurate estimator. The active

learning procedure is given in Algorithm 2. Besides label
budget n, it takes another parameter 7 as input, which is a
threshold on the noise level.

We state the convergence for Algorithm 2 below:

Theorem 2 (Active Regression with Noise Oracle). Con-
sider the output estimator B of Algorithm 2, with input la-
bel budget n > 2dIn d, unlabeled set U with U| = m and
x; ~ N(0, 1) i.id., and T = 2n/m. Then, with probabil-
ity at least 1 — 1/n°:

~ 1 d’Inn
o *2< noexN2( =
1551 < (5 + S5t ).

for some constants ¢ > 1 and C' > 0.

Remark 7. We observe that the estimation error via active
learning (Theorem 2) goes to 1/n as the size of the unla-
beled examples m becomes larger. Note that O(1/n) is the
error for 1-dimensional problem and is much better than
d? /n? we get from uniform sampling.

Remark 8. Ifwe have m > n? unlabeled samples, then we
observe that active learning (Theorem 2) achieves a bet-
ter convergence rate compared to that of passive learning
(Theorem 1) — the lower order term in case of active learn-
ing is O(Z—i) versus passive learning which is O(Z—z). The
convergence is superior especially when n < d* (as we
also observe in simulations).

The proof of Theorem 2 relies on two lemmas stated below.

Lemma 2. Let X € R™? denote the design matrix
whose rows x; are sampled from U such that they satisfy
|(xs, £)| < || fllT for fixed f € R Assume n > 2dInd.
Let 01 > 09 > ...04 denote the eigenvalues of X7 X.
Then, with probability at least (1 — 2 ):

1. 04(XTX) > nr?
2. 0y(XTX) > 1In, fori=1,2,...,d—1,

for some constants C > 0 and ¢ > 1.

Lemma 3. For each x; € U, where |U| = m, define g; =

(x;,2), for any fixed z € R Then, with probability at
3

least exp(ﬁ):

H il < ||z||7}

4. Estimating Noise: Algorithms and
Guarantees

mT
> —.

In this section, we will first show that we can obtain a
consistent estimator of f*, as long as we have a reason-
ably good estimate of 3*. Let 3y denote the ordinary least
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Algorithm 1 Passive Regression With Noise Oracle

Input: Labeling oracle O, instances U = {x;,i € [m]}, label budget n, noise model f*
1. Choose a subset L of size n from I/ uniformly at random from /. Query their labels using O.

2. Estimate 3 using (4) on £, with w; = 1/(f*,x;)2.
Output: 5.

Algorithm 2 Active Regression With Noise Oracle

Input: Labeling oracle O, noise model f*, instances U = {x;,% € [m]}, label budget n, noise tolerance 7.
1. Choose a subset £ of size at most n from U with expected noise up to the given tolerance 7, i.e. for all x; € L,

|(xi; f*)| < 7. Query their labels using O.

2. Estimate ﬂ as B
1

(f*,xi>2 . R

Output: 5.

(XTWX) ' XTWy where X € R"*% andy € R", and W is a diagonal matrix with W;; =

squares estimator of 3*, obtained by using (3), on m; la-
beled instances, chosen i.i.d. from A(0, ). The largest
eigenvector of the residual-weighted empirical covariance
matrix given by:

§- L i(g — (%1, Bo))?xix? 5)

my v [ (2 1R -

gives a sufficiently good estimate of f*. This is established
formally in the following lemma.

Lemma 4. Let m1 = Q(dlog®d). Then, with probabil-
ity at least 1 — 5, the largest eigenvector f ofS in (5)

converges to f*:
P px X d
I - 713 < CuBllon - 18] + O ).
my

for some positive constant C, and expectation is wrt the
randomness in the estimator [3.

We first discuss the implications of using the estimated f in
order to obtain the generalized least square estimator given
in (4) and then present the active learning solution.

4.1. Weighted Least Squares

We now consider a simple (passive) learning algorithm
for the setting where the noise model is estimated, based
on the weighted least squares solution discussed in Sec-
tion 3. We first get a good estimator of f* (as in Lemma
4) and then obtain the Welghted least squares estimator:
B = (XTWX) LXTWy, where W is the diagonal ma-
trix of inverse noise variances obtained using the estimate
f with a small additive offset v. The procedure is presented
in Algorithm 3.

Remark 9. Algorithm 3 can be thought of as a special case
of the well-known iterative weighted least squares (i.e. with
just one iteration), that has been studied in the past (Car-
roll et al., 1988).

It is well-known heuristic to first estimate the weights and
then obtain the weighted estimator in practice; the approach
has been widely in use for decades now in multiple com-
munities including Econometrics and Bioinformatics (Har-
vey, 1976; Greene, 2002). However, we do not know of
strong convergence rates for the solution. To our knowl-
edge, the most comprehensive analysis was done by (Car-
roll et al., 1988). Their analysis is not directly applicable to
us for reasons two-fold: (i) they focus on using a maximum
likelihood estimate of the parameters in the heteroscedastic
noise model, and does not apply to our noise model (2), and
(ii) their analysis relies the noise being smooth (for obtain-
ing tighter Taylor series approximation). More importantly,
their analysis conceals a lot of significant factors in both d
and n, and the resulting statements about convergence rates
are not useful (See Appendix C).

Theorem 3. Consider the output estimator B of Algo-
rithm 3, with label budget n > 2dInd and offset v* =

\/%. Then, with probability at least 1 — 1/n°:

dl
1B— 5 < o p e

for some constants C > 0 and ¢ > 1.

Remark 10. Note that the above result holds for the spe-
cific choice of v. When v = 0, we get the weighted
least squares estimator analogous to the one used in Algo-
rithm 1. However, when estimating weights with y = 0, the
resulting estimator [3 has poor convergence rate. In par-
ticular, we observe empirically that the error ||3 — 3%

scales as O(%).

4.2. Active Regression

We now show that active learning can help overcome the
inadequacy of the passive weighted least squares solution.
The proposed active regression algorithm, presented in Al-
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gorithm 4, consists of two stages. In the first stage, we ob-
tain an estimate fsimilar to that in Algorithm 3. Note that
if fis indeed very close to f*, fserves as a good proxy for
selecting instances whose labels are nearly noise-free. To
this end, we sample instances that have sufficiently small
noise: |<f, x)| < 7, where 7 is an input parameter to the
algorithm. If fis exact, then the algorithm reduces to the
strategy outlined in Algorithm 2. Our algorithm follows
the strategy of using a single-round of interaction (in light
of the analysis presented in the passive learning setting) to
achieve a good estimate of the underlying 5* akin to the ac-
tive MLE estimation algorithm studied by Chaudhuri et al.
(2015).

Lemma 5. Let f denote an estimator of f* satisfying
If = f*ll2 < A. For a given 7, let L denote a set of
|£| > 2dlogd instances sampled from m unlabeled in-
stances U, such that |(f,x;)| < 7, for all x; € L, and let
y; denote their corresponding labels. Consider the ordi-
nary least squares estimator obtained using L, i.e.:

-1

A T

5‘( E Xixi> E XiYi -
X, €L x,EL

Then, with probability at least 1 — #

HB—W@<CWW%¥+A%(1+d_v.

mt3 mr

for some constants C > 0 and ¢ > 1.

Remark 11. The bound in the above theorem recovers the
known variance case discussed in Theorem 2, where the
estimation error A®> = 0 and the choice of T = %"

Compared to the passive learning error bound in Theorem
3, we hope to get leverage — as long we can choose 7 suf-
ficiently small, and yet guarantee that the number of sam-
ples mo in Step 4 of Algorithm 4 is sufficiently large. The
following theorem shows that this is indeed the case, and
that the proposed active learning solution achieves optimal
learning rate.

Theorem 4 (Active Regression with Noise Estimation).
Consider the output estimator 3 of Algorithm 4, with in-

put label budget n, unlabeled examples m > n?, m; = 5

and T = 2\/%. Then, we have, with probability at least
1—1/n¢

~ 1 d?
% 2< *12 = -
B-sB<clrPp(+%).

for some constants C > 0 and ¢ > 1.

Remark 12. We observe that active learning (Theorem 4)
has the same convergence rate for sufficiently large n, as
that of the case when f* is known exactly (Theorem 2).
Note that d*/n? and d* /m? are lower-order terms in the
compared bounds.

Remark 13. Unlike in the case when noise model was
known (Theorem 2), here we can not do better even with
infinite unlabeled examples. The source of trouble is the
estimation error in f, so beyond a point even active learn-
ing does not provide improvement. Note that we do not
compute weighted least squares estimator in the final step
of Algorithm 4 unlike in Algorithm 2, for the same reason.

5. Simulations

We now present simulations that support the convergence
bounds developed in this work. The setup is as fol-
lows. We sample unlabeled instances x1, Xo, . . . , X;,, from
N(0,1;). Labels are generated according to the het-
eroscedastic model: y; = (8*,x;) + g:(f*,x;), where
g; are iid standard Gaussian random variables. We fix
[[/*ll2 = 1 and d = 10. We look at how the model es-
timation error (in case of Algorithms 1 and 2) || B - pr I
decays as a function of the label budget n (m = 2n? for all
the simulations). We also check the estimation error of the
noise model in case of Algorithms 3 and 4.

The results for convergence of model estimation when the
noise model is known are presented in Figure 1 (a)-(d).
In passive learning, the bounds in Theorem 1 suggest that
when n < d?, ||* — BH = O(%); but once n > d?, we
get a convergence of O(1/4/n). We observe that the re-
sult in Figure 1 (a) closely matches the given bounds?. In
case of active learning, the bounds in Theorem 2, for the
case when m > n?, suggest that we get an error rate of
|5* — B | = O(-%). We observe a similar phenomenon in
the Figure 1 (b). Turning to the noise estimation setting for
passive learning, we see in Figure 1 (c) that the estimation
error of 8* as well as f* decay as /d/n (as suggested by
Theorem 3); for active learning, we see in Figure 1 (d) that
the estimation error of 3* is noticeably better, in particular,
better than that of f*, and approaches 1//n as n becomes
larger than d2.

We also study the performance of the algorithms on two
real-world datasets from UCI: (1) WINE QUALITY with
m = 6500 and d = 11, and (2) MSD (a subset of the mil-
lion song dataset) with m = 515345 and d = 90. For each
dataset, we create a 70-30 train-test split, and learn the best
linear regressor using ordinary least squares, which forms
our 5*. We then sample labels using £* and a simulated
heteroscedastic noise f*. We compare active and passive
learning algorithms on the root mean square error (RMSE)
obtained on the test set. In Figure 1 (e), we see that ac-
tive learning with noise estimation gives a significant re-
duction in RMSE early on for WINE QUALITY. We also
see that weighted least squares gives slight benefit over or-

2For better resolution, we plot || 3* — 3| rather than || 3* — 3|2
given in the theorem statements
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dinary least squares. On MSD dataset 3, again we observe
that our active learning algorithm consistently achieves a
marginal reduction in RMSE as the number of labeled ex-
amples increases.

6. Conclusions and Future Work

In conclusion, we consider active regression under a het-
eroscedastic noise model. Previous work has looked at
active regression either with no model mismatch (Chaud-
huri et al., 2015) or arbitrary model mismatch (Sabato and
Munos, 2014). In the first case, active learning provided no
improvement even in the simple case where the unlabeled
examples were drawn from Gaussians. In the second case,
under arbitrary model mismatch, the algorithm either re-
quired a very high running time or a large number of labels.
We provide bounds on the convergence rates of active and
passive learning for heteroscedastic regression. Our results
illustrate that just like in binary classification, some partial
knowledge of the nature of the noise has the potential to
lead to significant gains in the label requirement of active
learning.

There are several avenues for future work. For simplicity,
the convergence bounds we present relate to the case when
the distribution Py over unlabeled examples is a Gaussian.
An open problem is to combine our techniques with the
techniques of (Chaudhuri et al., 2015) and establish con-
vergence rates for general unlabeled distributions. Another
interesting line of future work is to come up with other,
realistic noise models that apply to maximum likelihood
estimation problems such as regression and logistic regres-
sion, and determine when active learning can help under
these noise models.

3here, the response variable is the year of the song; we make
the response mean zero in our experiments
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Algorithm 3 Least Squares with Estimated Weights

Input: Labeling oracle O, unlabeled samples & = {x;,i € [m]}, label budget n, parameter m, offset ~.
1. Draw m; examples uniformly at random from I/ and query their labels y using O.
2. Estimate Bo by solving y ~ X 30 where X € R™1%4 has x; as rows and y € R™! is the vector of labels.
3. Draw a subset £ of n examples uniformly at random from /. Form X € R"*? andy € R™.

4. Compute fas the largest eigenvector of the residual-weighted empirical covariance given in (5).

A~ 1
5. Set w; = m,

forx; € L.

6. Estimate B by solving: B = (X TWX )’1X TWy, where ﬁ/\ is diagonal matrix with Wii = W;.

Output: 3 .

Algorithm 4 Active Regression

Input: Labeling oracle O, unlabeled samples i/ = {x;,i € [m]}, label budget n, parameters m;, 7
1. Draw mn; examples uniformly at random from U and query their labels y using O.
2. Estimate 50 by solving y ~ Xﬂo where X € R™1*? andy € R™.
3. Compute f as the largest eigenvector of S given in (5).

4. Choose a subset £ of mg = n — my instances from U/ with estimated noise variance up to tolerance 72, i.e. for all
X; <xz, )\2 < 72. Query their labels using O.
5. Estimate B as 8 = (X7 X)"2 X7y where X € R™2% and y € R™2,
Output: 5.
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Figure 1. Plots (a)-(b): convergence of model (3*) estimation error, when the noise model is known. Plots (¢c)-(d): convergence of model
(8™) estimation error as well as noise parameter (f*) estimation error, when the noise model is estimated. Plots (e)-(f): RMSE on test

data for two real-world datasets.
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