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Abstract

In this supplementary material, we present the
deferred proofs of the results in the main paper.

1. Proof of Claim 1

Statement of Claim 1: Suppose that each element x; of x
is sampled i.i.d. from Rademacher distribution, i.e., P(x; =
1) = P(z; = —1) = 0.5. Under model (3) with noise
e = 0, there exists a @ € SP~1 together with a monotone
f, such that supp(0) = supp(0*) and y; = f((0,x;))
for data {(x;,y;)}_, with arbitrarily large sample size n,
while ||0 — 0* ||y > & for some constant §.

Proof: In the noiseless setting with unknown f*, provid-
ed that S £ supp(6*) is given and |S| = s, the estimation
of 6% is simplified as

Find 05 € st

s.t. sign ((05,xi5 — st>) = sign(y; — v;),
Vi<i<j<mn,

(S.1)

any of whose solution € can be true 8* on the premise
that no other information is available, since there always
exists a monotone f satisfying f((0,x;)) = y;. Given
the distribution of x, x;5 — X; ¢ only has 3° possibilities
even if n — +o00. We denote the feasible set of (S.1) by
C, which is basically an intersection of S*~1 and at most
min{n(n — 1), 37} halfspaces (or hyperplanes if y; = y;).
Depending on the 3 different values of each sign(y; — y;),
this feasible set C has at most 3™ {n(n—1):3"} pogsibili-
ties, which is finite, and the union of them should be S5~ !.
When s > 2 and the constant § is small enough, we can
always find a C, in which there exist two different points
away by 6. Specify them as 6,5 and 5 respectively, and
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we are unable to distinguish between them, as both can be
solution to (S.1) for any samples. [ ]

2. Proof of Lemma 1

Statement of Lemma 1: Suppose the distribution of y in
model (1) depends on x through (6*,x) and we define ac-
cordingly

bi (21, 2m; 0%) = (S.2)

]E[q’b (yla"'7ym) ‘<0*7X1> = 21,...,<0*,Xm> = Zm] B

With x being standard Gaussian N(0,1), u defined in (4)
satisfies

E[u((xlvyl)’ cee (vaym))] = po,

where 3 = 27;1 E[bi (91, --,9m;0%) - ¢i], and
g1, .-, 9m are i.i.d. standard Gaussian.

(S.3)

Proof: Let 6, be any vector orthogonal to 6*. For
convenience, we use the shorthand notation u for
u((x1,41),- -+, (Xm;Ym)). Then we have

(Eu,0,) =E Zqi (Y1, Ym) - (xi,01)
i=1

= ZE [ql (yl, ce 7ym.) . <Xi7 0l>]

m

= D B[, 00) Elgs (g1 i) Ity X (3)

As x; follows A/(0,1), (x;,0%) and (x;, 0 ) are two zero-
mean independent Gaussian random variables. Since the
distribution of y; depends on x only via (6*,x;), we can
split the expectation and obtain

NE

(%) =) E[(x;,01) b; ((0%,%x1),...,(0",%:,);07)]

i=1

~
Il

I
NE

E [<Xi7 0L>] ‘E [bl (<0*7X1>a cey <0*7Xm>; 0*)}

1
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Hence u has to point towards either 8% or —6*, and note
that

(Eu, 67) E (g (Y1, Ym) - (xi,0")]

I
.MS

s
Il
—

[bl (<9*,X1>, .
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E[bz (glaagﬂue*)gz} :6

1
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We complete the proof by recalling that [|0*||s = 1, thus
Eu = g06*. [

3. Proof of Theorem 1

We first provide a lemma that is useful for bounding the
Gaussian width of unions of sets, which originates in
Maurer et al. (2014).

Lemma A (Lemma 2 in Maurer et al. (2014)) Let M >
4, Ay,--- , Ay C RP, and A = U, A,,. The Gaussian
width of A satisfies

w(A) < max w(Ap)+2sup|z|2v/logM (S4)
ze A

T 1<m<M

Statement of Theorem 1: Suppose that the optimization
(9) can be solved to global minimum. Then the following
error bound holds for the minimizer 6 with probability at
least 1 — C" exp (—w? (Ax(0%))),

Crm?  w(Ax (%) +C’
2= B vn ’
where k is the sub-Gaussian norm of a standard Gaussian
random variable, and C, C', C"" are all absolute constan-
t. Proof: We use the shorthand notation Ay for the set
Ak (67). As 0 attains the global minimum of (9), we have

06— 06"

(S.5)

6—0"0)>0 — <é—9*, —0*+0*>zo

u
B
— <(§70*>>1—<é—0*,;—9*>

>1—(6—0%2- sup <v,“—0*>
veAxU{0} B

In order to bound the supremum above, we use the result
from generic chaining. We define the stochastic process
{Zy = (v,0/B — 0%) }vecarufo}- First, we need to check
the process has sub-Gaussian incremental. For simplici-
ty, we denote u ((X;,, i, ),---» (Xin,, Yirn ) DY Wiy i
By the definitions and properties of sub-Gaussian norm

(0%, %xm); 07) - (x;,07)]

.....

isfies

m
Huily-"yivn pe —  SUP qu (yln' - 7yim> : <Xj>v>
vesp—1 =1
P2
m
< sup Y |(x5, V)
vesp—t =1
)
<m- sup |l[{x;,v)[ll, <wm,
vesp—1

thus we know ||(w;, .., , V — W)y, < Em - ||v — w]a.
By Lemma 2, we have
>Q
(n —m)!

1
ol Z 3 Wiy, VW)

1<iy,....im<n
1F . Fim

)

n 3262
< _olry. 7
< 2exp ( ¢ {mJ m2k2 - ||v — w||§>

P(|Zy — Zw| > 0) :P(Kv—w,g —9*>

]p<

—(v—w,0%

n,8252
<2 -
<20 (-0 )
where we set C’ = (/2. Therefore we can conclude

that {Z, } has sub-Gaussian incremental w.r.t. the metric
s(v,w) £ km? - ||v — wl|2/Bv/n. Now applying Lemma
3 to {Z,}, we obtain

]P’( sup |2y — Zw| > 01(72 (Ax U {0}, )
v,weAU{0}

+§ - diam (A U{0},s) )) < Chyexp (_52)

3
Ciem?2

pvn

+ 25)> < Cyexp (752)

== ]P’( sup
veAxU{0}

2] > (12 (Ac U {0} - 12

Using Lemma 4 ~o (AxcU{0}, ] ]2) < Co
w (A U{0}) and taking § = w(AxU{0}), we
get

sup <v, u_ 0*> < sup |Zy]
veAxUu{o} ﬂ veAxu{o}

C’gmm% Cskm?  w (Ax) + Cy
~ Bvn B Vn

with probability at least 1 — C5 exp (—w? (Ax)). The last
inequality follows from Lemma A. Now we turn to the

~w (Ac U{0}) <
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quantity [0 — 6%,

16 — 6713 <2 —2(6,6%)

3
g2—2<1—||é_e*||2-03“m “’“’C”C‘*)

B n
2C3km=  w (Ax) + Cy
B Vvn '

3
2

<)6-6"-

We finish the proof by letting C' = 2C5, ¢/ = C4 and
C" = OQ. |

4. Proof of Theorem 2

Statement of Theorem 2: Define the following set for any
p>1,

A, (0%) = cone{ ’ v+ 6 < ||6*| + ;”} ﬂ sp-t

(S.6)
If we set X = plla—pO*[|, = O(pm*>w(B))/vn)
and it satisfies X < ||Ql|., then with probability at least
1—C"exp (—w? (By.|)), 0 in (10) satisfies

_ Ot p)sm? W (A,(07)) w (By.))
2 8 NG ’
(S.7)
where W (A,(0%)) = supyca, (o IVl and By =
{v | ||v|| < 1} is the unit ball of norm | - |

’é—e*

Proof: Based on the optimality of 6, we have

—(,0) + M0 < —(0,0%) + A|07]| =
(6O — 10— £6*,0) + )6
< (B —a—p36%,0") + \|0*| =
B(1—(6%,8)) < (a— 56,6 — 6°) + \(|6*| — ||0])

Since (6*, é> < 1, we have

(a—60%,6 0%+ (llo"] - 10]) =0 —
N * 1 ~ * N *
101 < llo H+*-<u—60 6-06)

< [6°]+ 5 - o~ 50" .16 - 0]

= |0*| + ;HO—O*H — 0-0"¢c A, (0%)

Therefore it follows that

* A u * A * A * A
L—(00) < (507007 + 5 (0"~ 10])
sllé_e*|2< B_ge| 1oz A )8 ‘i')

A R PR R P
A u .
<A+p)0-672-|Z -0 sup ||v]|
g « VEA,(O%)
N * a * *
=L+ )l =672+ |5 =07 ¥ (A,(67))
(S.8)
Now we try to bound % — 0*|| . We first rewrite it as
% — 0 L= SUDyeg, <% — 0*,v>. Construct the s-

tochastic process {Zy = (v,1/8 — 0")}vep,., and it is
not difficult to verify that {Z,} has sub-Gaussian incre-
mental using the proof in Theorem 1. Now applying Lem-
ma 3 and 4, we have

U 1
sup <u—0*,v>=~ sup |Zy — Zw]|
VEB”,H 5 2 v,wGBH.H (S 9)
Cﬂim% ) w (B”.H)
— /B \/ﬁ 9

with probability at least 1 — C” exp (—
fore we know that )\ satisfies

A=0 (pm3/2w(3|-|)>

w? (BH'H ) ) . There-

n

If @ = 0 is the minimizer, the first-order optimality should
hold, i.e.,

ac 9o = [l <A

Hence if A < |[Gl|«, O cannot be the minimizer, which
means that the minimum of (10) must be negative. So we
can assert that ||@]|, = 1, otherwise we can normalize 6 to
get a smaller objective value. Combining (S.8) and (S.9),
we finally get

S 2-2(0,0%)
16— 0~]|
_ Omi(l+p) ¥ (A(67) w(By)
— /B ﬁ )
where the equality uses the fact that ||@]|, = 1. ]

5. Proof of Corollary 1

Statement of Corollary 1: Assume that {(x;,y;)} fol-
low 1-bit CS model in (2) and 0 is given as (14). For any
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s-sparse 0%, with high probability, 6 produced by both (15)
and (17) (i.e., 0% and 0" ) satisfy

<0 < slogp)
2 n

Proof: For the k-support norm estimator, the cone
A (0%) is given by

Hé _ 6

(S.10)

Ay (0%) = cone {é A
= Ac(0)CS={v||v|o<2s}nsP!

Using (19) from (Chen & Banerjee, 2015), we have

w(Ax(6") < w(S) <O (Vslogp) .

By Theorem 1, the error of k-support norm estimator satis-

fies
<0 ( slogp>
2 n

For the passive algorithm, if we choose p = 2, the restricted
norm compatibility ¥ (A,(6*)) for L; norm satisfies

Héks _B*

T (A, (07)) <4vs (S.11)

according to the results in (Negahbanetal.,, 2012;
Banerjee et al., 2014). Chen & Banerjee (2015) also show
that the Gaussian width of the L;-norm ball is bounded by

w(Br,) <0 (VIogp) -

Now combining (S.11), (S.12) and Theorem 2, we can con-

clude that
<0 < slog p> ’
2 n

which completes the proof. [ ]

(S.12)

oo

6. Proof of Proposition 1

Statement of Proposition 1: Given {(x;,y;)}",, let 7
be the permutation of {1,...,n} such thaty_, > y_ . >

1 2
... >y._1. Then we have

n

Z(nJrl —2i)-x_1

i=1

- 2

1610 < s, 100> < 1} () 57~

Proof: 'We rearrange the terms inside the summation of
(21) based on 7,

1

EiabTr—Y)

Y sign(yi — y;) - (xi — x;)
1<ij<n
i#]
n(n _ 1) - g yz y] {2
1<ij<n
i#]

2 O :
n(n—1) Z Z Sigh (yWL - yj) X

=1 jstnt

n

2
=~ 1—29)-
n(n —1) ;(n + ) Xt
where the last inequality uses the fact that there are
(i — 1) y; larger than and (n — i) smaller than y_., thus

Z#ﬂ,i sign (yﬂ - yj) =(n—i)—(i—-1) =n+1-2i. =

7. Proof of Proposition 2

Statement of Proposition 2: For s-fused-sparse 0%, the
Gaussian width of set Aic(0*) with K = {0 | |F(0)] <
s, |0]]2 = 1} satisfies

w(Ax(07)) < O(y/slogp) (S.14)
Proof:  Define the following sets
ﬂ’j:{QHERP U1:...:'LLZ',1:UJ'+1:...:’LLP:07
1
P= .= U = ———— <2 1
U; u;j NETES lo] < v2s+ }
(S.15)
T=UT, (S.16)
i<j

For each ’77 j» its Gaussian width can be calculated as

w(T;,;) =E

sup <V,g>] =V2s+1-E[[(u,g)]

veTi,;
=v2s+1-El|g|=0(2s+1),

where u is defined in (S.15) and g is a standard Gaussian
random variable. We apply Lemma A to 7, and obtain

W(T) < maxw(Ti,;) + 2 sup |1z [log ((”) +p)
i<j zeT 2

< O(W2s+1)+O(V2s +1-/logp)
= O(v/slogp)
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Next we show that Ax(6*) conv(7). Since K
{6 | [FO) < s [0l 1} and Ax(67)

cone {v ‘ v=0-6*0¢ IC} (N SP~1! by definition, we
have |F(v)| < 2sforany v € A (0*). Suppose |F(v)| =
t <2sand F(v) = {i1,42,...,4:}. For simplicity, we al-
soletig = 0 and 4,41 = p. Then any v € A (6*) can be
written as a convex combination of ¢ + 2 points in 7. To

see this, we rewrite v as
VE+1vi 41,

c

vav N Z”Vv +177+1H2'
e Vi, 4100, ll2
t
( -y Ivesss |> 0
k)

(S.17)

where v;, 1., , is obtained from v by keeping the entries
from index ¢, + 1 to 7,41 while zeroing out the rest. Let

Vir i, 2 N2

W, 10,0 2 = VE+ 1T < V25 +1

= W, 41,4, € Tigtiip, ©T .

Wi, 41ty = , and we have

It follows from ||v||2 = 1 that

t
Vi +1:4 2 (t+1) Z'r‘:O ||Vir+1:z‘r+1 ||%
Z r r+1 < -
a ViF1l

— 1_ Z ||V717‘+1 7/7‘+1 ”2

>0

Hence (S.17) is indeed a convex combination of ¢+ 2 points
in 7, which implies Ax(6*) C conv(7). Finally, by the
properties of Gaussian width, we conclude that

w(Ax(67)) < w(conv(T)) = w(T) < O(v/slogp)

]
8. Proof of Lemma 2
Statement of Lemma 2: Define the U-statistic
(n —m)!
Unm(h) = =~ S (i ,2i,)
1<it,emsim<n
117927 Flim
(S.18)

with order m and kernel h : R*™ — R based on n in-
dependent copies of random vector z € R?, denoted by
Z1,- 2y IFR(-, .. ., -) is sub-Gaussian with ||h|| p, < K,
then the following inequality holds for U, ,,(h) with any
0 >0,

2
P (Unn(h) = B ()] > 8) < 2050 (-C | 2] - &)
(S.19)

)

in which C is an absolute constant.

Proof:  Our proof is based on Hoeffding’s decomposition
for U-statistics. For simplicity, we use U as shorthand for
Up,m(h). Given a permutation 7 of {1, ..., n}, define

LmJ 1
L Z B (Zrpiys s

The U-statistic can be rewrittenas U = = > W, and the
summation is over all possible permutations of {1, ... ,n}.
As no copy of z appears more than twice in a single W,
W is an average of | | independent sub-Gaussian ran-
dom variables. Hence the )5-norm of its centered version
satisfies ||Wr — EWx ||y, < ck/4/|5]. Using Chernoff
technique, we have for any ¢ > 0,

P(U—EU > 6) < e - E[exp(t({U — EU))]

z”m<k+1>) ’

= Y. E |exp <;' Z(W U))
<e ¥.E Zexp » —EU))
=e % . Elexp (t (VV7r —EW,))]
S
<exp|—to+ct®  — |,
%)
(S.20)

where the second inequality is obtained via Jensen’s in-
equality and the last one follows the moment generating
function bound for centered sub-Gaussian random variable.
Choosing t = | 2| §/2cx? to minimize right-hand side of
(5.20), we obtain
52
),

where C' = 1/2¢. To complete the proof, we just need to
repeat the argument above for P (U — EU < —0). ]

P (U —EU > §) < exp (-c PJ

m
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