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Abstract

This note contains supplementary materials
for Dueling Bandits with Weak Regret.

0. Gambler’s Ruin Lemma

In our analysis of WS-W, we will use results from a
special case of the Gambler’s ruin problem (Karlin,
1968), stated as follows: suppose a gambler has m
dollars initially. In each of a sequence of rounds, he
loses 1 dollar with probability ¢ # 3 and wins 1 dollar
with probability 1 — g. He stops playing when he has
either m+ 1 dollars or has no money left. We have the
following result, with a proof available on Page 73 of
Karlin (1968).

Lemma 0.1 (Gambler’s Ruin Lemma). In the gam-

bler’s ruin problem: (1) the probability that the gam-

bler reaches m + 1 dollars before reaching 0 dol-
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lars is qm = T (2) the expected number

of steps before the gambler stops playing is 75 —
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Observe that the conditional distribution of T, ; and
the winner of iteration k£ round /¢, given the two arms
being pulled, is given by the result above for the Gam-
bler’s ruin problem. We leverage this in our proof.

1. Proof of Lemma 1

Proof. Suppose we are comparing arm ¢ versus arm j
in this iteration with ¢ > j and arm ¢ is the incumbent.
Then we know C(te — 1,4) = (N -1)({—-1)+k—1
and C(ter—1,5) = —¢+1. We will keep playing these
two arms until C'(¢p +Tok—1,7) = (N=1)(—1)+k
or C(t(,k + T 5 — 1,j) = (N — 1)(( — 1) + k. Further,
since the winning probability of arm ¢ over arm j is
p;,; over this period, we know the dynamics of this
iteration are the same as those of the Gambler’s Ruin
problem. Denote E = C(t;,—1,1)—C(te—1,j)+1 =
NIl+Ek—N. Then the expected length of time we spend
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in this iteration by Lemma 0.1 is
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The proof of second statement is similar. Using the
same notation but now supposing p;; > p > %, we
have that the expected length of time we spend in this

iteration is
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2. Proof of Lemma 2

In this section, we prove Lemma 2 from the main
paper. This section is structured as follows: In sec-
tion 2.1, we provide two bounds for the incumbent’s
losing and winning probability; In section 2.2, we con-
sider a version of the problem in which better and
worse incumbents have constant (but different) win-
ning probabilities and provide a upper bound for the
number of worse incumbents in a round before a better
incumbent loses ; In section 2.3, we use the results from
the previous subsection to bound the expected number
of iterations with a worse incumbent in a single round
before a better incumbent loses, starting from within a
round; In section 2.4, we prove a similar bound on the
expected number of iterations with a worse incumbent
in this and future rounds before a better incumbent
loses, starting from the beginning of a round; In sec-
tion 2.5, we complete the proof of Lemma 2.



Throughout this section, we use a one to one cor-
respondence between n and (¢, k) defined by n =
(—=1)(N-1)+k,0<k<N-land¥{=[n/(N-1)].
We also denote p* = %.

2.1. Bounds on Win and Loss Probabilities

We first prove the following two lemmas, which give

e a lower bound for the probability that a worse
incumbent loses an iteration;

e an upper bound for the probability that a better
incumbent loses an iteration.

Lemma 2.1. In iteration k of round ¢ conditioned on
the identities of the incumbent and the challenger, if
the incumbent is worse than the challenger, then the
incumbent loses the iteration with conditional proba-
bility at least p* = 2171)7—1.

Proof. Let ¢ be the incumbent and j be the challenger,
with 7 > J. C(i,tg,k) > 0 and C(], t&k) < 0. Let
E = C(i,ter) +|C(j,te,x)| + 1. The probability that
arm ¢ loses this iterations is the same as 1 — gg in the
Gambler’s Ruin Lemma, Lemma 0.1, with ¢ = p; ; <
0.5. This probability is:
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Lemma 2.2. In iteration k of round ¢ conditioned on
the identities of the incumbent and the challenger, if
the incumbent is better than the challenger, then the
incumbent loses the iteration with conditional proba-

E
bility at most (1%’7) , where E =N —1) + k.

Proof. This proof is similar to the previous one. Sup-
pose we are pulling arm ¢ and j with ¢ < j and i is the
incumbent. Then we know C(te, —1,7) = (N —1)(¢{ —
1)+k—1and C(tyr —1,j) = —€+ 1. The probability
that arm ¢ loses is equal to 1 — g from the gambler’s
ruin problem, where £ = (N—1)({—1)+k—1+(—1=

N —1)+ k. We have
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2.2. Definition and Upper Bound for ¢(b, m)
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In this section, we define a function g(b, m) as follows.
First, we define g(0,m) = 0 for any m. We define
g(b,m) for other integers b, m satisfying m > 0 and
0 < b < m recursively, as follows:

g(b,m)
b b—1 1 m—1 1
b =0 b =b
b—1 1
+ZE(1—p*)g(b—1,m—1)
b =0
b—1
b 1 , —b
=243 g m— 1)+ T Cg(b,m 1)
S m m
b =0
+£(1— gb—1,m—1) (1)
—(1=p")g ;

Intuitively, g(b,m) is the expected number of future
iterations in which the incumbent is worse than the
challenger, starting with m arms that have not dueled
yet b of which are better than the incumbent, when
we stop counting when we reach the end of the round
or when an incumbent loses to a worse challenger, in
a simplified problem in which worse incumbents beat
better challengers with probability p*. In our problem,
this probability is not p*, but is bounded below by this
quantity, and in the next section we will show that
g(b,m) is an upper bound on an analogous quantity in
our problem.

We prove the following result about g.
Lemma 2.3. For 0 <b<m < N —1, we have
log(b) +1

g(b, TTL) = g(ba b) < p*



Proof. Given the boundary conditions g(0,m) = 0 for
all m, we know Equation 1 has a unique solution. In
this proof,

o We first assume g(b,m) = ¢(b,b) for all b < m
and solve for g(b, m);

e Then we show that this g(b,m) is indeed the so-
lution for Equation 1, verifying that g(b,m) is as
claimed;

e Finally, we show g(b,m) < log;%-

First, we solve for g(b,m) with the assumption that
g(b,m) = g(b,b) for b < m. Setting m = b in Equa-
tion 1 provides

< pg(b,b)
g(b,b) =1+ Z -y )g(b—1,b—1).
b =0
(2)
Thus, we know

b—1
S Pt b+ 1)

b’ =1

b—1
=> pg(b,b)
b'=1

=b[g(b,b) =1 — (L —p")g(b—1,b—1)].

Therefore, Equation 2 becomes

gb+1,b+1)
=1+ 3 7lo,0) 1= (A =pT)g(b—1,b—1)]
+ M + (1 —p*g(b,b).

b+1

Re-organizing the terms, we have

gb+1,b+1)—g(b,b)
7b—&1-1 + bf_l(l—p*)[g(b;b)—g(b—l,b_l)]_

Denote F(b) = g(b, b)
1. Thus, we have
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—g(b—1,b—1). We know F(1) =

Therefore,

Thus, if g(b,m) = g(b,b) for all b < m, we know

’ — p* _ *\k—1
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Now we verify that this is the correct solution. We
prove this by induction on b. For b = 1, Equation 1
becomes

1

1 m —
1 = — 4+ —9q(1,m—1).
g(m) = — + " g(1,m — 1)

Since g(1,1) = 1, it is easy to check g(1,2) = ¢(1,3) =

=g(1,N-1)=1.

Suppose this g(b,m) = g(b,b) are true for all b < m,
b < k. For b=k + 1, Equation 1 becomes

g(k+1,m)
k
k-‘rl p* m—k—1
— b -1 —gk+1,m -1
E_jm om—1)+————g(k+1,m—1)
k+1
+ = gk m - 1)
k
_]<J+1 p* o m—k—1
_T_ang(b’b)—i—Tg(kH—l’m_l)
b =0
k+1
— 1 =p k, k).
L gt

To show g(k+1,m) does not depend on m, we need to
prove the following equation is true for m = k+ 2,k +
3,--- ,N—1.

kel ﬁi B)+ 0 gtk )
ST
—k+1+ zkj p g0, b))+ (k+1)(1 — p*)g(k, k)
:(k-l—l)glz/k‘:i— 1,m—1) (3)

We first check Equation 3 when m = k + 2. Starting



from the left hand side, we have

k
k+1+Y g0 b))+ (k+1)(1—p*)g(k, k)
b =0
—k+ 1+ (k+Dglk+1,k+1)—1—(1—p gk, k)]
(4)
+ (k+1)(1 - p")g(k. k)
=(k+D)g(k+1,k+1),

which equals to the right hand side. Equation (4) fol-
lows from Equation (2) (Equation (2) holds because
g(b,m) = g(b,b) for all b < k).

Again, by induction, we know (3) is true for all m =
k+2,---,N—1 and thus we concludes our induction.

We have shown that g(b,m) = g(b,b) for all b < m.

Finally, we prove g(b,b) = g(b,m) < bgi}#. This is
because

g(b, m) :g(b7 b)

b
_ 1 1_p* (1_p*)k—1
_Z {k + k + k
k=1
b
1 1_p* (1_p*)b—1
< —
<> {k ot -
k=1
1
:Z - 14+ @=p) 4+ 1—p)""]
k=1
log(b) +1
= p* ’
which concludes our proof. O

2.3. Bound on the Number of Iterations in
One Round with a Worse Incumbent,
Starting from Within the Round

Let B(n) denote an indicator function that equals 1
if we have a better incumbent at the n*" iteration.
The definition of B(n) is very similar to B(¢, k) ex-
cept B(¢, k) tracks both round and iteration number.
Similarly, we use B(n) = 1— B(n) to denote an indica-
tor function that equals 1 if we have a worse incumbent
at the n'" iteration.

Let h(i,n, A) be the expected number of iterations
with an incumbent that is worse than the challenger,
between iteration n and the first time that a better in-
cumbent loses to a challenger or the round ends, given
that the incumbent arm at iteration n is ¢ and A is
the set of arms that have not yet previously dueled in

the round. Formally, we define this quantity as:

i B(n')|A,i, = z] ,

n’'=n

h(i,n, A) =E

where

e Conditioning on A is understood to mean that
we are conditoning on C'(n —1,j) = £+ 1V j ¢
AU {in}, and C(n —1,§) = =€ ¥V j € A, where
¢ =[n/(N —1)] is the round in which iteration n
resides. In other words, it is understood to mean
that A contains the set of arms that have not yet
dueled in this round.

e o =min{n’ >n:J(n)=1n" =N[n/(N-1)]}
where J(n) is an indicator that equals 1 when a
better incumbent loses at iteration n, i.e., o is
the first time that either a better incumbent loses
or the round ends.

Lemma 2.4. For any i, ¢, k and A, we have

log(N) +1

h(i,n, A) < g(b,m) < o

)

wherem =N —k andb=|{u e A:u<i}.

Proof. Denote ¢; ;(n) as the probability that incum-
bent arm ¢ will beat challenger j at time n. We first
write a recursive expression for h(i,n,.A) that applies
when n is not divisible by NV:

h(in, A= > {1+Qi’j(n)h(i,n+l,AU{j})

N —
{jeA:i>j} k

1—qin), . .
t—~_1 h(j,n+1, AU {i})

3 SRR LAU. @

{jeA:i<j}

When n is divisible by N — 1, the only allowed value
of Ais 0 and h(i,n,0) = 0.

We then prove the desired result via induction on the
number of iterations in the round, i.e., on n (mod N —
1). When n (mod N — 1) = 0, we have h(i,n,) = 0,
b =0, and g(b,m) = 0. Thus the result holds in this
case.

Then suppose the result holds for all n with a partic-
ular value of n (mod N — 1) and we show it holds for
n — 1.

Applying the induction hypothesis to the right-hand



side of (5), we have

hin, A< Y |1+ Gal) g 1)

m
{jeA:i>j}
1—qin)
+ m g(bjj,m—1)
i (n
+ Z i )g(bi,jvm_l)a (6)
{jeA:i<j}

where b, ; = #{u € A\ {j}:u' <u}.

Consider the summand in the first sum in (6), drop-
ping the constants 1 and %,

D+ (1= aqi;(n)g(bjj,m—1). (7)

This is increasing in ¢; j(n) when ¢ > j since b; ; >
b; j, and since g(b,m) is increasing in b. Since i is an
incumbent that is worse than the challenger when i >
Jj, Lemma 2.1 shows that ¢; ;(n) <1-p* =1-— =14

qi,j(n)g(bij,m —

in
this situation. Thus, this summand is bounded above

by (1 —p*)g(b;j,m — 1)+ p*g(bjj,m — 1).

Substituting this into (6), along with the inequality
¢i,j(n) <1 in the last term, we have

h(i,n, A)
1—p* p*

< LA . _
< Z | [14— - g(b; j,m— 1)—|—mg(b],],m 1)}

{]EA:’L>]}

1
+ Z Eg(bi,j,m— 1)
{jeAi<j}

b b — p*
=—+—1-p )glb—1,m—1) — b -1

—+—(1—-pT)g(b—1,m z_: -9, m—1)

+ Ml m—1)
m
=g(b, m)

In the second to last line we have used that {b;; :
jeAi>jt={0,...,b6—1} and b;; = b — 1 when
i > j; bj; = b when ¢ < j; and that the cardinality
of {je A:i>j}and {j € A:i < j} are b and
m — b respectively. In the last line we have used the
recursive definition of g(b,m) in terms of g(-,m — 1).

This shows the first inequality in the statement of the
lemma. The second inequality follows directly from
Lemma 2.3. O

2.4. Bound on the Number of Iterations with
a Worse Incumbent, Starting from a
Round Beginning

Denote f(i,£) to be the expected number of iterations
with a worse incumbent in this and future rounds,

stopping as soon as a better incumbent loses, giving
that we have arm i as the incumbent at the start of
round /.

Lemma 2.5. For any i and ¢, we have

log(N) +1

[ 0) < )2

Proof. Let U(i,¢) denote the expected number of it-
erations in round ¢ with a worse incumbent before a
better incumbent loses. We use V' (¢) to denote an in-
dicator which equals to 1 if a better incumbent does
not lose in the round ¢. Then for ¢ > 1,

£, 0) = UG, 0) + BLF(Z(0), £+ DV (D)|Z(E = 1) = .
The first term is bounded by Lemma 2.4 by
log(N) + 1

for all 7 and 4.

For the second term, since f(Z(¢),¢ + 1) = 0 when
Z(£) =1, we know the second term is bounded by

E[f(Z(€), £+ DV (0)]2(¢ ~ 1) = ]
<E[f(Z(6),0+1)|Z(0) # LV () = 1, Z(L— 1) = ]
x P(Z(6) £ 1,V(0)|Z( - 1) = 1).

—

Let s; = P(Z(¢) = j|Z(¢) # 1,V(£),Z(£ — 1) = i) to
be the probability distribution over the integers from
2 through N. Then we know

E[f(2(0), 6+ 1)|Z(6) #1,V(6) =

N
:Z‘g]f(jvg"i_l)

j=2
< max [0+ 1).
J

Z(t 1) =i

Further, since if arm 1 wins its first duel as a chal-
lenger (which happens with probability at least p*),
then either Z(¢) = 1 (it wins all subsequent duel in
the round) or V(¢) = 0 (it loses a subsequent duel),
we have P(Z({) #1, V()| Z({ —1) =1i) <1 — px.

Thus, we know

log(N) +1

[, 0) p (1-p7)  max

G+,

Let f(¢) ~ f(4,0). Then,
log(N) +1

p*

= mnax;—z ...

fl0) < + (1 =p)fl+1).



Thus,

s < s
<L ) )
_log(N) +1
)2

2.5. Completing the Proof of Lemma 3

With the lemmas in the preceding subsections estab-
lished, we now complete the proof of Lemma 2.

Proof. Let 7o = 0 and 7, = {n > 71 : J(n) =
1}. The expected number of iterations with a worse
incumbent is

o0

E Z B(n)

—EZl{Tk < OO} Z 1{1’L <’7’k+1}B( )

:ZP(Tk < o)k Z Hn < mip1}B(n)|m < oo]

n=Ty,

where we have used Tonelli’s theorem to exchange the
expectation of an infinite sum of non-negative terms
with an infinite sum of expectations of the same terms.

Conditioning on the history available at time 7, we
have that the inner expectation can be written as,

E [i {n < 141} B(n)|m < oo]

n=Ty

e [E

where H,, is the sigma algebra generated by (C(i, s) :
s <ttt =1,...,N), where { = n (mod N — 1),

N=Tk

k' = [n/(N —1)], and H,, is the filtration (H, : n)
stopped at 7.
We further break this inner term

E[> o, Hn <1} B(n)|Hy,, 7 < oo] into two
parts: the part that occurs during the round in which
Tk resides, and the part that occurs in future rounds.

(o)
Z Hn < 11} B(n)|H,,, 1 < oo] |7 < oo] ,

Let 4, = (Tk/(N — 1)] Then,

E | 1{n < 71} B(n)| Hey, i < oo]

LN=Tk

[l N
=E | > Un < m41}B(n)|Hy, , 7 < oo}

LN=Tk

+E Z Hn < 11} B(n)|H,,, 11 < 001
Ln=~ N+1
élog(N) +1 n log(N)2+ 1
p* (")
2(log(N) + 1)
ST
(»*)

where the second to last inequality relies on Lemma 2.4
to show E {ZZ"'_N Hn < my1}B(n)|H,,, 11 < oo} is

n=ry,
log(N)+1

bounded above by and Lemma 2.5 to

show E [ZZO:ZMVH 1{n < 7o41}B(n)|Hy,, 7 < 00] is

bounded above by 10%;1:/));1_

Thus,
E iB(n) <(10g((]:7)2+1)iP(7k<oo).
n=0 P") k=0

Now we bound P(7, < oo) for a fixed k. Based on
Lemma 2.2, we know J(n) is a Bernoulli random vari-

n
able with success rate less than (%) (this is be-

cause of Lemma 2.2 and n = (N—-1)({—1)+k < E), in-
dependent across n. Let (),, denote a Bernoulli random

variable with success rate (%) . Then we know:

P(7; < 00) §P<§:J(i) > k)
§P<§:Qi Zk>-

i=1

Let W, = >_1", Q;, which follows a Poisson Bernoulli
distribution, and let W = lim,, oo Wy,. W follows a

K2
Poisson distribution with parameter >~ <1;p) =

p
1—P (Theorem 4, Wang (1993)). Thus,

E iB(n) < (log ipwwc
n=0 k=0
= 2(];]9(1__1)3)(10g(N) + 1)
< —mff 33 (os(V) + 1)



3. Proof of Lemma 3

Proof. Tt is easy to see that at the last iteration which
has a worse incumbent, the better arm is always arm
1. Thus, we only consider C(¢,1) in this proof. At the
end of the /! round, if C(ter; — 1,1) < 0, we know
Ctes1 —1,1) = —¢.

Let us consider a simple random walk W(t) such that
W(t+1) = W(t) + 1 with probability p >  and
W(t+1) =W(t) — 1 with probability 1 — p for t > 1.
If we denote p; = P(3t., W(t,) = —{) for £ > 0, then

‘
it is easy to calculate that p; = (%) .

Now let us consider C(t,1). If we pull arm 1 with some
other arm 4 at time t, then C(¢,1) = C(t —1,1) + 1
happens with probability p; ; > p and C(¢,1) = C(t —
1,1) — 1 with probability 1 —p; ; < 1 —p. If we do not
pull arm 1 at time ¢, then C(¢,1) = C(t — 1,1) with
probability 1.

Define 7 = 1 and 7, = ming{t > 7-1,C(¢t,1) #
C(tg-1,1)}, for k = 1,2,--- ,. Because 74 is a non-
decreasing right continuous stopping time, we know it
is a valid random change of time (Barndorff-Nielsen &
Shiryaev, 2015). Define R(k) a new stochastic process
where R(k) = C(7%,1). Then we know at every time
k, R(k) = R(k — 1) + 1 with probability greater or
equal to p and R(k) = R(k — 1) — 1 with probability
less than 1-p. Define p; = P(3t., R(t.) = —¢), then

¢
it is easy to prove p; < p; = (lp%p) using first step

analysis and induction (we leave the proof as an ex-
ercise for the reader), which means P(3t.,C(t., 1) =

—0) < (%)Z. ]

4. Proof of Lemma 4

Proof. To show the first claimed equation, we have:
E[B(¢, k)T, D(¢)]
=E[B((,k)Te x| D(€) = 1]P(D(£) = 1).  (8)

The first term E[B(¢,k)Tyx|D(¢) = 1] can be
bounded by writing it as E[B(¢, k)T, x|D(¢) = 1] =
E[E[B(¢, k)T x|D(f) = 1,A(¢,k)]|D(¥) = 1], where
A(l, k) denotes the pair of arms being pulled in it-
eration k round /.

We focus on the inner term E[B(¢, k)T, x| D(¢) =
1, A(4,k)]. B({,k) is observable given A({, k). If
B(¢,k) = 0 then this inner term is 0. If B({, k) =
1 then this inner term is E[Tyx|A(¢, k)] (where we
note that 7Ty is conditionally independent of D()
given A(¢,k)) and is bounded above by 1/(2p — 1)
by Lemma 1. In both cases, the inner term is

bounded above by 1/(2p — 1), and we have that
E[B(¢, k)Te k| D(€) = 1] < 1/(2p — 1).

Thus, we have that (8) is bounded above by

1 _ 1 1—p\“!
P(D =1)< —
P00 =1 < 2 (2]

where the final inequality follows from Lemma 3 and
the fact that D(¢) =1 implies L > ¢ — 1.

To show the second claimed equation, we use the same
proof technique used for the first and get:

1

E[B(4 )TV (L) < =P (V(£,k) = 1).

Now we just need to compute P(V(¢,k) = 1). Given
C(tg—1,1) = (N—1)(¢—1) at the beginning of round ¢,
it loses only if there exists a tg > t, and C(1,t) = —/.
Using the results from Lemma 3, we know P(V (¢, k) =

¢
1) < (%) . This completes the proof of the second

claimed equation. O

5. Proof of Lemma 5

Proof. For the first inequality, we know

E

N—1
> B, k):&,m(@]

=
=

=

-1
E [E[B(¢, k)Tek|D(€) = 0]D(O)] . (9)
1

E
I

Moreover,

E[B(¢, k)Ty x| D(¢) = 0]
=E[T, x| B(¢, k) =0, D({) = 0] P(B({,k) = 0|D(¢) = 0)
NY
<
“2p—1

P(B(¢,k) = 0| D(¢) = 0),

where the last equation follows from applying
Lemma 1 and iterated conditional expectation. Thus,
we know

(9)= 3 5o PUB(LK) = 01D(¢) = DEID()
k=1
N-1 (-1
<y o PR = 0D =0) ()
(10)
1-p 1 2N p?
<(5F) s tog() + 1)



where equation (10) is because Lemma 2.

The proof of the second inequality follows very simi-
larly, and is omitted. O

6. Proof of Theorem 2

In this section, we prove the cumulative expected weak
regret of WS-W is bounded by O(N?) in the Condorcet
winner setting. First, we want to give an example to il-
lustrate why our algorithm will not have O(N log(N))
regret under the Condorcet winner setting.

In the Condorcet winner setting, Lemma 2 is no longer
true. Here is a counter example to illustrate why
Lemma 2 does not hold true anymore. Suppose we
have N = 3k + 1 arms in total, which includes a
Condorcet winner arm and three types of other arms:
k type-A arms, k type-B arms and k type-C arms.
Among these arms, we assume the user prefers type-
A arms than type-B arms, type-B arms than type-C
arms and type-C arms than type-A arms. Among each
type of arms, there is a total order. In this setting, the
expected number of iterations with a worse incumbent
is O(N) instead of O(log(N)), which means Lemma 2
is no longer true.

Now we start our proof for Theorem 2.

Proof. In the Condorcent winner setting, Lemmas 3
and 4 hold, but as explained earlier, Lemma 2 does
not. Because the proof of Lemma 5 utilizes Lemma 2,
Lemma 5 also no longer holds.

On the other hand, since we can have at most N — 1
iterations in a round, we know the following state-
ment is true: the conditional expected number of it-
erations with a worse incumbent is bounded by N in
each round. Thus, we know Lemma 5 now becomes:

N—-1 -1
_ _ 1—p N2¢
E|S" B, k)T.D(0)| <
> <,>e,k<>]_<p> ot
N-1 L 2
_ 1- N
E|S" BUETVEE| < —2 ‘£
Pt ’ P 2p —1

Thus, following the same reasoning as in the proof of
Theorem 1, we know the expected weak regret in the
Condorcet winner setting is bounded by

NR pN?
(2p—-1)2%  (2p—-1)%

which concludes our proof.

7. Preference Matrices

In the sushi experiment, the user’s preference matrix
is given by Figure 1.

In the MSLR experiment, the ranker’s preference ma-
trix is given by:

0.5 0.535 0.613 0.757 0.765
0.465 0.5 0.580 0.727 0.738
0.387 0.420 0.5 0.659 0.669
0.243 0.276 0.341 0.5 0.510
0.235 0.262 0.331 0.490 0.5

8. Condorcet Winner Experiment

In the main paper, we considered numerical examples
in which the arms have a total order. This is common
in the dueling bandits literature, where even work that
considers more general settings theoretically test their
methods on problems that satisfy the total order as-
sumption (Komiyama et al., 2016; Urvoy et al., 2013).

In this section, we consider an additional example that
has a Condorcet winner but does not have a total order
among arms. The example has a cyclic struture, and
is similar to the cyclic example in Komiyama et al.
(2015).

The preference matrix is:

0.5 06 0.6 0.6
04 05 06 04
04 04 05 0.6
04 06 04 0.5

In the above example, arm 1 is the Condorcet winner.
Arm 2 beats arm 3, arm 3 beats arm 4 and arm 4 beats
arm 2.

Again, we consider both binary strong regret and the
utility-based strong regret. The utility-based strong
regret is defined the same as the other two experi-
ments. The result is summarized in Figure 2. WS-S
outperforms all benchmarks considered in all time pe-
riods on binary regret, and outperforms them all in all
time periods except 7' = 10? on utility-based regret.

9. Sensitivity Analysis

In this section, we conduct a sensitivity analysis of
in WS-S using the MSLR dataset. In this analysis,



0.8 0.741 0.783 0.847 0.817 0.854 0.868
0.709 0.786  0.802 0.83 0.85 0.871 0.873
0.593 0.661 0.705 0.734 0.672 0.787 0.822
0.687 0.665 0.696 0.803 0.823 0.796 0.844
0.538  0.643 0.61 0.695 0.672 0.681 0.775
0.621 0.591 0.701 0.702 0.787 0.829 0.811
0.613 0.564 0.607 0.703 0.735 0.736 0.801
0.527  0.562 0.58 0.668 0.805 0.777 0.767
0.512  0.548 0.542 0.612 0.786 0.71 0.685

0.5 0.543 0.579 0.613 0.718 0.685 0.747
0.457 0.5 0.564 0.625 0.618 0.702 0.684
0.421  0.436 0.5 0.542 0.644 0.7 0.733
0.387 0.375 0.458 0.5 0.577 0.607 0.596
0.282 0.382 0.356  0.423 0.5 0.578 0.637
0.315 0.298 0.3 0.393  0.422 0.5 0.586
0.253 0.316 0.267 0.404 0.363 0.414 0.5

Figure 1: User’s preference matrix for the Sushi experiment
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(a) Cyclic dataset with utility-based strong regret

Figure 2: Comparison of the strong regret between WS-S and 7 benchmarks on the cyclic dataset.

outperforms all benchmarks in all settings studied.

we choose f = 1.01,1.05,1.1,1.2, 1.5 respectively and
compare them with RMED and RUCB. The result is
summarized in Figure 3.

|| RUCB
|| RMED1
F beta=1.01
3/| F beta=1.05
10 beta=1.1
F beta=1.2
k] I beta=1.5
g
o 102
10"
10° 10° 10° 10° 10°
Time Period

Figure 3: Sensitivity Analysis

Based on Figure 3, WS-S with 8 = 1.05,1.1,1.2 out-
performs RMED and RUCB. When 8 = 1.01, we
spend too much time on the exploration period and
do not exploit enough. Similarly, WS-S with g = 1.5
over exploits and does not explore enough. In both
cases, WS-S underperforms RMED and RUCB. How-

r 0.5 0.512 0.622 0.655 0.698 0.726 0.711 0.708 0.749
0.488 0.5 0.602 0.683 0.652 0.776 0.663 0.683 0.738
0.378 0.398 0.5 0.528 0.554 0.533 0.534 0.591 0.573
0.345 0.317 0.472 0.5 0.553 0.619 0.566 0.641 0.675
0.302  0.348 0.446  0.447 0.5 0.513 0.524 0.518 0.608
0.274 0.224 0.467 0.381  0.487 0.5 0.513  0.559  0.575
0.289 0.337 0.466 0.434 0.476 0.487 0.5 0.559  0.553
0.292  0.317 0.409 0.359 0.482 0.441 0.441 0.5 0.556
0.251 0.262 0.427 0.325 0.392 0.425 0.447 0.444 0.5
0.2 0.291  0.407 0.313 0.462 0.379 0.387 0.473 0.488
0.259 0.214 0.339 0.335 0.357 0.409 0.436 0.438 0.452
0.217 0.198 0.295 0.304 0.39 0.299 0.393 0.42 0.458
0.153 0.17 0.266 0.197 0.305 0.298 0.297 0.332 0.388
0.183 0.15 0.328 0.177 0.328 0.213 0.265 0.195 0.214
0.146 0.129 0.213 0.204 0.319 0.171 0.264 0.223 0.29

L 0.132 0.127 0.178 0.156 0.225 0.189 0.199 0.233 0.315
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(b) Cyclic dataset with binary strong regret

WS-S

ever, as long as 8 is within a reasonable range, WS-S
can outperform existing state-of-art algorithms.
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