Supplementary Material

A Proof of Lemmas

Proof of Lemmad Lett = min{|t; + --- + t;|,7} € [0, 7], then it suffices to show
that p(|t1]) + - -+ + p(|t:]) > p(t). Note that we have [t1]| + - + |t;| > [t1 + -+ +
t;| > t. Moreover, since p(0) = 0 and p(-) is concave on [0, 7|, we must have p(-)
being subadditive, i.e., for any si,...,s; > 0 such that s; + --- + s; < 7, we have
p(s1) + -+ p(s;) > p(s1 + - - - + s;). Combining both facts, we have

l

> wli) zi (o |t|)_p<z|t+t+|t| z|> p(t),

i=1

where the first inequality is due to monotonicity and the second is due to subadditivity
of p(-). |

Proof of Lemmal[5] According to the conditions for p(-), there exists 75 < 7 such that
p(+) is twice continuously differentiable on [r2, 7]. We first show that there exists
To € (72, 7) such that p(-) is concave but not linear on [0, 7). If otherwise, p(-) must
be a linear function on [0, 7), then since p(-) is continuous at ¢ = 7 where continuity
follows from concavity, we must have p(-) is a linear function on [0, 7], which contradicts
with that p(+) is not linear on [0, 7]. In the following, we show that this 7y satisfies the
conditions in the lemma.

We first show that C; > 0. If otherwise, we have p(TO/T‘Z’)/;p(O) < p(TO);f/(gTO/?’).

Since p(t) is concave, this must imply that p(¢) is linear on [0, 75], which contradicts
with that p(-) is not linear on [0, 79].

Before proving the result, we first introduce two auxiliary functions. For any
s € [0, 7], define €(s) := p(t — s) + p(s) — p(t) and €(s) := p(m0 — s) + p(s) — p(70).
Note that they have the following properties:

: _ €(m0/3).
(i) €y =

(i) €(s) < €(s): thisis duetoe(s)—e(s) = (p(10)—p(70—5))—(p(t)—p(t—s)) > 0;

(iii) €(s)/s is non-increasing in s: this is due to

€(s) _ p(s) —p(0) _ p(r0) —p(10 — 5)




where 2

(s) qp( ) is non-decreasing;

is non-increasing while w

(iv) Combining (i) — (iii) above, for any s € (0, 79/3], we have
pls) > pls) + p(T — ) — p(E) = 2(s) > e(5) > Cus.
When s = 7/3, this implies that p(79/3) +p(t —70/3) — p(t) > C1-70/3 > C16.

Now we prove the last statement of Lemma [5| Suppose t; + --- + t; = ¢, and
p(|t1]) + - + p(Jt:]) — p(t) < C18. Without loss of generality, we assume t; > ty >
... > t;. Now it suffices to show that |f— t1] < 0,te < d,and t; > —4.

Denote T' = {t1,...,t;}. Forany S C T, we use o(S) to denote the sum of
all the elements of S. Now we show that o(S) > —4 for any S. If otherwise, then

Yogeti > t + 6 > t, and we have

C16 > p(lti) + D p(lt:]) — p(t) = p(8) + p(t) — p(t) > C16,
5 5¢

where the second inequality is due to LemmaE]and the monotonicity of p(-), and the
third one is due to (iv) above. This is a contradiction. Note that by having S = {¢;}, this
result implies that ¢; > —d. Also, by considering the complement of a subset, we have
0(S) = o(T) — 0(5¢) < t+ 6 < 7 forany S C T This has two implications. First,
according to Lemmafd] we have Y~ ¢ p(|t;|) > p(] Y- ti]); second, by letting S = {t;},
we have t; < t + 0.

Now we show that ¢; > t—0, by sequentially showing that t; > 7¢/3, t; > t— 70/3,
andthen t; > ¢t — 4. Ift; < 70/3, then we have |t;| < 70/3 for any i. Then
we can divide T into two sets 77 and T3 such that |o(T1) — o(T2)| < 79/3, thus
o(Th),o(T) € (t/2 — 10/6,t/2 4 70/6) C (70/3,t — 10/3). Now we have

Zti>+p<2ti

ti€T ti€T>
which is a contradiction. Note that here the first inequality is due to Lemma] and the
second one is due to the concavity of p(-).

Now we show that t; > — 7 /3. If otherwise, since we have proved that t; > 7y/3,
we have t; € [70/3,5— To/3]. Now by letting Ty = {¢;} and To = T — T, we have
o(Ty),0(Ty) € (10/3,t — 70/3), and contradiction arises in the same way as in the
previous case.

Now we show that £ > t—4, which is equivalent to showing that 52 =to+---+1;
t— t1 <06 If %VQ > 9, then due to subadditivity, concavity, and (iv) above, we have

C16 > p(|t1]) + p(|t2]) — p(t) > p(t = 8) + p(8) — p(t) > C13,

which is a contradiction.
Now to complete the proof, the only last thing we need to show is that to < §. If
to > 9, then due to subadditivity and concavity, we have

C16 > p([t2]) + p(It = t2]) = p(8) = p(6) + p(t = 6) — p() = C16,

015>p<

) —p(t) > p(7o/3) +p(t—70/3) — p(t) > C13,

which is a contradiction. |



Proof of Lemmal6] According to Lemmal5] p(-) is twice continuously differentiable on
[70, 7], thus there exists K > 0 such that p”(t) > —K forany ¢ € [r9, 7]. Now we take
= LR p(F) 07741
"~ a(g=Dmin{ry *ri-2} o7
For the first result, we have for any ¢ € [rg, 7],

and p = and verify the results in the lemma.

96,(t) = p" (1) +0q(q— 1)t >+ pg(q—1)[7 =19 > =K +0q(q—1)t*">+0 > 1,

thus gy ,(t) > 1 for any t € [7o, 7].

Now we show the result of unique minimizer. Since gy ,,(t) is strictly increasing on
[T, +00), any global minimizer must lie in (—oo, 7]. Moreover, for any ¢t € (—o0, 7o),
we have

go.u(t) > 04+04+0p |70 =77 =0/0-(p(T)+07+1) > p(T)+077+1 = g u(T) +1,

(A.1)

thus any global minimizer must lie within (79, 7] C (79, 7). Now since g (¢) > 1 for

any t € (7o, 7), we know that g(-) is strictly convex thereon, thus the global minimizer

of gp,,.(t) on [1p, 7] exists and is unique. Denote the minimizer on 7y, 7| by t*(6, 1),

then according to the previous discussion, ¢* (6, i) must also be the global minimizer of
9o,u(t) on .

Now we show the last statement. Suppose that gg,,,(£) < h(6, ) 4+ 62 for some

d € (0,0). We first consider the case where ¢ € |1y, 7]. According to the mean-value

theorem, there exists ¢ between £ and ¢* (6, 1) such that

90.u(0) = G0, (60, 1)) + 30" D~ (0,) 2 W0, ) + 5 (F— (6, )

Therefore, a necessary condition for gg ,,(£) < h(6, )+ 6% is that [t — t* (6, )| < 9.
Note that this implies gg,,,(7) > h(6, i) + §2. Now to complete the proof, we only need
to show that gg ,,(t) > h(6, ) + 6% for any t € (—oc, 0] U [1, +00). The inequality
with ¢t € (—o0, 7] has been proved in (AI). And for any t € [r,+00), we have
90..(t) > go..(T) > h(0, 1) + 62. Therefore, the proof is complete. |

Proof of Lemma[/} We take [i = max {1 +p'(10), & (T)H } and verify the results in

=
the lemma. Note that we have p(-) being twice contlnuously differentiable on [79, 7]
thus p’(7p) is well-defined.

For any t € [79,T), we have g; ,(t) =
t € (7,7], we have g, (t) = p'(t) + p >
Lemma 7] holds.

Now we show the result of unique minimizer. Since go,,,(t) is strictly increasing on
[T, +00), any global minimizer must lie in (—oo, 7]. Moreover, for any ¢ € (—o0, 7o),
we have

) — 1 < p'(10) — i < —1; and for any

Pt
0+p> 1 Therefore, the first property in

gou(t) 20+ 1|10 —7[ 2 p(T) + 1 = go,u(7) + 1, (A.2)
thus any global minimizer must lie within (79, 7]. Now since g; ,(t) < —1 for any
t € [r0,7), the global minimizer of go ,,(-) is £*(0, s£) = 7 and is unique.



Now we show the last statement. Suppose that go ,,(£) < (0, ) + 62 for some
§ € (0,6). Again we first consider the case where £ € [7g,7]. When £ € [7, 7], since
90,,,(t) > 1, we have go . (t) — go,.(T) >t — 75 when t € [ro, 7], since gy , (1) < —1,
we have go ,(t) — go,,(T) > T — t. Therefore, a necessary condition for gg ,,(t) <
h(0, p) + 6% is that |t — 7| < §% < &. Note that this implies go . (7) > h(0, ) + §2.
Now to complete the proof, we only need to show that go_,,(t) > (0, i) + 62 for any
t € (—o0, 70| U [T, +00). The inequality with ¢ € (—o0, 79] has been proved in (A22).
And for any ¢ € [7,400), we have go ,(t) > go,.(7) > h(0, 1) + 52. Therefore, the
proof is complete. |

Proof of Lemma|8l 1f ¢ > 1, then we can find 6 and p such that the properties in Lemma
[6]is satisfied; if ¢ = 1, then we can set # = 0 and find y such that the properties in
Lemmal[7lis satisfied.

Now we first prove the desired inequality in two cases. In the first case, we suppose
that | Z;zl t;| > 7. Then due to Lemma We have Z;zl p([t;]) > p(7), thus

! ! q q

l
STt )+t 4Dt — 7| > p(r) 0TI+ plr—F]7 = go.u(7) > h(0, p)+0”
Jj=1 Jj=1 Jj=1
(A.3)
where the last inequality is proved in Lemmas [6|and [7] In the second case, we sup-
pose that \Z;Zl tj| < 7. Then according to Lemma we have Z§:1P(|ta‘|) >

P (‘22:1 tkD , thus

l

1 1 1 1 !
ot +0- D 4| Fu- D ti—7 Zgou | D ti | Zh(0,p), (A4
j=1 j=1 j=1

Jj=1

where the second inequality is due to Lemmas[6]and [7]

Now we prove the “only if” statement. Suppose we have t1,...,¢; € such that (3)
holds. Now according to @), we must have | 22:1 tj\ < 7, and combining @),
we have gg (2221 tj) < h(6,u) + 6% Then we have ‘23:1 t; —t*(0,n)] < 6
according to Lemmas [6| and |7} thus t = 22:1
to hold, we must also have Zé‘:l p([t;]) — p(tN) < 62 < (C416. Then according to

LNemma we must have |t; — £| < J for some 7 while |¢;]| < & for all j # i. Now since
[t —¢*(0, 1)| < 0, we have [t; — t*(6, )| < 26, which completes the proof. |

t; € [0, 7]. Moreover, in order for

B Proof of Theorem 2

In this section, we prove the hardness of approximation of Problem 1 for general
loss function £. We develop the reduction proof through a series of preliminary lem-
mas. In particular, our Lemmas [B.T|[B-2|B3] establish important properties about the



sparse penalty function p, and are analogs to Lemmas 4} [5] and [8] respectively. We
have to reprove these lemmas with additional technicalities in order to address the
e-approximibility instead of exact solution. Our first lemma gives us a key fact about
the nonconvex penalty function p. We use B(6, ¢) to denote the interval (6 — 4,6 + ¢).

Lemma B.1. For any penalty function p that satisfies Assumption |2} we have

(i) p(t) is continuous on (0, 7].
(i) Foranyty,..,t; >0,if Y ;" ¢; <7, then Zi:l p(t;) > p(Zizl t;).

(iii) There exists a € [1/2, 1) such that when Zi’:1 t; € [aT, 7], the above inequality
holds as equality if and only if ¢; = ¢* for some ¢ while ¢; = 0 for j # 1.

(iv) Denote £ = minse[qr,-{ w}. For the constant a given in (iii), we

have that Vo > 0,t1,--- ,t; € R,Ve < k0 :if Zézlti = t* € [a7,7] and
p(C i) + e > S'_ p(t;), then there is at most one i such that t; & B(0, ).

Proof. As (i), (i1) and (iii) are proved in|Ge et al.|(2015)), we prove (iv) here. We first
prove the lemma when ¢, --- ,¢; > 0. We start by proving the case when | = 2. For
the simplicity of notation, we use t* to denote ¢; + ¢, in the rest of the proof. By
(iii), there exists a such that when t* € [a7, 7] and p(t*) > p(t1) + p(t2), we have
t1 = 0 orty = 0. It follow that when ¢; # 0,t2 # 0 and ¢* € [aT, 7], we have
p(t1 4+ t2) < p(t1) + p(t2). Without loss of genearlity, we assume that ¢; < ¢5. Then,

we have
p(t") —p(t” —t1) < p(t1)
131 ti
Notice that the right term is non-increasing with the increment of ¢; as p is a concave
function and the left term is non-decreasing with the increment of ¢t; when ¢* is fixed.
As t; < t*/2, we have p(ttll) () = p(t*//22) and p(t*)—fl(t*_tl) < ko(t*) =

=
%1;(2’5*/2). As p is not linear on [0, t*], we have k1 (t*) > ka(t*).
On the other hand, we can see that when p(t; + t2) + € > p(t1) + p(t2),

pltitte) —plt2) | e _ plta)
tq t1 — 11

Assume t1 < to, we have kao(t*) + €/t1 > kl(t*)ﬂ As aresult t; < m
Note that k; and ks are defined on a closed interval [aT, 7] by (iii), giving us that
Minge(qr,-) (k1 (t)—k2(t)) > 0. Therefore, 3a € (0,1),Vd > 0,3eq = mingeqr, (k1 (t)—
ka(t)) - 0,Ve < €g, if t1 + 2 = t* € [a7, 7] and p(t1 + t2) + € > p(t1) + p(t2), then
t1 < ey < O- Therefore, there is at most one i such that ¢; ¢ B(0,9).

Now consider the case when [ > 2 and t1,...,t; > 0. If there are more than one 4
such that t; ¢ B(0,6), assume ¢; and t5 are two of them. By (ii), we have

Zp > p(t) +p(zt>

=2

! For the case when t; = 0, (iv) holds trivially.



I+ 3075t € [ar, 7] and p(ty + Yo ta) +€ = 3002 pt:) 2 pltn) +p(Xis b,
either ¢ or ) ;_, t; should be inside B(0, §). This is contradictory to our assumption
that both ¢; and ¢, are outside B(0, §). To this point, we prove (iv) when ¢1, -+ ,¢; > 0.
Next, we prove the lemma when ¢, --- ,%; could be smaller than 0. Suppose
t* =3 ti € [ar, 7] and p(t*) + € > 3\ p(t;). We consider two cases separately.
In the first case, assume that there is one ¢; < —§ and one ¢; > 6. Without loss of
generality, we assume that ¢* > 0. Then we can choose o = 6, 8 = t* — « and get

pla+p)+e=p(t)+e> > pt)+ >, plt)>pla)+p(B),

1€{j:t;<0} 1€{j:t;>0}

which is a contradiction to the previous proof that only one of «, 5 could be outside of
B(0,9) as ¢ is smaller than ¢* /2 by our choice. We then proceed to the case when there
isonet; > 6 and one ¢; > J. Suppose that o =¢; > ¢; = 8. If o + B > t*, we set

o =0+ aiﬁ_f‘;é (a—¥d)and B’ =6+ aﬁ:gfga - (B — ). Itis easy to verify that

l
pla’ +8) +e=p(t*) +e> Zp(ti) > p(a) +p(B) > p(a’) + p(B),

which is a contradiction. If o + 8 < t*, we can verify that

1
platB+t" —a—p)+e=p(t") +e> Zp(ti) > p(a) +p(B) +p(t" —a—p),

which is also a contradiction. To this point, we prove the case that ¢4, - - - , ¢; could be
smaller than 0, which completes the proof of the lemma.

Remark. In the proof of (iv), our choice of € is linear to § given 6. However, in
the case of Lg, € could be any constant smaller than 1 no matter what J is. This property
of L has wide applications in statistical problems. Actually, suppose that penalty
function is indexed by ¢ and ps satisfies

ps(9) — ps(at) + ps(at —0) > C (B.1)

for some constant C, then V6 > 0 and ¢ < C, the proposition stated in (iv) holds.
To prove this, just note that if p(t; + t2) — p(t2) + € > p(t1) and t; > 4, then
p(t1) — p(t1 + t2) + p(t2) > p(d) — p(at) + p(aT — §) > C which is a contradiction
to that € should be smaller than C. |

Lemma [B.T]states the key properties of the penalty function p. Property (iv) is of
special interest. It indicates that if we can manipulate the sum of non-negative variables
to let it lie within [a7, 7] while minimizing the penalty function, we can be sure that
only one variable has positive value.

Our second lemma explores the relationship between the penalty function p and the
loss function /.



Lemma B.2. Let Assumption [2| hold. Let f(-) be a convex function with a unique
minimizer 7 € (a7, 7) and w > C(0 < x < 6) forsome N € Z*+,6 €
R*,C € RT. Define

gu(t) = p([t]) + - f(1),
where y > 0. Let h(u) be the minimum value of g, (-). We have V§ < 6,5 >

ZoN N ~ . .
U2 Jeo = ps - C - (3)" — p(I7]): if ¢ satisfies h(us) + €0 > guy (t) > h(ps),

thent € [T —0/2,7 +§/2].

Proof. First, we can see that when ¢t > 7 + §/2, we have

N
s 0) 2 7D + s S0 > D7) + s+ 1 +/2) 2 o7 + s 1)+ s €+ 3)

by the definition of f(-). When ¢ < 7 — §/2, we have

5 N
05 (1) = s - (t) > s - [ (7 = 8/2) > ps - f(7) + pig - C- (>

o1 M () (-4 ()

N
> h(ps) + ps - C - (g) - (7).

Therefore, when we choose € = fi5-C - (g)N —p(|7]), point ¢ satisfying h(us) +e€o >
Gus (t) > h(ps) mustliein [7 —0/2,7 +6/2]. |

Lemma B.3. Let Assumption [2]hold and let f(-) be a convex function with a unique
minimizer 7 € (a7, 7) and w > C1(0 < z < §) forsome N € Z*,§ €
R*,Cy € R, Let h(u) be the minimum value of g,,(z) = p(|z|) + p - f(z), then we
have

() Vi€ ZH b, st € R S5y pllt1) + s f ()i ) = hl).

(i) Ix = minge(er . { 22PN 5 < min{d, 4747, 47 —dar, p(7) /K}, Ip =

eUZA 6o = k- 5,0 € [F — §/4,7 +8/4] : if t1, ..., 1, € R satisfy

h(p) +eo > p(lt1) +p-F{ Dt | = k), (B.2)
j=1 j=1

then t; € B(6,9) forone ¢ and t; € B(0,0) for all j # 1.



Proof. We first prove (i). We consider two cases separately. In the first case, we suppose
that | >-7_, ¢;| > 7. Then we have

WD p (s 1) 2 szm 1) =000,

where the first inequality is inferred by the monotonicity of p and the second inequality
is due to (ii) of Lemma[B.1] Thus, we have

S op(fti) + - £ty | >min{p(r) + p- f(7).p(7) + i f(=7)} > h(w).
Jj=1 j=1

As a result, we can see that (i) holds when | Z?:l t;| > 7. In the second case, we
suppose | >_"_, t;| < 7 and obtain

n n |Z’I’L t | n |Z’I’L t | n
—1lk k=1"k
plit]) > (’“ t,«) >y (S =t s (S
Z z:: done ltel 7 ; Dk el 2

Jj=1

where the second inequality is due to (ii) of Lemma[B.1] It follows that

STo(tD+uf St | 2o | Dt | vuf [t ] =au | D_ti | > hin)
=1 =1 st st st

which completes our proof of (i).
We then prove (ii). Assume equation (B:2) holds. If 3°7_, ¢; > 7, we can see that
by choosing €y < ¢,(7) — ¢.(7T), we have

Z (It51) +p- f Zt > gu(7) = 9u(F) + 9u(7) — 9u(F) > h(p) + €o.

We will show later that our choice of € is indeed smaller than g,,(7) — g,,(7). We will
also show later that equation cannot hold when >~ t; < —7 under our choice
of parameters. Thus, if equation (B-2) holds, then | 3°7_, ¢;| < 7, which implies that

p Dot | +u-f Dt | <hw)+e, (B.4)
j=1 j=1
by equation (B.2)) and the first inequality of (B.3]), and

Sop(th <p (D t] | +eo (B.5)
i=1 st



due to equation (B.2)) and equation (B-3). Note that we just need to prove the case when
d is sufficiently small. Thus, we assume in the following paper that § is smaller than
8,41 — 47,47 — 4dar.

Consider the case when equation holds. By Lemma|[B.3] if we choose y1 =

p(\?cl)é# and €; = 3p(|7|), then all of the points ¢ such that h(u) +€1 > g, (t) > h(u)
liein [T —6/4,7 + 6/4]. Thus, we have 37, t; € [ar, 7] and 3°7_, t; € B(6, %) for
all @ € [T — /4,7 + 6/4]. Note that g,,(¢) is non-increasing when ¢ < 0, meaning that
equation (B:2) cannot hold under our choice of €; when >, t; < —7.

On the other hand, if equation (B.2)) holds, equation @ should also hold. By (iv)
of Lemma for the same &, Jex = minyc(o, 1 (k1(t) — k2(t)) - 52—, there is at
most one ¢ such that ¢; ¢ B(0, 27%2) As 2?21 tj € B(0,3), we have t; € B(0,0)
forall ¢ = 1,---,n. Observe that g, (1) — ¢,(7) is always larger than ¢;. Also,

€1 > € if 0 is sufficiently small. Therefore, Ik = minye[qr (k1 (t) — k2(t))/2, Vo <
)4N+1

min{8, 47 —47, 47 —dar p(7) /r}, Iu = PEA " e = k.0 VO € [F—6/4,7+5/4] :
if h(p) + € > g, (327, ti), then t; € B(6,0) for some i while t; € B(0,6) for all
J#i ‘ u

Now we are ready to prove the main theorem.

Proof of Theorem[2] Suppose that we are given the input to the 3-partition problem,
i.e., 3m positive integers 1, ..., S3,,. Assume without loss of generality that all s;’s are
upper bounded by some polynomial function M (m). This restriction on the input space
does not weaken our result, because the 3-partition problem is strongly NP-hard.

In what follows, we construct a reduction from the 3-partition problem to Problem
1. We assume without loss of generality that ﬁ Zj’;nl 85 < 8; < ﬁ Zj’;nl s; for

allz =1,...,n. Such condition can always be satisfied by adding a sufficiently large
integer to all s;’s.

Step 1: The Reduction
The first reduction is developed through the following steps.

1. For the interval [a7, 7] determined by p, we choose {b1;}** | such that ¢, (y) =
3 Zf;l (y, by;) satisfies Assumption [2| with constants C, N, ¢ and has a unique
minimizer 7 inside the interval (a7, 7). Let k = minte[mﬁ]{w}. Let

_ PR 5 24 N+1
0 < {W}(m),é,éh — 47,47 — dat,p(T) /K}, p > % and e = K - %
such that Lemma is satisfied. Note that ¢ > #’*(m) for some constant C’3

by our construction.

2. For the p and e chosen in the previous step, all the minimizers of g, (z) =
p(|z]) + g - 61(2) lie in [7 — §/4,7 + 6/4] by Lemma [B.3] By the Lipschitz
continuity of p(|z|), f(x) and thus g, () on [aT, 7], there exists . = 55 (K
is the Lipschitz constant) such that we can find in polynomial time an interval
[01, 0] where 05 — 01 = 6. and g, () — g, (t*) < &5 for x € [0y, 02]. This

interval can be find in polynomial time as g, (z) is Lipschitz continuous.




3. By Assumption |1} for the interval [f;, 62], we choose {by;}*2, to construct a
loss function #3 : R — R in polynomial time with regard to 1/d. such that

la(y) = 5 Zk2 £(y, be;) has a unique minimizer at te [01, 02]. We choose
v = [e/ max (5(F + 20m) — La(1), la(t — 26m) — £a(F))] + 1,

and construct function f : R3™*™ — R where

3m )
f(@)=A ZZ (lzijl) + Ape - Zgl me + v - Zf2 (ZM£J>

1=1 j= 7

(B.6)

Note that by of Assumption I v is polynomial in max([ ;- =1, [02]). In the
rest of the paper, we ignore the [65] term in the bound as it can be upperbounded
by 7, which can be taken as a constant in the reduction.

4. Let @y = 3m - p([t]) + p-3m - £1() — sand @y = v - m - lo(t). We claim that

(i) If there exists z such that
1
D)+ Py +e> Xf(z) > ®y + Oy,

then we obtain a feasible assignment for the 3-partition problem as follows:
If z;; € B(t,d), we assign number ¢ to subset j.

(ii) If the 3-partition problem has a solution, we have % min, f(z) < ®; +
Py + 5.

c cg\ 1/(1—c1—c2)
5. Choose rr = {(2(3”1"\'“"“1“"5'/’\,;”%2) L(3m?) 2) -‘ where ¢; and ¢

are two arbitrary constants that ¢c; 4+ c2 < 1. Construct the following instance of
Problem 1:

r 3Im m

s
min E f(z D) = min A E E Ep (q)
I(l)}...’w(r)eRiim,Xm 1 w(l),m,z(")ERsz"’
q=

q=11i=1 j=1
r 3m ki r m ko )
095 5 ol O3RN D B ool P b)
g=1i=1 t=1 q=1j=1 t=1 zlzflsl/m
B.7)
where the input data are coefficients of x and the values b11, ..., b1, ba1, ..., bat.

The variable dimension d is - 3m? and the sample size nis A -y -7 - 3m - ky +
A-v-r-m- ky. The input size is polynomial with respect to m. Our choice of r
is the solution to er = 2kn°'d°> where £ = minc(4r, 1| {w}

The parameters p, v, 6, r, d are bounded by polynomial functions of m. Com-
puting their values also takes polynomial time. The parameter k; and ks is a
constant determined by the loss function ¢ and is not related to m. As a result, the
reduction is polynomial.

10



6. Let 21 .. 2(") € R3mX™ pe g \ . i - n®t d°2-optimal solution to problem (B-16)
suchthat }°7_; f(2) <mingay . po0 Soi_y f(@D)+ A k-n1d°2. We claim
that

(iii) If the approximate solution 2o 20 satisfies
3 Z f(2D) <rdy 4 rdy 4 2601 d2, (B.8)

we can choose one z(V) such that ®; + ® + € > 1 f(2()) > &1 + &,
and obtain a feasible assignment: If z(l) € B(t,6), we assign number i to

subset j. If the \ - k- n“1 d?-optimal solutlon 2 ... 2(") does not satisfy
(B:8), the 3-partition problem has no feasible solution.

We have constructed a polynomial reduction from the 3-partition problem to finding
an A - k - n° d°2-optimal solution to problem (B.16). In what follows, we prove that the
reduction works.

Step 2: Proof of Claim (i)

We begin with the proof (i). By our choice of 1 and Lemma [B.3{i), we can see that for
all z € R3mxm,

3m m 3m m
DSOS o)+ [ D @iy | = 3mep(E7]) + - 3m- b (87) > @y,
i=1j=1 i=1 j=1

€

where the last inequality is due to that g, () — g.(t*) < 5. By the fact t =
argmin, (5 (t), we have for all z € R3™X™ that

v- 7sz 2V~m~€2(5:¢2.
Jz::l (22/ L1 si/m J)

Thus we always have min, %f(z) > ®; + $,. Now if there exists z such that ®; +
Py + € > 1 f(z) = Py + P,, we must have

3m m

Ort+e> ) pllzi]) + e Zh Zz” > ®y, (B.9)

i=1 j=1

and

m 3m
¢2+62V-Zh<zg:3mslzij> > B, (B.10)

j=1 i=1 Zui'=1 sit/m

In order for equation (B.9) to hold, we have that for all ,

€ ~— . .
) +p- G +5 > Z (J2i]) + 1 o sz > p(It*]) + p- ().

j=1

11



Consider an arbitrary ;. By Lemma ii) and g, (t) — gu(t*) < &%, we have z;; €
B(t,8) for one j while z;; = 0 for all k # j. If z;; € B(t,5), we assign number i
to subset j. As § < ar/2 < t/2, B(t,8) and B(0, §) are not overlapping. Thus each
number index ¢ is assigned to exactly one subset index j. Therefore the assignment is
feasible.

We claim that every subset sum must equal to Zf:‘l s;/m. Assume that the jth
subset sum is greater than or equal to 3o s;/m + 1. Let I; = {i | z;; € B(t,0)}.
Thus, 3 e, 8i > SO si/m + 1. As a result, we have

3m

84 S;
P T D D= e (RDED S S )
1:12’ 1 Sir/m zehz ' L Sir/m 1612 ' 1 Sir/m
3m g
1~
>Mt75m:t+ — 5m.

a Z?m1 si/m Z?:; si/m

Because s; < M(m) forall i and § = g ]\;(m),wehave
d sm > —4 Sm = 26m >0
—_— —m> ————m — dm = 20m )
Z?;nl si/m ~ 3m- M(n)

Since h is a convex function with minimizer y*, we apply the preceding inequalities
and further obtain

3m

o1 Dy Si/m

By our construction of v and Assumption 1(iii), we further have

3m
v (zzz (szs ) — y(t )) > v (bt +20m) — (1)) > e. (B.11)

=1 2= s/ m
However, in order for equation (B.I0) to hold, we have that for all j,

3m

~ S ~
v-la(t)+e>v-Ly (lez‘j > v la(t),
Zy 1 Siv/m

i=1

yielding a contradiction to (B.11)). We could prove similarly that it is not possible for
any subset sum to be strictly smaller than % Zf;”l s;. Therefore, the sum of every

subset equals to Z?m1 s;/m. Finally, using the assumption that i mel 5 < 8; <

ﬁ fml Si, each subset has exactly three components. Therefore the assignment is

indeed a solution to the 3-partition problem.

Step 3: Proof of Claim (ii)

Suppose we have a solution to the 3-partition problem. Now we construct z to the
optimization problem such that f(z) < ®; 4+ ®3 + §. Forall 1 <4 < 3m, if number i

12



is assigned to subset j, let z;; = tand z;; = 0 for all k # j. We can easily verify that

3m m
A = €
;;p |Zu + - Zél ZZZ] :3m-(p(t)—|—,u.g1(t)):q)1+§,
Also, we have
m 3m
S. ~
V-ZEQ (ZZ ) =v-m-ly(t) = ®y.
j=1 =1 Ez’ 1 S/ /m
Therefore, )
NIOECIRE S g (B.12)

which completes the proof of (ii).

Step 4: Proof of Claim (iii)
Suppose that the A - k - n° d°2-optimal solution satisfies (B-8), i.e., + >i_; f(z(V) <
r®q + r®y + 2knc1de2. Tt follows that there exists at least one term z(*) such that

1 . 2Kkn1dez
THED) S @+ @+ T <@+ Date (B.13)

where the second inequality equality uses er = 2kn“ d“2. Therefore, by claim (ii), we
can find a solution to the 3-partition problem.

Suppose that the 3-partition problem has a solution. By claim (ii), there exists z
such that § f(z) < ®; + ®2 + 5. Thus we have

.
2D ) A Zf =2 J(2) S 1y + 1@y + R0 (B.14)
Thus if 2, --- 2" isa X - k - n° d°2-optimal solution to (B.16)), we have
1< . I ;
— (@) i - (@) c1 ¢ 1 ¢
h\ Zf(z Y) < x(l){nln Y Z:Zlf(ﬂc )+rnd? < rd®y+rdPs+2kn°1d? (B.15)

implying that the relation (B.8) must hold. If (B.8) is not satisfied, the 3-partition
problem has no solution. n

Remark. When the loss function is Lo loss, we can move Ap and Av of equation (B.16))

into the loss. Specifically, we have

r 3

T m
min E f(z D) = min A E (] (Q)
(1) ... 71/‘(7‘)€R3’"l><’"l 21 ... ,w(r)eR‘Jme
) q=1 ’ q=11i=1 j=1

3

.
I

S (3 A — +ii<f Vv, mb>,

g=1i=1 \ j=1 g=1j=1 \i=1 Zz’ 1 Sir/m
(B.16)
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where i, v is chosen such that v/ Ap, v/ A\v are rational numbers. In this case, the variable
dimension is 7 - 3m? and the sample size n is 47 - m. Our choice of 7 is the solution to

. )1/(1—(11—(12)

er = 2kn“1d® whichisr = RWW . The value of r doesn’t

e/k
depend on A and p, which means that we can plug in any A, p and the reduction is still
polynomial in m. It means that for any choice of A and p, it is strongly NP hard to find
a Aknd°?-optimal solution.
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