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Abstract

We developed a novel approach to identifica-
tion and model testing in linear structural equa-
tion models (SEMs) based on auxiliary variables
(AVs), which generalizes a widely-used family
of methods known as instrumental variables. The
identification problem is concerned with the con-
ditions under which causal parameters can be
uniquely estimated from an observational, non-
causal covariance matrix. In this paper, we pro-
vide an algorithm for the identification of causal
parameters in linear structural models that sub-
sumes previous state-of-the-art methods. In other
words, our algorithm identifies strictly more co-
efficients and models than methods previously
known in the literature. Our algorithm builds
on a graph-theoretic characterization of condi-
tional independence relations between auxiliary
and model variables, which is developed in this
paper. Further, we leverage this new character-
ization for allowing identification when limited
experimental data or new substantive knowledge
about the domain is available. Lastly, we develop
a new procedure for model testing using AVs.

1. Introduction

The problem of estimating causal effects is one of the fun-
damental problems in the data-driven sciences. In order to
estimate a causal effect, the desired effect must be identified
or uniquely expressible in terms of the probability distribu-
tion over the available data. Causal effects are identified
by design in randomized control trials, but in many appli-
cations, such experiments are not possible. When only ob-
servational data is available, determining whether a causal
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effect is identified requires modeling the underlying causal
structure, which is generally done using structural equa-
tion models (SEMSs) (also called structural causal models)
(Pearl, 2009; Bareinboim and Pearl, 2016).

A structural equation model consists of a set of equations
that describe the underlying data-generating process for a
set of variables. While SEMs, in their most general, non-
parametric form do not require any assumptions about the
form of these functions, in many fields, including machine
learning, psychology, and the social sciences, linear SEMs
are used. A linear SEM consists of a set of equations of
the form, X = AX + U, where X = [x1,...,2,]" is a
vector containing the model variables, A is a matrix con-
taining the coefficients of the model, and A;; represents the
direct effect of z; on z;, and U = [u, ..., u,]" is a vector
of normally distributed error terms, which represents omit-
ted or latent variables.! The matrix A contains zeroes on
the diagonal, and A;; = 0 whenever z; is not a cause of
2. The covariance matrix of X will be denoted by X and
the covariance matrix over the error terms, U, by €. In
this paper, we will restrict our attention to semi-Markovian
models (Pearl, 2009), models where the rows of A can be
arranged so that it is lower triangular, and the correspond-
ing graph is acyclic.

When modeling using SEMs, researchers typically specify
the model by setting certain entries of A and {2 to zero (i.e.
exclusion and independence restrictions), while leaving the
rest of the entries as free parameters to be estimated from
data®. Restricting a particular entry A;; to zero reflects the
assumption that Y; has no direct effect on Y;. Similarly,
restricting €2;; to zero reflects the assumption that there are
no unobserved common causes of both Y; and Y. Once the

"Instrumental and auxiliary variables can also be used when
normality is not assumed, but to simplify the proofs in the paper,
we will, as is commonly done by empirical researchers, assume
normality.

There are a number of algorithms for discovering the model
structure from data(Spirtes et al., 2000; Shimizu et al., 2006;
Pearl, 2009; Zhang and Hyvérinen, 2009; Mooij et al., 2016).
However, it is only in very rare instances that these methods are
able to uniquely determine the model structure. As a result, model
specification generally utilizes knowledge about the domain under
study.
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parameters are estimated, causal effects (as well as coun-
terfactual quantities) can be computed from the structural
coefficients directly (Pearl, 2009; Chen and Pearl, 2014).
However, in order to be estimable from data, a parameter
must first be identified. In some cases, the modeling as-
sumptions are not strong enough, and there are multiple,
often infinite, values for the parameter that are consistent
with the observed data. As a result, two fundamental prob-
lems in SEMs are to identify and estimate the model pa-
rameters and to test the underlying assumptions that enable
identification.

The problem of identification has been studied extensively
by econometricians and social scientists (Fisher, 1966;
Bowden and Turkington, 1984; Bekker et al., 1994; Rig-
don, 1995) and more recently by the Al and statistics com-
munities using graphical methods (Spirtes et al., 1998;
Tian, 2007; 2009; Brito and Pearl, 2002a;c; 2006; Barein-
boim and Pearl, 2016). To our knowledge, the most gen-
eral, efficient algorithm for model identification is the g-HT
algorithm given by Chen (2016) combined with ancestor
decomposition (Drton and Weihs, 2016). This method gen-
eralizes the half-trek algorithm of Foygel et al. (2012) and
utilizes ancestor decomposition, which expands on an idea
by Tian (2005) where the model is decomposed into sim-
pler sub-models. Graphical methods have also been applied
to the problem of testing the causal assumptions embedded
in an SEM. For example, d-separation (Pearl, 2009) and
overidentification (Pearl, 2004; Chen et al., 2014) provide
the means to discover testable implications of the model,
which can be used to test it against data.

Despite decades of attention and work from diverse fields,
the identification problem?® has still not been efficiently
solved*. There are identifiable parameters and models that
none of the above methods are able to identify. Simi-
larly, there are testable implications of SEMs that the above
methods are unable to detect. One promising avenue to aid
in both tasks are auxiliary variables (Chen et al., 2016).
Each of the aforementioned methods for identification and
model testing only utilizes restrictions on the entries of A
and () to zero. Auxiliary variables can be used to incorpo-
rate knowledge of non-zero coefficient values into existing
methods for identification and model testing. These coeffi-
cient values could be obtained, for example, from a previ-
ously conducted randomized experiment, from substantive
understanding of the domain, or even from another iden-
tification technique. The intuition behind auxiliary vari-

3To be precise, we are referring to the problem of identifi-
cation almost everywhere (Brito and Pearl, 2002b), also called
generic identification (Foygel et al., 2012).

“An exhaustive procedure can be obtained using Grébner
bases methods (Foygel et al., 2012). However, these methods
are computationally intractable for anything but the smallest of
graphs.

ables is simple: if the coefficient from variable w to z, 3,
is known, then we would like to remove the direct effect of
w on z by subtracting it from z. This removal eliminates
confounding paths through w and is performed by creating
a variable z* = z — Sw, which is used as a proxy for z. In
many cases, z* allows the identification of parameters or
testable implications using existing methods when z could
not.

Chen et al. (2016) demonstrated how auxiliary variables
could be utilized in simple instrumental sets (instrumen-
tal sets that do not utilize conditioning to block spurious
paths) (Brito and Pearl, 2002a; van der Zander et al., 2015)
and proved that any model identifiable using the g-HT al-
gorithm is also identifiable using auxiliary simple instru-
mental sets.

Since auxiliary variables allow knowledge of non-zero co-
efficient values to be incorporated into existing methods
for identification, they are also directly applicable to the
problem of z-identification (Bareinboim and Pearl, 2012),
in which partial experimental data is available. Addition-
ally, the cancellation of paths that results from adding an
AV may result in conditional independence constraints be-
tween the AV and other variables that can be used to test
the model.

In this paper, we generalize the results of Chen et al. (2016)
and demonstrate how auxiliary variables can be utilized in
generalized instrumental sets, which allow for condition-
ing to block spurious paths. We prove that, unlike aux-
iliary simple instrumental sets, this generalization strictly
subsumes the g-HT algorithm. Additionally, we introduce
quasi-instrumental sets, which utilize auxiliary variables
to identify coefficients when partial experimental data is
available. Quasi-instrumental sets are incorporated into
our identification algorithm, allowing it to better address
the problem of z-identification. To our knowledge, this
algorithm is the first systematic method for tackling z-
identification in linear systems. We also demonstrate how
auxiliary instrumental sets and quasi-instrumental sets can
be used to derive over-identifying constraints, which can
be used to test the model specification against data. More-
over, we prove that these overidentifying constraints sub-
sume conditional independence constraints among auxil-
iary variables. Lastly, we discuss related work, showing
how auxiliary IVs are able to unite a variety of disparate
methods under a single framework.

2. Preliminaries

The causal graph or path diagram of an SEM is a graph,
G = (V, D, B), where V are nodes or vertices, D directed
edges, and B bidirected edges. The nodes represent model
variables. Directed eges encode the direction of causal-
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ity, and for each coefficient A;; # 0, an edge is drawn
from x; to x;. Each directed edge, therefore, is associ-
ated with a coefficient in the SEM, which we will often
refer to as its structural coefficient. Additionally, when it is
clear from context, we may abuse notation slightly and use
coefficients and directed edges interchangeably. The error
terms, u;, are not shown explicitly in the graph. However,
a bidirected edge between two nodes indicates that their
corresponding error terms may be statistically dependent
while the lack of a bidirected edge indicates that the error
terms are independent.

We will use standard graph terminology with Pa(y) denot-
ing the parents of y, Anc(y) denoting the ancestors of Y,
De(y) denoting the descendants of y, and Sib(y) denoting
the siblings of y, the variables that are connected to y via
a bidirected edge. He(E) denotes the heads of a set of di-
rected edges, F, while Ta(FE) denotes the tails. Addition-
ally, for a node v, the set of edges for which He(E) = v is
denoted Inc(v). Lastly, we will utilize d-separation (Pearl,
2009).

We will use o(x, y|TV) to denote the partial covariance be-
tween two random variables, x and y, given a set of vari-
ables, W, and o(z,y|W )¢ as the partial covariance be-
tween random variables x and y given W implied by the
graph G. We will assume without loss of generality that
the model variables have been standardized to mean 0 and
variance 1.

Definition 1. For a given unblocked (given the empty set)
path, , from x to vy, Left(m) is the set of nodes, if any,
that has a directed edge leaving it in the direction of  in
addition to x. Right(m) is the set of nodes, if any, that has a
directed edge leaving it in the direction of y in addition to

Y.
For example, consider the path 1 = o + vf «+ ... «+
v,f — T — ’U]R — ... = vf — y. In this case, Left(r)
= U wF U {z,v"} and Right(r) = U/_,vE U {y,v7}.
v”' is a member of both Right(r) and Left(r).

Definition 2. A set of paths, 71, ..., T,, has no sided inter-
section if for all m;,m; € {m1,...,mp} such that ™; # =,
Left(m;)NLeft(mj)=Right(m;)NRight(r;) = (.

Wright’s rules (Wright, 1921) allow us to equate the model-
implied covariance, o(z,y)as, between any pair of vari-
ables, x and y, to the sum of products of parameters
along unblocked paths between x and y.> Let II =

SWright’s rules characterize the relationship between the co-
variance matrix and model parameters. Therefore, any question
about identification using the covariance matrix can be decided
by studying the solutions for this system of equations. However,
since these equations are polynomials and not linear, it can be
very difficult to analyze identification of models using Wright’s
rules.

{m1,7a, ..., T} denote the unblocked paths between z and
y, and let p; be the product of structural coefficients along
path 7;. Then the covariance between variables x and y is
> pi-

Lastly, we define auxiliary variables and the augmented
graph.

Definition 3 (Auxiliary Variable). Given a linear SEM with
graph G and a set of edges E whose coefficient values
are known, an auxiliary variable is a variable, z* = z —
>, eiti, where {eq,...,er.} € ENInc(z)andt; = Ta(e;)
Sforalli € {1,...,k}.

If not otherwise specified, z* refers to the auxiliary vari-
able, z — c1t1 — ... — ¢t;, where {c1,..., ¢} are the co-
efficients of E N Inc(z) and E is the set of directed
edges whose coefficient values are known. In other words,
z* is the auxiliary variable for z where as many known
coefficients are subtracted out as possible. Chen et al.
(2016) demonstrated that the covariance between any aux-
iliary variables and model variables can be computed using

Wright’s rules on the augmented graph, defined below.

Definition 4. (Chen et al., 2016) Let M be a linear SEM
with graph G and a set of directed edges E such that their
coefficient values are known. The E-augmented model,
MF*, includes all variables and structural equations of
M in addition to new auxiliary variables, y7,...y;, one
for each variable in He(E) = {y1,...,yr} such that the
structural equation for y; is y¥ = y; — Ax,y, T}, where
X; = Ta(E) N Pa(y;), foralli € {1,...,k}. The corre-
sponding augmented graph is denoted GF*.

For example, consider Figure la. If the value of f3 is
known, we can generate an auxiliary variable x* = x — [3t.
The (-augmented graph G”% is depicted in Figure 1b. In
some cases, ™ allows the identification of coefficients and
testable implications using existing methods when x could
not, due to the fact that the back-door paths from x to y that
go through (8 cancel with the back-door paths from x* to y
that go through —5. This can be seen by expressing the
covariance of z* and y in terms of the model parameters
using Wright’s rules.

3. Auxiliary and Quasi-Instrumental Sets

Two, perhaps the most common, methods for estimat-
ing causal effects are OLS regression and two-stage least-
squares (2SLS) regression. Both of these methods as-
sume that the underlying causal relationships between vari-
ables are linear, in addition to other causal assumptions that
guarantee identification. The single-door criterion (Pearl,
2009) graphically characterizes when the assumptions suf-
ficient to estimate a causal effect using regression are sat-
isfied in a linear SEM. Similarly, Brito and Pearl (2002a)
gave a graphical characterization for when a variable z
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Figure 1. (a) « is not identified using IVs (b) « is identified using ™ as an auxiliary IV given w; (c) conditioning on descendants of x

induces correlation between ™ and y

qualifies as an IV so that 2SLS regression provides a con-
sistent estimate of the causal effect. In this section, we give
a graphical criterion for when AVs can be utilized in gen-
eralized instrumental sets, which extends both the single-
door criterion and I'Vs. Additionally, we introduce quasi-
instrumental sets, which utilize AVs to better address the
problem of z-identification.

First, we give a simple graphical criterion for when an AV
would be conditionally independent of another variable,
which will allow us to incorporate AVs into instrumental
sets, as well as other identification and model testing meth-
ods that require the ability to detect conditional indepen-
dence in the graph.

Theorem 1. Given a linear SEM with graph G, where E C
Inc(z) is a set of edges whose coefficient values are known,
if W U {y} does not contain descendants of z and Gp_
represents the graph G with the edges for E removed, then
(z* LLy|W) e+ if and only if (2 LLy|W)e,,_.°

Proof. Proofs for all theorems and lemmas can be found in
the Appendix (Chen et al., 2017). O

Next, we demonstrate how AVs can be incorporated into
generalized instrumental sets, defined below.

The theorem disallows descendants of the generating vari-
able in the conditioning set. At first glance, this may appear to
limit the ability to block biasing paths among AVs. However, we
conjecture that if z cannot be separated from y in G, then z* will
almost surely not be independent of y given W, if W contains
descendants of z. To illustrate, consider the example shown in
Figure lc. * = z — ft is independent of y, as can be veri-
fied using Wright’s rules, but =™ is not independent of y given
d! An intuitive explanation for this surprising result is that con-
ditioning on d, a descendant of x, in Figure lc induces correla-
tion between the error term of z and ¢, since z acts as a “virtual
collider”. As a result, we have a “virtual path” from z* to y,
" = T < uz <> t — y. See Pearl (2009, p. 339) for a detailed
discussion of virtual colliders.

Theorem 2. (Brito and Pearl, 2002a) Given a linear model
with graph G, the coefficients for a set of edges F
{(z1,9), ..., (xx,y)} are identified if there exists triplets
(21, W1,01),s «vs (21, Wi, i) Such that fori = 1,..., k,

(i) (zilLy|Wi)G,_, where W does not contain any de-
scendants of y and Gg_ is the graph obtained by
deleting the edges, E from G,

(ii) p; is a path between z; and x; that is not blocked by
W, and

(iii) the set of paths, {p1,...,px} has no sided intersec-
tion.”

If the above conditions are satisfied, we say that Z is a gen-
eralized instrumental set for E or simply an instrumental
set for E.8

In some cases, a variable z may not satisfy condition (i)
above but an auxiliary variable z* does. For example, in
Figure la, we cannot identify « using Theorem 2. Block-
ing the path z < t <> y by conditioning on ¢ opens the
path, x <> t <> y. Moreover, we cannot use ¢ or s in
an instrumental set due to the edges ¢ <+ y and s < .
However, s is an IV for (3, allowing us to generate an AV,
x* = ax — [ - t1, as in Figure 1b. Now, « can be identified

using x* as an auxiliary instrument given wy.

Theorem 1 tells us when (i) of Theorem 2 can be satisfied
using an AV, z;. We simply check whether z; can be sep-
arated from y in Ggug,—, where E, C Inc(z;) is the set
of z;’s edges whose coefficient values are known. When an
instrumental set includes AVs, we call the set an auxiliary
instrumental set or auxiliary 1V set for short.

"Brito and Pearl (2002a) provided an alternative statement of

condition (iii). A proof that the two statement are, in fact, equiv-
alent is given in the Appendix (Chen et al., 2017).

8Note that when k = 1, 21 is an IV for (z1,y). Further, if
z1 = x1, then x1 satisfies the single-door criterion for (z1,y).
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Figure 2. (a) « is not identified using [Vs (b) « is identified using
Z as a quasi-1V after adding auxiliary variable Y

Figure la also demonstrates the importance of extending
the simple auxiliary instrumental sets introduced by Chen
et al. (2016) to allow for conditioning. a can only be iden-
tified if we block the paths z <+ w; — yand x & w; —
wg — y by conditioning on ws.

When knowledge of coefficient values are known a priori,
it may be helpful to generate an AV from the outcome vari-
able y. For example, in Figure 2a, o cannot be identified.
However, suppose that it is possible to run a surrogate ex-
periment and randomize z. This experiment would allow
us to estimate vy and generate the AV, Y* =Y — vZ. Now,
z is not technically an instrument for «, but it can be shown
that o« = TYT*XZZ-W. Chen et al. (2016) called such variables
quasi-instrumental variables or quasi-IVs for short.

Interestingly, while quasi-IVs are valuable for the problem
of z-identification, they do no better than instrumental sets
when applied to the standard identification problem, where
no external knowledge of coefficient values is available.
For example, consider again Figure 2a. In order to use z
as a quasi-1V for «, we would first have to identify - using
an IV. If such a variable existed, say z’, then we could have
simply identified {«, v} using the IV set {z, 2’ }.

Next, we formally define quasi-instrumental sets or quasi-
1V sets for short. Note that auxiliary IV sets are also quasi-
IV sets.

Definition 5. Given a linear SEM with graph G, a set of
edges FEx whose coefficient values are known, and a set of
structural coefficients « = {1, aq, ..., }, the set Z =
{21, ..., 2k} is a quasi-instrumental set if there exist triples
(z1, Wi, p1), -, (21, Wj, pr) such that:

(i) Fori=1,...,k, either:

(a) the elements of W; are non-descendants of v,
and (2 Ly|Wi)cp,s, where E, = Ex N
Inc(y). ‘

(b) the elements of W; are non-descendants of z;
and y, and (2 y|Wi)Gpp,, where E.y, =
Ex N (Inc(z) U Inc(y)). '

(ii) fori =1, ..., k, p; is a path between z; and x; that is
not blocked by W;, where x; = He(w;), and

(iii) the set of paths {p1, ..., p } has no sided intersection

Theorem 3. If Z* is a quasi-instrumental set for E, then
E is identifiable.

Lastly, the following corollary provides a simple graphical
condition for when a single variable or AV qualifies as a
quasi-IV.

Corollary 1. Given a linear SEM with graph G, z* is a
quasi-1V for o given W if W does not contain any descen-
dants of z, and z is an 1V for o given W in Gg,ug, -,
where E, C Inc(z) and E, C Inc(y) are sets of edges
whose coefficient values are known.

Auxiliary and quasi-IV sets enable a bootstrapping proce-
dure whereby complex models can be identified by itera-
tively identifying coefficients and using them to generate
new auxiliary variables. For example, consider Figure 3a.
First, we are able to identify b and c using I'Vs, but no other
coefficients. Once b is identified, Corollary 1 tells us that e
is identified using v3 since v3 is an IV for e when the edge
for b is removed (see Figure 3b). Now, the identification of
e allows us to identify a and d using v, since vs is an IV
for a and d when the edge for e is removed (see Figure 3c).
This general strategy is the basis for our identification, z-
identification, and model testing algorithm, described next.

4. Identification and z-Identification
Algorithm

In this section, we construct an identification algorithm
that operationalizes the bootstrapping approach described
in Section 3. First, we describe how to algorithmically find
a quasi-instrumental set for a set of coefficients F, given a
set of known coefficients, IDEdges.

The problem of finding generalized instrumental sets was
addressed by van der Zander and Liskiewicz (2016). They
provided an algorithm, TestGenerallVs, that determines
whether a given set Z is a generalized instrumental set for
a set of edges, F, that runs in polynomial time if we bound
the size of the coefficient set to be identified. More specif-
ically, their algorithm has a running time of O((k!)2n*),
where n is the number of variables in the graph and & =
|E).2

Our method, TestQIS, given in the Appendix (Chen et al.,
2017), generalizes TestGenerallVs, for quasi-IV sets.

%van der Zander and Liskiewicz (2016) also give an algorithm
that tests whether Z is a simple conditional instrumental sets in
O(nm) time. A simple conditional instrumental set is a general-
ized instrumental set where W1 = Wa = ... = W,
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Figure 3. (a) b is identified using either v, or v1 as an instrument and c is identified using w as an instrument (b) e is identified using v3
as an auxiliary instrument given (c) a and d are identified using v; as an auxiliary instrument

FindQIS, also given in the Appendix (Chen et al., 2017),
searches for a quasi-IV set by checking all subsets of Z C
(Anc(z;) U Anc(y)) using TestQIS. It returns a quasi-IV
set, as well as its conditioning sets, if one exists.

In some cases an instrumental set may not exist for C,
but one exists for Cl, where C C (. Conversely, there
may not be an instrumental set for C /, but there is one for
C c C'. As a result, we may have to check all possi-
ble subsets of a variable’s coefficients in order to determine
whether a given subset is identifiable using auxiliary in-
strumental sets. This search can be simplified somewhat
by noting that if E is a connected edge set (defined below)
with no instrumental set, then there is no superset E' with
an instrumental set.

Definition 6. (Chen et al., 2014) For an arbitrary variable,
V, let Pay, Pas, ..., Pay, be the unique partition of Pa(V)
such that any two parents are placed in the same subset,
Pa;, whenever they are connected by an unblocked path. A
connected edge set with head V is a set of directed edges
from Pa; to'V for some i € {1,2,....k}.

The ID algorithm, called ¢I D utilizes FindQIS to iden-
tify as many coefficients as possible in a given model with
graph G. It iterates through each connected edge set and
attempts to identify it using FindQIS. If it is unable to
identify the connected edge set, it then attempts to iden-
tify subsets of the connected edge set. After the algo-
rithm has attempted to identify each connected edge set, it
again attempts to identify each unidentified connected edge
set, since each newly identified coefficient may enable the
identification of previously unidentifiable coefficients. This
process is repeated until all coefficients have been identi-
fied or no new coefficients have been identified in the last
iteration. The algorithm is polynomial if the degree of each
node in the graph is bounded.

Our algorithm identifies the model depicted in Figure 4b in
the following way. First, let us assume that the connected
edge sets are arbitrarily ordered, ({a}, {b, ¢, f},{d}, {e}).
Now, the first edge to be identified would be a using w;
as an IV. There is no auxiliary IV set for {b, ¢, f}, and we
would attempt to find one for its subsets. We find that {b}
is identified using {«} as an IV set with conditioning set

{w1}. Now, {d} is identified using y* = y — bz, and e
is identified using ¢5. In the second iteration, we return to
{b, ¢, f} and find that it is now identified using the auxiliary
IV set, {x,w,t5}.

Algorithm 1 qID(G, X, IDEdges)

Initialize: EdgeSets < all connected edge sets in G
repeat
for all £S in EdgeSets such that
ES ¢ IDEdges do
y < He(ES)
for all £ C FES such that £ ¢ IDEdges do
(Z,W) «+ FindQIS(G, ES,IDEdges)
if (Z,W) #. then
Identify F.S using Z* as an auxiliary
instrumental set in G(IPEdgesnIne(Z))+
IDEdges <+ IDEdges U ES
end if
end for
end for
until All coefficients have been identified or no coeffi-
cients have been identified in the last iteration

In contrast, Figure 4b is not identified using simple instru-
mental sets and auxiliary variables. We cannot identify b
without conditioning on w;, which means that the only co-
efficients identified using auxiliary simple instrumental sets
is a. Since Chen et al. (2016) showed that any coefficient
identified using the generalized half-trek criterion (g-HTC)
can be identified using auxiliary variables and simple in-
strumental sets, we know that ¢/ D is able to identify coef-
ficients and models that the g-HT algorithm is not. More-
over, ¢I D will identify any coefficients that are identifiable
using auxiliary variables and simple instrumental sets, giv-
ing us the following theorem.

Theorem 4. Given an arbitrary linear causal model, if a
set of coefficients is identifiable using the g-HT algorithm,
then it is identifiable using qID. Additionally, there are
models that are not identified using the g-HT algorithm,
but identified using qI D.
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Figure 4. (a) 0 (22,y*) = 0, where y* = y — Zgz?i and, equiv-

alently, « is overidentified using z; and z2 as IVs (b) the model
is identified using auxiliary instrumental sets, but not the g-HT
algorithm

5. Deriving Testable Implications using AVs

Theorem 1 also enables us to derive new vanishing partial
correlation constraints that can be used to test the model.
For example, in Figure 4a, o can be identified using z; as
an instrument. Once « is identified, we can generate the
%x, and Theorem 1 tells us
that the correlation of 25 and y* should vanish. As a result,
we can test the model specification by verifying that this
constraint holds in the data.

AVy'=y—ax =y —

Theorem 1 also tells us that the correlation between z; and
y* should also vanish. However, upon closer inspection,
we find that this implication does not actually constrain the
covariance matrix:

o(21,y") =0(21,y — ax)
U(ya Zl)

=0.
o 1,21)0(21’30)

=o(z1,y) —

In other words, our “testable implication” that o(z1,y*) =
0 is equivalent to stating o(z1,y) — o(z1,y) = 0-a tautol-
ogy! In contrast,

o(z1,y)

oz, Zl>a(22, x)=0

0(22,y") = 0(22,y) —

does provide a true testable implication.

Shpitser et al. (2009) noticed a similar phenomenon when
deriving dormant independences in non-parametric mod-
els, and their explanation applies to conditional indepen-
dence constraints among AVs as well. The idea is the fol-
lowing: When the model implies that two variables are con-
ditionally independent, it relies on the modeled assumption
that there is no edge between those variables. As a result,
verifying that the constraint holds in data represents a test
that this assumption is valid. However, unlike conditional
independence constraints between model variables, condi-
tional independence constraints among AVs rely upon the
absence of certain edges in order to identify the coefficients

necessary to generate the AV. The key point is that this
identification cannot rely on the same lack of edge whose
existence we are trying to test!

In the above example, we identified o using z; as an IV.
o(z2,y*) = 0 follows from the lack of edge between z,
and y. However, even if this edge did exist, z* still equals
z— %x In contrast, o(z1,y*) = 0 follows from the
lack of edge between z; and y. The existence of this edge

would disallow z; as an instrument and z* = z — azx #
o(y,21)

z— .
o(x,z1)

Another way to derive the constraint o (23, y*) = 0 is via
overidentification. « can be identified using either z; or 2o
and equating the corresponding expressions yields the con-
straint % = %, which is clearly equivalent to the
previous constraint o (22, y*) = 0. In fact, we show (Theo-
rem 6) that whenever a variable z cannot be separated from
another variable y, but z* can be, the resulting AV condi-
tional independence, if it is non-vacuous, is equivalent to an
overidentifying constraint that can be derived using quasi-
IVs. As a result, all non-vacuous AV conditional indepen-
dences are captured by overidentifying constraints derived
using quasi-IVs!

First, we give a sufficient condition for when a set of edges
o is overidentified.

Theorem 5. Let Z be a quasi-1V set for structural coeffi-
cients o = {ay, ..., ar } and E be a set of known edges. If
there exists a node s satisfying the conditions listed below,
then « is overidentified and we obtain the constraint .

(i) s¢ Z

(ii) There exists an unblocked path between s and y in-
cluding an edge in o

(iii) There exists a conditioning set W that does not block
the path p, such that either:

(a) the elements of W are non-descendants of y, and

(s1Ly[W)Gaop, — where Ey = E N Inc(y))

(b) the elements of W are non-descendants of s and
Y, and (s Ly|W)G.op,op,  Where Es = E N
Inc(s).

The above theorem can be used to derive an overidentifying
constraint for every variable that satisfies (i)-(iii) above. It
can also be applied when « is known a priori, yielding a
z-overidentifying constraint. In this case, Z = () would be
a quasi-IV set that trivially identifies a.

The following theorem states that non-vacuous AV condi-
tional independence constraints are subsumed by quasi-IV
overidentifying and z-overidentifying constraints.
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Theorem 6. Let z* = z — eyt] — ... — eity and suppose
there does not exist W such that (z1y|W)g. There ex-
ists W such that W N De(z) = () and (z*_ILy|W) is non-
vacuous if and only if y satisfies the conditions of Theorem
Sfor E = {eq,...,ex}.

The above theorem also applies when y is an AV, called
y*. In this case, we simply replace (z 1L y|W)g with
(zALy*|W)gey+, where B, C Inc(y) is a set of edges

whose coefficient values are known.

Algorithm 2 uses quasi-IV sets to output overidentifiying
constraints in a graph given an optional set of identified
edges. It uses isEIV, which is a slightly modified version
of FindQIS that tests whether w fits the conditions of The-
orem 6. Details of iSEIV can be found in the Appendix
(Chen et al., 2017).

Algorithm 2 Finds overidentifying constraints for G

function CONSTRAINTFINDER(G, X, IDEdges)
for all ES € Edge Sets of G do
(Z,W) «+ FINDQIS(ES,G,IDEdges)
if (Z,W) # L then
forallw € V\ ZU{He(ES)} do
if ISEIV(w,ES,G,IDEdges) then
Add constraint a,, A~'b = b,,
end if
end for
end if
end for
end function

6. Discussion and Related Work

In this section, we discuss how (single-variable) auxiliary
IVs encompass a number of previous identification meth-
ods developed in economics (Hausman and Taylor, 1983),
computer science (Chan and Kuroki, 2010), and epidemi-
ology (Shardell, 2012).

Hausman and Taylor (1983) showed that if the equation for
a given variable, z = B1p1 + ... + Skpr + u., is identified,
then the error term u, can be estimated and used as an in-
strument for other coefficients. In this case, the auxiliary
variable z* = z — B1p1 — ... — Bipx is equal to the error
term u,. As a result, whenever the error term is estimable
and can be used as an IV, we can also generate an auxil-
iary instrument. However, there are times when only some
of the coefficients in an equation are identifiable, and as a
result, the error term cannot be used as an instrument, but
we can nevertheless generate an auxiliary instrument. As a
result, auxiliary I'Vs strictly subsume error term I'Vs.

Chan and Kuroki (2010) gave sufficient conditions for
when a descendant of z and a descendant of y could be

used in analogous manner to IVs to identify the effect of
x on y. In the context of AVs, this method is equivalent
to generating an auxiliary instrument from the descendant
by subtracting the total effect of x on the descendant or the
total effect of y on the descendant (depending on whether
the variable is a descendant of = or ). In this paper, we
generated AVs by subtracting out direct effects, but clearly
the work can be extended to subtracting out total effects.
The benefit of AVs over these descendant I'Vs is that they
can be generated from a variety of variables, not just de-
scendants of = and y. Additionally, descendants of x or y
can generate AVs from other total or direct effects, not just
the effect of x or 4 on the descendant.

The notion of “subtracting out a direct effect” in order to
turn a variable into an instrument was also noted by Shard-
ell (2012) when attemping to identify the total effect of z
on y. It was noticed that in certain cases, the violation of the
independence restriction of a potential instrument 2 (i.e. z
is not independent of the error term of ) could be remedied
by identifying, using ordinary least squares regression, and
then subtracting out the necessary direct effects on y. AVs
generalize and operationalize this notion so that it can be
used on arbitrary sets of known coefficient values and be
utilized in conjunction with existing graphical methods for
identification and enumeration of testable implications.

Additionally, as we have alluded to earlier, the highly al-
gebraic, state-of-the-art g-HTC can also be understood in
terms of auxiliary instruments. Identification using the g-
HTC is equivalent to identification using auxiliary simple
instrumental sets.

In summary, auxiliary instruments are not only the basis
for the most general identification algorithm yet devised,
but they also unify disparate identification methods under
a single framework. Moreover, AVs are directly applicable
to the tasks of z-identification and model testing. Finally,
they can, in principle, enhance any method for identifica-
tion, model testing, or other tasks that relies on graphical
separation.

7. Conclusion

In this paper, we graphically characterized conditional in-
dependence among AVs, allowing us to demonstrate how
they can help generalized instrumental sets in the problem
of identification. We provided an algorithm that identifies
more models than the g-HT algorithm, subsuming the state-
of-the-art for identification in linear models. Additionally,
we introduced quasi-IV sets, and constructed an algorithm
that utilizes them to attack the problem of z-identification.
Finally, we proved that AV conditional independences are
subsumed by overidentifying constraints and gave an algo-
rithm for deriving overidentifying constraints.
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